

Machine Learning Research
2018; 3(3): 60-68

http://www.sciencepublishinggroup.com/j/mlr

doi: 10.11648/j.mlr.20180303.12

ISSN: 2637-5672 (Print); ISSN: 2637-5680 (Online)

Development of Robot Navigation System with Collision
Free Path Planning Algorithm

Htun Myint

Department of Electronic Engineering, Technological University (Panglong), Panglong, Myanmar

Email address:

To cite this article:
Htun Myint. Development of Robot Navigation System with Collision Free Path Planning Algorithm. Machine Learning Research.

Vol. 3, No. 3, 2018, pp. 60-68. doi: 10.11648/j.mlr.20180303.12

Received: August 3, 2018; Accepted: September 6, 2018; Published: October 12, 2018

Abstract: Mobile robots have been successfully used in many fields due to their abilities to perform difficult tasks in

hazardous environments, such as robot rescuing, space exploring and their various promising applications in the daily lives.

Robot path planning is a key issue in robot navigation which is a kernel part in mobile robot technology. Robot path planning is

to generate a collision-free path in an environment while satisfying some optimization criteria. Mobile robot path planning is a

nondeterministic polynomial time (NP) problem, traditional optimization methods are not very effective to it, which are easy to

plunge into local minimum. In this research work, an evolutionary algorithm to solve the robot path planning problem is devised.

A method of robot path planning in partially unknown environments based on A star (A*) algorithm was proposed. The proposed

algorithm allows a mobile robot to navigate through static obstacles and finds its path in order to reach from its initial position to

the target without collision. In addition, the environment is partially unknown for the robot due to the limit detection range of its

sensors. The robot processor updates its information during the motion. The simulations are performed in different static

environments, and the results show that the robot reaches its target with colliding free obstacles. The optimal path is generated

with this method when the robot reaches its target. The simulation results are developed by MATLAB environments.

Keywords: Collision Free Path, Robot Navigation, MATLAB, A Star, Path Planning Algorithm

1. Introduction

Robotic is known as a new revolution to the entity of beings

that varies according to its uses. In modern day environments,

robotics and automation are involved in almost every

industrial activity and conveniently improve the efficiency,

productivity and reliability of a system. Robotics is also

implemented in medical practice, construction, outer-space

exploration, household assistance, mobile transportation and

quite recently, underwater exploration. Robots have many

uses in the military, industry, health care services, and

neighborhood homes. Robots categorized as unmanned

ground, marine, and aerial vehicles are normally found in the

military. In industry, robots are commonly used on assembly

lines in automotive and food processing plants. These robots

are usually in the category of machine vision and used to

assemble products and/or detect defects in the products. In

health care, robots are now used to assist during surgical

procedures. Robotic devices are also starting to be used to

assist elderly people, particularly in Japan. It could also be

found that robots in homes in the form of vacuum cleaners and

even lawn mowers. Each type of robot operates at specific

level of autonomy. The level of autonomy afforded to robots

usually depends on the size and mobility capabilities of the

robot and level of risk in harming humans and pets. A mobile

autonomous robotic system is a ground, marine, or aerial

vehicle consisting of all the integrated components (mobility

platform, sensors, computers, and algorithms) required to

perceive, learn, and adapt in the environment to make

intelligent decisions for navigating, communicating, and

accomplishing required tasks [1-8]. Robot Path Planning or

robot Motion Planning is one of the important areas of interest

in robot’s offline decision making algorithms. In this problem,

the aim is to find a collision free path, which the robot can

follow to reach the target from its start position. Analysis and

research on autonomous path planning has included

innovative advancements in the use of artificial intelligence

(AI). With advancement in the study of this subject,

technology with uncontrollable situations such as outer space

exploration and deep sea excavation can be further improved.

 Machine Learning Research 2018; 3(3): 60-68 61

New technology such as autonomous vehicle systems may

also be able to utilize such algorithms which are fail-safe. The

robotic platform design is not an issue anymore. Whether the

robot will serve the military or be a part of the civilian

workforce, the platform will be designed to support the

required application. For a vehicle to travel longer distances in

a shorter amount of time, it will be necessary to eliminate the

long delay caused by communications traveling across the

great distance between source and destination. One possibility

involves breaking the traditional laws of physics and finding a

way to communicate faster than the speed of vehicle. An

easier approach involves eliminating the need for such

frequent communications. This implies that any such vehicle

will have to be able to perform two tasks on its own [9-13].

(1) Determine the three-dimensional layout, or map, of

the surrounding terrain by use of photographs taken

from multiple locations

(2) Determine a path across this map to reach the intended

destination.

The main objective of this project is to create and develop a

Path Planning Mobile Robot able to avoid obstacles in its path

and reach a target designated position from its starting point. A

study on obstacle avoidance using A* algorithm, path

planning. The overall system block diagram is illustrated in

Figure 1.

Figure 1. System Block Diagram.

2. A* Path Finding Algorithm

A real challenge for an agent in real time games is to find

the route from the start node to the goal node in presence of

other agents and obstacles. In the presence of obstacles, the

path moves around the obstacle and reaches the goal. This

path should be of minimum cost or in other words it should be

the shortest possible distance. A* is a shortest path finding

algorithm that uses informed search technique to find the

least-cost path from the start node to the goal node. The classic

representation of the A* algorithm is as follow:

f(x) = g(x) + h(x)

f(x): is called the distance-plus-cost heuristic function (or

simply F cost) and it is the sum of path-cost function g(x) and

heuristic function h(x).

g(x): the path-cost function (or simply G cost) is the actual

total cost of the path to reach the current node x from the start

node.

h(x): is the estimated cost (or simply H cost) of the path

from current node x to the goal node. An estimate is made that

tells how far the goal node is from the current node x. h(x)

must be an admissible heuristic estimate. A heuristic function

is said to be admissible if the cost of path estimated by it never

exceeds the lowest-cost path. Since h(x) is part of f(x), f(x) is

dependable on h(x) for the lowest cost of path. It means when

h(x) is admissible, A* algorithm is guaranteed to give the

shortest path if one exists. Therefore, h(x) must not

overestimate the cost. The cost is measured by meter (m).

There are many different heuristic functions used for the grid

maps. Some famous heuristics are Manhattan distance,

diagonal distance, Euclidean distance. Manhattan distance to

estimate h(x) because it works better on squared grids is used.

It is the direct distance from current node to the goal node

without considering obstacles in the path. In this way h(x) is

giving us the lowest possible cost to reach the goal node

[14-17].

3. Linking Functions for A* Algorithm

The implementation of A* algorithm for mobile robot path

planning system is developed by linking the main and

sub-functions of MATLAB script. There are only six functions

for function linking system.

Figure 2. Block Diagram of Linking System for MATLAB Function.

They are A Star.m for main function and Distance.m for

distance calculation, Expand_array.m for X and Y array

specifying, Insert_open.m for finding the OPEN and

CLOSED list, Mn_fn.m for f(n) calculation and

Node_index.m for identifying node. The block diagram of

linking system for MATLAB function is shown in Figure 2.

4. Overall Flowchart of A* Algorithm

The overall flowchart of A* algorithm is illustrated in

Figure 3. The step-by-step procedures for mobile robot path

planning system are developed by using MATLAB.

62 Htun Myint: Development of Robot Navigation System with Collision Free Path Planning Algorithm

Figure 3. Overall Flowchart of Mobile Robot Path Planning.

5. Development of Main Function for A*

Path Planning Algorithm

According to the A* algorithm the path planning algorithm

is accomplished with the help of MATLAB to find the optimal

path of mobile robot. There are four main steps to find the

optimal path for mobile robot. They are defining the 2-D map

array on the work space, specifying the source, target and

obstacle locations with the help of mouse button, finding the

node with the smallest f(n), and plotting the optimal path on

the work space. All distances are measured by SI unit (Meter).

First, the MATLAB codes are implemented according to the

defining the 2-D map array on the work space as follows:

MAX_X=10;

MAX_Y=10;

MAX_VAL=10;

The values of MAX_X, MAX_Y, and MAX_VAL are

changed by the necessary of work space specification for

mobile robot path planning. This array stores the coordinates

of the map and the Objects in each coordinate by using the

below code.

MAP=2*(ones(MAX_X,MAX_Y));

And the position of Obstacle, Target and Robot have to be

initialized on the MAP with input values as Obstacle=-1,

Target = 0, Robot=1, Space=2. The program is begun with the

interactive Obstacle, Target, Start location selection by

commanding the following message boxes on the work space.

h=msgbox('Please Select the Target using the Left Mouse

button');

h=msgbox('Select Obstacles using the Left Mouse button,

to select the last obstacle use the Right button');

h=msgbox('Please Select the Vehicle initial position using

the Left Mouse button');

After inputting the information on these message box, the

position of Obstacle, Target, Start are displayed on the work

space and waiting the algorithm to find the optimal path.

Then the lists used for algorithm to calculate the distance

travels of mobile robot with OPEN and CLOSED list on the

work space is implemented by using the specified MATLAB

codes.

First, all obstacles on the CLOSED list are put on the work

space with the dummy counter by using the following looping

instructions.

 Machine Learning Research 2018; 3(3): 60-68 63

for i=1:MAX_X

 for j=1:MAX_Y

 if(MAP(i,j) == -1)

 CLOSED(k,1)=i;

 CLOSED(k,2)=j;

 k=k+1;

 end

 end

end

After counting the CLOSED list on the work space, the

matrix size of CLOSED list to find the path distance is

developed by following the below instruction.

CLOSED_COUNT=size(CLOSED,1);

And then the starting node as the first node is set to find the

next distance by accumulating the node location with the help

of the following instructions.

xNode=xval;

yNode=yval;

OPEN_COUNT=1;

path_cost=0;

goal_distance=distance(xNode,yNode,xTarget,yTarget);

OPEN(OPEN_COUNT,:)=insert_open(xNode,yNode,xNo

de,yNode,path_cost,goal_distance,goal_distance);

OPEN(OPEN_COUNT,1)=0;

CLOSED_COUNT=CLOSED_COUNT+1;

CLOSED(CLOSED_COUNT,1)=xNode;

CLOSED(CLOSED_COUNT,2)=yNode;

NoPath=1;

According to the specifying the OPEN and CLOSED list on

the work space, the A* algorithm is started by expanding the

array format. There are two main stages for counting

condition. The first one is finding the OPEN count and the

second one is updating the OPEN count by following the for

loop expressions.

for i=1:exp_count

 flag=0;

 for j=1:OPEN_COUNT

 if(exp_array(i,1) == OPEN(j,2) && exp_array(i,2) ==

OPEN(j,3))

 OPEN(j,8)=min(OPEN(j,8),exp_array(i,5));

 if OPEN(j,8)== exp_array(i,5)

 OPEN(j,4)=xNode;

 OPEN(j,5)=yNode;

 OPEN(j,6)=exp_array(i,3);

 OPEN(j,7)=exp_array(i,4);

 end;

 flag=1;

 end;

 end;

 if flag == 0

 OPEN_COUNT = OPEN_COUNT+1;

The node with the smallest f(n) is analyzed by applying the

following MATLAB codes.

index_min_node =

min_fn(OPEN,OPEN_COUNT,xTarget,yTarget);

The xNode and yNode to the node with minimum f(n) is set

to update the cost of reaching the parent node.

xNode=OPEN(index_min_node,2);

yNode=OPEN(index_min_node,3);

path_cost=OPEN(index_min_node,6);

After finding the cost of reaching the parent node, the node

to list CLOSED is moved by using the following codes.

CLOSED_COUNT=CLOSED_COUNT+1;

CLOSED(CLOSED_COUNT,1)=xNode;

CLOSED(CLOSED_COUNT,2)=yNode;

OPEN(index_min_node,1)=0;

Once the algorithm has run the optimal path is generated by

starting off at the last node (if it is the target node) and then

identifying its parent node until it reaches the start node. This

is the optimal path of the mobile robot. The following

instructions are appropriated to find the optimal path.

i=size(CLOSED,1);

Optimal_path=[];

xval=CLOSED(i,1);

yval=CLOSED(i,2);

i=1;

Optimal_path(i,1)=xval;

Optimal_path(i,2)=yval;

i=i+1;

Based on the above MATLAB instructions to find the

optimal path, the optimal path is plotted on the work space by

using the following code.

p=plot(Optimal_path(j,1)+.5,Optimal_path(j,2)+.5,'bo');

The completed MATLAB code is shown in APPENDIX of

this dissertation.

Figure 4. Flowchart of Main Program for Mobile Robot Path Planning.

64 Htun Myint: Development of Robot Navigation System with Collision Free Path Planning Algorithm

5.1. Development of Distance.m Function

This function calculates the distance between any two

Cartesian coordinates. The straight line equation is applied to

find the distance along the mobile robot path finding stage.

This function is very simple and easy to use the next update

distance of target node by using the following MATLAB code.

dist=sqrt((x1-x2)^2 + (y1-y2)^2);

The detailed calculations for path distance are as follows:

Let x1=0, y1=0, and the open list can be (2,1)

∴x2=2 and y2=1

dist=��x1-x2�2+�y1-y2�2

dist=��0-2�2
+�0-1�2

=2.23 meters

5.2. Development of Expanded_Array.m Function

This function takes a node and returns the expanded list of

successors, with the calculated f(n) values. The criteria being

none of the successors are on the CLOSED list. Number of

elements in CLOSED including the zeros matrix is satisfied

by using the following MATLAB codes.

exp_array=[];

exp_count=1;

c2=size(CLOSED,1);

The node itself is not its successor for node within array

bound and to check if a successor is on closed list by using the

following MATLAB instructions.

for k= 1:-1:-1

 for j= 1:-1:-1

 if (k~=j || k~=0)

 s_x = node_x+k;

 s_y = node_y+j;

 if((s_x >0 && s_x <=MAX_X) && (s_y >0 &&

s_y <=MAX_Y))

 flag=1;

 for c1=1:c2

 if(s_x == CLOSED(c1,1) && s_y ==

CLOSED(c1,2))

 flag=0;

 end;

 end

And the distance or cost of travelling to node is developed

with the below code.

exp_array(exp_count,3) =

hn+distance(node_x,node_y,s_x,s_y);

The distance between node and goal and f(n) are analyzed

by the following MATLAB instructions.

exp_array(exp_count,4) =

distance(xTarget,yTarget,s_x,s_y);

exp_array(exp_count,5) =

exp_array(exp_count,3)+exp_array(exp_count,4);

The flowchart of Expanded_array function is illustrated in

Figure 5.

5.3. Development of Inset_Open.m Function

This function is to populate the OPEN list by using the

following instructions in MATLAB. The new row for mobile

robot location by accumulating the h(n), g(n) and f(n) to find

the optimal path.

new_row=[1,8];

new_row(1,1)=1;

new_row(1,2)=xval;

new_row(1,3)=yval;

new_row(1,4)=parent_xval;

new_row(1,5)=parent_yval;

new_row(1,6)=hn;

new_row(1,7)=gn;

new_row(1,8)=fn;

Figure 5. Expanded Array Flowchart.

5.4. Development of Node with Minimum f(n)

This function takes the list OPEN as its input and returns the

index of the node that has the least cost by applying the

following MATLAB code. In this code, the indexes of the goal

node are stored and get all nodes that are on the list open.

temp_array=[];

 k=1;

 flag=0;

 goal_index=0;

 for j=1:OPEN_COUNT

 if (OPEN(j,1)==1)

 temp_array(k,:)=[OPEN(j,:) j];

 if (OPEN(j,2)==xTarget && OPEN(j,3)==yTarget)

 flag=1;

 goal_index=j;

 end;

 k=k+1;

 end;

 end;

 Machine Learning Research 2018; 3(3): 60-68 65

Figure 6. Flowchart of Node with Minimum f(n).

One of the successors is the goal node so send this node and

it is implemented by the following MATLAB codes. And the

index of the smallest node can be sent to the updating stage.

if flag == 1

 i_min=goal_index;

 end

Index of the smallest node in temp array and index of the

smallest node in the OPEN array are developed by the

following codes.

if size(temp_array ~= 0)

[min_fn,temp_min]=min(temp_array(:,8));

i_min=temp_array(temp_min,9);

else

The flowchart of Node with Minimum f(n) function is

demonstrated in Figure 6.

5.5. Development of Node_Index.m Function

This function returns the index of the location of a node in

the list OPEN and it can be identified by using the following

MATLAB instructions.

i=1;

while(OPEN(i,2) ~= xval || OPEN(i,3) ~= yval)

i=i+1;

end;

n_index=i;

5.6. Debugging the A Star Search Algorithm

After implementing the A star search algorithm in the previous

chapter, the collision free path planning algorithms is debugged

in MATLAB command window. The information window for

selecting the target node with the help of mouse button is

displayed. This information window is shown in Figure 7.

Figure 7. Information Window for Selecting the Target Node.

The first simulation result of collision free path for mobile

robot is illustrated in Figure 8. In this simulation map, there

are forty-three obstacles are placed on the map by random

position. The mobile robot is found the target by using A star

(A*) search algorithm to colloid the obstacles. The way to get

to the target is the shortest path and minimum flow path for

mobile robot navigation.

Figure 8. Screenshot Result for First Simulation.

66 Htun Myint: Development of Robot Navigation System with Collision Free Path Planning Algorithm

The second simulation result of collision free path for

mobile robot is demonstrated in Figure 9. In this simulation

plot, there are forty-one obstacles are positioned on the map

by random position. The mobile robot is originated the target

by using A star (A*) search algorithm to free the obstacles.

The way to arrive at the target is the shortest path and

minimum flow path for mobile robot navigation.

Figure 9. Screenshot Result for Second Simulation.

The third simulation result of collision free path for mobile

robot is confirmed in Figure 10. In this simulation conspire,

there are forty-seven obstacles are situated on the diagram by

random position. The mobile robot is instigated the target by

using A star (A*) search algorithm to gratis the obstacles. The

way to disembark at the target is the shortest path and

minimum flow path for mobile robot navigation.

Figure 10. Screenshot Result for Third Simulation.

The fourth simulation result of collision free path for

mobile robot is established in Figure 11. In this simulation

scheme, there are sixty-seven obstacles are located on the

illustration by random position. The mobile robot is initiated

the target by using A star (A*) search algorithm to free the

obstacles. The way to go ashore at the target is the shortest

path and minimum flow path for mobile robot navigation.

Figure 11. Screenshot Result for Fourth Simulation.

The fifth simulation result of collision free path for mobile

robot is recognized in Figure 12. In this simulation design,

there are fifty-nine obstacles are sited on the figure by random

position. The mobile robot is started the target by using A star

(A*) search algorithm to free the obstacles. The way to land at

the target is the shortest path and minimum flow path for

mobile robot navigation.

Figure 12. Screenshot Result for Fifth Simulation.

The simulation result of collision free path with closed

terrain is illustrated in Figure 13. There are twenty-six

 Machine Learning Research 2018; 3(3): 60-68 67

obstacles around the target by closed terrain rules. Therefore

the mobile robot cannot be reached at that target node

normally.

At this time, the warning window for no path exists to the

target is displayed and the mobile robot cannot move to get to

the specified target node. The information of warning window

is shown in Figure 13.

Figure 13. Screenshot Result for Collision Free Path with Closed Terrain.

Figure 14. Warning Window for No Path Exist to the Target.

6. Conclusion

A* path-finding search algorithm is very famous in games

for finding shortest distance between two nodes. Today’s

games have thousands of agents moving at a same time in the

presence of obstacles. Thus it has become very important to

find shortest paths concurrently and in a speedy way. Making

use of Mobile robot system nature suits this scenario perfectly.

Implementing Simple A* algorithm using arrays (Parallel A*)

has approximately the same results as compared to A*

implementation using adjacent lists. Both implementations are

greedy for space. Increase in the size of map increases the

memory requirements and thus decreases the speed of

algorithm. To further increase the overall performance of

algorithm, the memory requirements must be reduced. One

option is to use the fast, read-only constant memory for storing

the map. Pre-computing some paths and then sharing this

already computed information with other agents further

increases the efficiency. Another solution to this problem is to

exploit the parallel hardware architecture in a true sense. Some

improvements are made in the basic A* algorithm to calculate

each path using multiple threads that run concurrently and use

shared memory and thread synchronization. It reduces the

total search time of A* algorithm as compared to the Parallel

A* implementation.

References

[1] RAFIA INAM, “A* Algorithm for Multicore Graphics
Processors”, Department of Computer Science and
Engineering Division of Computer Engineering, CHALMERS
UNIVERSITY OF TECHNOLOGY, 2009.

[2] P.E. Hart, N.J.Nilsson, and B. Raphael, "A formal basis for the
heuristic determination of minimum cost paths". IEEE
Transactions on System Science and Cybemetics. 4 pp
100-107, 1968.

[3] Rina Dechter and Judea Pearl, “Generalized best-first search
strategies and the optimality of A*”, Journal of The ACM,
Volume 32, Issue 3, Pages: 505 - 536, 1985.

[4] R. E. Korf, “Depth First Iterative Deeping: An Optimal
Admissible Tree Search”, Journal of Artificial Intelligence, pp.
97-100, 1985.

[5] R. E. Korf, “Real-time Heuristic Search”. Artificial
Intelligence, 42(2- 3), pp. 189-211, 1990.

[6] R. Holte, M. Perez, R. Zimmer, and A. MacDonald.
“Hierarchical A*: Searching Abstraction Hierarchies
Efficiently”. In Proceedings AAAI-96, pp. 530-535, 1996.

[7] R. Holte, T. Mkadmi, R. Zimmer, and A. MacDonald.
“Speeding Up Problem-Solving by Abstraction: A Graph
Oriented Approach”. Artificial Intelligence Journal, 85(1-2),
pp. 321-361, 1996.

[8] Samuel Grant Dawson Williams, “Using the A-Star
Path-Finding Algorithm for Solving General and Constrained
Inverse Kinematics Problems”, Japan, 2008.

[9] Mohd Azlan Shah Abd Rahim and Illani Mohd Nawi, “Path
Planning Automated Guided Robot”, Proceedings of the World
Congress on Engineering and Computer Science 2008 WCECS
2008, October 22 - 24, 2008, San Francisco, USA, 2008.

[10] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and
Giuseppe Oriolo, “Robotics Modelling, Planning and Control”,
Spain, 2009.

[11] Giacomo Nannicini, “Point-to-Point Shortest Paths on
Dynamic Time-Dependent Road Networks”, French, 2009.

[12] Rehman Tariq Butt, “Performance Comparison of AI
Algorithms Anytime Algorithms”, Sweden, 2008.

[13] Muntasir Raihan Rahman, “On-Line Algorithms for Rankings
of Graphs”, Bangladesh, 2006.

[14] Subramanian MB, Sudhagar K, Rajarajeswari G. Design of
navigation control architecture for an autonomous mobile robot
agent. Indian Journal of Science and Technology. 2016 Mar;
9(10). Doi no: 10.17485/ijst/2016/v9i10/85769.

[15] Prasad KM, Reddy ARM, Rao KV. Anomaly based Real Time
Prevention of under rated App-DDOS attacks on web: An
experiential metrics based machine learning approach. Indian
Journal of Science and Technology. 2016 Jul; 9(27). Doi no:
10.17485/ijst/2016/v9i27/87872.

68 Htun Myint: Development of Robot Navigation System with Collision Free Path Planning Algorithm

[16] Murikipudi A, Prakash V, Vigneswaran T. Performance
analysis of real time operating system with general purpose
operating system for mobile robotic system. Indian Journal of
Science and Technology. 2015 Aug; 8(18). Doi
no:10.17485/ijst/2015/v8i19/77017.

[17] Suresh KS, Vaithiyanathan V, Venugopal S. Layered approach
for three dimensional collision free robot path planning using
genetic algorithm. Indian Journal of Science and Technology.
2015 Dec; 8(35). Doi no:10.17485/ijst/2015/v8i35/86639.

