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Abstract: Important inferences in statistics, economics and finance such as mixture distribution fitting in portfolio 

management are closely related to finding statistical properties of points between two random points. This problem is studied in 

the literature; however, accurate and fast approximations and Monte Carlo simulations are not well studied. This paper is 

concerned to finding these properties such as distribution function and moment generating function of points between two 

random points are derived. To this end, the random linear transformation technique plays important role. Also, the moment 

generating function is represented as expectation of random variable indexed by a Poisson variable. This note is useful to propose 

the Monte Carlo simulation of generating function. Two applications in mixture distribution fitting and properties of weighted 

averages are given. These two applications have been used in the literature for Bayesian bootstrap, change point analysis, DNA 

segmentations, where all theoretical results may be applied in these fields, directly. Finally, conclusions are presented. 
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1. Introduction 

The application of probability theory in Euclidean 

geometry has a long history. One of the pioneers in this topic 

is [15], who proposed geometric probabilities and their 

applications. In recent years, [13] calculated the average 

distance between two random points in a � dimensional 

space. The distribution of this distance in a box is studied by 

[2]. 

Let �, �  be two independent random variables from 

common continuous distribution and density functions � 

and � with the moment generating function ��	
. A point 

between �min��, �
 ,max��, �

 is represented by 

� � �� � �1 � �
� 

where � ∈ �0,1
 is assumed to be independent of �, � and 

has beta distribution with parameters �, �. The assumption 

that �, � have same distribution is simplifying assumption 

and their distributions can be different, without loss of 

generality. One can see that the �-th non-central moment of 

� is given by, see [7]: 

����
 � ∑ ��� 
!"#$�%&',(&�)%


!"#$�',(
 *%∗*�)%∗ ,�%,-   

where *%∗ � ���%
, � � 1,2, …  is the j- 	0  non-central 

moment of � and 12	3��, �
 is the beta function. As soon 

as, � has uniform distribution with � � � � 1, then 

����
 � 4
�&4∑ *%∗*�)%∗ .�%,-   

The standard proof of the last equation is to use the 

binomial expansion, however, the other method is to use the 

moment generating function as follows: 

�6�	
 � � 7�829#:2�4)9
#;<�=> � ? ��	@
4
- �8	�1 �

@
=A@.  

Notice that using the Taylor expansion, see [3] and we 

have 

��	@
 � ∑ *%∗@% #B
%!

D%,-  and 

��	�1 � @

 � ∑ *%∗�1 � @
% #B
%!

D%,- . 
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Therefore, 

��	@
�8	�1 − @
= = ∑ E%∗(@
D%,- #B%!,  

at which, we have 

E%∗(@
 = ∑ 7F�>%G,- @%(1 − @
G)%*%∗*G)%∗ .  

One can notice that 

? �:(	@
4- �:8	(1 − @
=A@ = ∑ ? E%∗(@
A@4- #B%!D%,-   

and it is understood that 

? E%∗(@
A@4- = 4�&4∑ *%∗*�)%∗ ≔ A�∗�%,-   

This completes the proof. 

Remark 1. When X comes from a gamma distribution with 

parameters �, I, then *%∗ = J('&%
J('
 I%. Therefore, 

A�∗ = ∑ J('&%
J('&�)%
KBLM (�&4
JN('
 I�,  

see [5], where O(�
 is the value of gamma function in the �. For the case of X has normal standard distribution, then 4�&4∑ *%∗*�)%∗�%,-  is zero if � is an odd number. 

The next section derives alternative formulas for �6(	
 
which is useful for Monte Carlo simulation of �6(	
. 
2. Alternative Formulas 

Let * = �(�
 = �(�
 then * = �(�
. Then, 

�6)P(	
 = 2)P#�6(	
 = ∑ A%D%,- #B%!  

where A% = �(� − *
% is the � − 	ℎ central moment of �. 

One can see that 

� − * = �(� − *
 + (1 − �
(� − *
. 
By applying the above arguments, it is seen that, see [6]: 

�6)P(	
 = ∑ ∑ PQPBRQBQLM%&4D%,- #B%!.  

where *G is F − 	ℎ central moment of �. Thus 

A% = 4%&4∑ *G*%)G%G,- . 

Hence, 

2)#�6(	
 = 2P# ∑ A%2)#D%,- #B%! = 2P#�(AS
, 

where T  has Poisson distribution with parameter 	  and 

independent of �. The last equation is changed to 

�6(	
 = 2(P)4
#�(AS
, 
which is useful for Monte Carlo simulation of �6(	
 by 

simulating �(AS
. The following proposition summarizes 

the above discussion. 

Function erfi(X
 has an series approximation up to third 

term as erfi(X
 = Y)-.ZX [2 + \]N^ + ]_Z `, see [4]. 

Proposition 1. The moment generating functions of � = �� + (1 − �
� is given by 

�6(	
 = 2(P)4
#�(AS
, 
where A% = 4%&4∑ *G*%)G%G,-  at which * = �(�
 , *G  is F − 	ℎ  central moment of �  and where T  has Poisson 

distribution with parameter 	  and independent of � . 

Function �6(	
 is estimated using the Monte Carlo method. 

Remark 2. It is easy to see that 

4%&4∑ *G*%)G%G,- = ∑ �(�%
%G,- �(�G)%
 =∑ �(�%
%G,- �(�G)%
 = ∑ �(�%�G)%
%G,- =� [∑ �%�G)%} = �{:Kcd);Kcd:); 	%G,- `.  

This relation is useful in running Monte Carlo simulation 

of �6(	
, easily. 

Remark 3. Using the above equation, it is seen that 

�6(	
 = � f∑ gBB!hBLM 7iBcdRjBcd>(Bcd
:); k = 4# � ["gi)"gj:); `.  

This relation gives another representation for Monte Carlo 

simulation of �6(	
. Monte Carlo simulation lets you see all 

possible outcomes of your decisions, including the actual 

probabilities each will occur, by running simulations with 

random variables thousands of times. These variables are 

described by them probability distribution which can be 

estimated with historical data or defined using expert opinion. 

Then, one can run sensitivity analysis to identify which 

variables have the largest impact on the outcome. This method 

lets you quantitatively assess the impact of risk, allowing for 

more accurate forecasting and, ultimately, better 

decision-making under uncertainty, see [10]. 

Remark 4. Another method to use the Monte Carlo 

simulation is to apply the relation 

�6(	
 = 2gN_ [1 + #N4\+ #_4l-`. 
 

�6(	
 = �m�(	�
 − �8	(1 − �
=n =  

o �(	@
�8	(1 − @
=A@.4
-  

However, this relation is useful to obtain a closed form for the �6(	
, in some special cases. For example, let � be 



 Mathematics Letters 2024; 10(1): 7-11 9 

 

standard normal random variable. Then, 

�6(	
 =? 2gNpNN 2gN(dRp
NN A@ =4- 2gN_ ? 2#N(-.Z)q
NA@ �4
- 22gN

_ ? 2#NqNA@ �-.Z
- 2	)42gN

_ ? 2qNA@.
g
N-   

Notice that ? 2qNA@ � √s
\ erfi�#\

g
N- 
, where erfi�X
 is the 

imaginary error function with erfi�0
 � 0. Thus, 

�6�	
 � √s
# 2gN

_ erfi�#\
. 
As soon as � has normal distribution with mean * and 

variance t\, then using � � �� � �1 � �
�, it can be seen 

that yet * and t are the location and scale parameter of 

distribution of �. Thus, 

�6�	
 � √s
u# 2P#&

vNgN
_ erfi�u#\ 
. 

If �  has exponential distribution with rate I , and 

assuming I	 w 1, then according to the [17], then 

�6�	
 � ? xq
�4)yq#
�4)y�4)q
#
 �

4
-   

4
�\)y#
 b?

xq
�4)yq#
 �

4
- ? xq

�4)y�4)q
#
a �
4
-   

� log�1 � I	

I	�1 � I	
�2 � I	
. 

Regarding the distribution and density functions of � , 

notice that 

�}�~
 � ��� � ~
 �
? ��@� � �1 � @
� � ~
A@ �4
- � [� 76)9:4)9 >`.  

About the density function, notice that 

�}�~
 � ? �q:&�4)q
;
4
- �~
A@.  

Using the transformation method, one can see that 

�q:&�4)q
;�~
 � ? ��]

4)q ��

6)q]
4)q

D
)D 
AX.  

Therefore, it is seen that 

�}�~
 � ? ? ��]

4)q ��

6)q]
4)q

D
)D 
AX4

- A@ � � [ 4
4)9 � 76)9:4)9 >`.  

According to the [9] and [12], equations of �}�~
 and 

�}�~
 are useful relations to simulated these quantities using 

the Monte Carlo method. The following proposition 

summarizes the above discussion. 

Proposition 2. �}�~
 and �}�~
 are given by 

�}�~
 � � [� 76)9:4)9 >`  

�}�~
 � � [ 4
4)9 � 76)9:

4)9 >`.  

The inverse inference about U, based on observation Z � z, 

is done by Bayesian posterior density f�u|z
 . A posterior 

probability, in Bayesian statistics, is the revised or updated 

probability of an event occurring after taking into 

consideration new information. The posterior probability is 

calculated by updating the prior probability using Bayes' 

theorem. In statistical terms, the posterior probability is the 

probability of event A occurring given that event B has 

occurred. 

Let the marginal density f�u
 � 1  be the uninformative 

prior. Therefore, f�u, z
 is proportional to f�z|u
. One can see 

that 

f�z|u
 � ���

? ���
��d
M

  

where 

g�u
 � 4
4)�E� [f� 7�)��

4)� >`.  

3. Simulations 

Here, some simulation results are proposed. 

Example 1. Let � be standard normal distribution. The 

following plot compares the Monte Carlo estimate of 

�6�	
 � �m��	�
 � �8	�1 � �
=n  

�6�	
 � 2gN
_ [1 � #N

4\ �
#_
4l-`.  

 

Figure 1. Exact and Monte Carlo �6�	
: Normal case. 

Example 2. Exponential distribution has many applications 

in modeling severities in risk banking operational risk 

management. Suppose that � has exponential distribution 

with unit rate. Therefore, 

�6�	
 � )���	�4)#

#�4)#
�\)#
 , 0 w 	 w 1.  

Example 3. Gamma distribution is useful distribution for 

making decision about life time in reliability field. Let � be 

a gamma random variable with parameters 2,1. Therefore, 

A�∗ � ∑ J�\&%
J�\&�)%
KBLM
��&4
 .  
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Some selected values are A-∗ � 1, A4∗ � 2, A\∗ � 4-
^ , …. 

The following table gives �6�	
 for 	 � 0.5�0.25
2, using 

relation �6�	
 � 2)#��AS∗ 
, and Monte Carlo simulation at 

which T has Poisson distribution with parameter 	. 
Table 1. Monte Carlo values of �6�	
: Gamma case. 

�  0.5 0.75 1 1.25 1.5 2 

�6�	
  1.84 1.95 2.08 2.13 2.32 2.57 

4. Two Applications 

The proposed method has two applications, namely in 

weighted averages and mixture distribution fitting. 

(a) Mixture distribution. A different insight to this problem 

is defining it as a randomized mixture distribution. A mixture 

distribution is a mixture of two or more probability 

distributions, see [1]. Random variables are drawn from more 

than one parent population to create a new distribution. The 

parent populations can be multivariate, although the mixed 

distributions should have the same dimensionality. In addition, 

they should either be all discrete probability distributions or 

all continuous probability distributions, see [8] and references 

therein. 

 

Figure 2. Histogram of Z. 

Compounding or mixture distributions provide a rich class 

of models for applications ranging from models of 

heterogeneity, measurement error, distribution of stock returns 

and income to models of unemployment duration. Some very 

general mixtures will be considered which include many new 

mixture models and also provide a unified method of 

organizing and comparing previously considered models as 

well as a test of heterogeneity see [14]. To this end, replace U 

with I�  which is one if an event A  is occurred and zero 

otherwise. Therefore, Z  has a mixture distribution of 

distributions of X and Y with mixing portion	P�A
. 
Consider a weighted average of stock returns of Google and 

Amazon during 15 December 2022 to 15 December 2023. Let 

A be the event that return of Google has increased as 0.01. The 

following histogram gives the mixture distribution of these 

returns. 

b) Weighted average. The problem also can be viewed as 

random weighting problem. A weighted average is a 

calculation that takes into account the varying degrees of 

importance of the numbers in a data set. In calculating a 

weighted average, each number in the data set is multiplied by 

a predetermined weight before the final calculation is made. A 

weighted average can be more accurate than a simple average 

in which all numbers in a data set are assigned an identical 

weight, see [11]. 

In calculating a simple average, or arithmetic mean, all 

numbers are treated equally and assigned equal weight. But a 

weighted average assigns weights that determine in advance 

the relative importance of each data point. A weighted average 

is most often computed to equalize the frequency of the values 

in a data set. However, values in a data set may be weighted 

for other reasons than the frequency of occurrence. For 

example, if students in a dance class are graded on skill, 

attendance, and manners, the grade for skill may be given 

greater weight than the other factors, see [16]. 

Weighted averages have applications in portfolio 

managements. Consider a weighted average of stock returns 

of Apple co and Amazon during 15 December 2022 to 15 

December 2023. The following figure gives the probability of 

Z larger than 0.25 for various values of �'s. 

 

Figure 3. Probability of larger than 0.25. 

5. Conclusions 

In recent years, probability distribution of distance 

between two random points in a � dimensional space is well 

studied, see [2]. This note is devoted to this issue. The 

following conclusions are proposed: 

1) Distributions of all random points between two random 

points are characterized. 

2) Some approximate and exact formulas are proposed. 

3) Simulation results are proposed. 

4) Two applications in mixture distributions and portfolio 

management are considered. 
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