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Abstract: Overtime, mathematics had been used as a tool in modeling real life phenomenon. In some cases, these problems 

cannot fit-into the classical deterministic or stochastic modeling techniques, perhaps due system complexity arising from lack 

of complete knowledge about the phenomenon or some uncertainty. The uncertainty could either be due to lack of clear 

boundaries in the description of the object or perhaps due to randomness. In this article, we study a mathematical tool 

discovered in 1965 by Zadeh suitable for modeling real life phenomenon and examined operations on such a tool. Motivated 

by the work of Zadeh, we studied operators on Type-1 Fuzzy Sets (T1FSs) and Type-2 Fuzzy sets (T2FSs) and provided 

examples, one of which is a variant of the Yager complement function for which the complement operator was graphically 

illustrated. The joint and the meet operators were also studied and examples provided. Non-standard operators were defined on 

T1FSs and T2FSs and also classified into two groups; the triangular-norm (t-norm) and triangular-conorm (t-conorm). Using t-

norm and t-conorm, an example was adopted from Castillo and Aguilar to illustrate the computation of the standard operation 

on T2FSs. Finally, future research direction was provided based on what is yet to be achieved in fuzzy set theory. 
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1. Introduction 

Overtime, mathematics had been used as a tool in 

modeling real life phenomenon. In some cases, these 

problems cannot fit-into the classical deterministic or 

stochastic modeling techniques, perhaps due system 

complexity arising from lack of complete knowledge about 

the phenomenon or some uncertainty. The uncertainty could 

either be due to lack of clear boundaries in the description of 

the object or perhaps due to randomness. However, this is not 

a disadvantage but a blessing in disguise as a mathematical 

tool capable of accommodating the uncertainty was introduce 

in 1965 [18] and named fuzzy sets. Interestingly, for over 

five decades, mathematicians have studied fuzzy sets and 

found it useful in real life applications as evident in [2, 5, 6, 

9, 17, 19-21] and the references therein. 

Furthermore, in the study of Zadeh [18] the standard 

operations on fuzzy sets were first defined. These were the 

union operations, intersection and complement operations on 

fuzzy sets, a unique concept in fuzzy set theory without its 

replica in the Cantorian theory. It has been established in the 

study of Chen and Zadeh [4] that operations on fuzzy sets has 

no counterpart in the classical set theory in particular and in 

classical mathematics in general. Mathematician have 

extended operations on T1FSs to T2FSs as noticed in [10-12, 

14, 15] and recently [3, 8] and the references therein. This 

fact necessitated the need for further research on the 

operations on type-1 and type-2 fuzzy sets, hence the subject 

of the present paper. 

In addition, as in the classical sense, operators are define 

on collection of objects with vague boundaries. In this paper, 

we shall classified operators on fuzzy sets into to two, 

namely; the triangular-norm operators and the triangular-

conorm operators defined on type-1 and type-2 fuzzy sets. 

The remaining part of the paper is organised as follows; the 

next section concerns the preliminaries materials and 

methods needed in section 3 where we discuss the operators 

on type-1 fuzzy sets with examples and in section 4 we 

extend our examples to type-2 fuzzy sets. Finally, in section 

5, we give our concluding note and possible direction of 
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future study. 

2. Preliminaries 

Let � be a nonempty set (Cantorian) in a universe �. Then, � can be described or characterised via a function called the 

characteristics or indicator or membership or discrimination 

function ��: � → {0,1} defined by 

��(
) = � 1, if	x ∈ A0, otherwise	                            (1) 

Evidently, (1) does not accommodate a continuum of 

membership as an element is either in the set or not. 

However, this shortfall led to the introduction of fuzzy set 

theory [18]. Hence, we give the following definition. 

Definition [19]: Let � be a universe of discourse, a fuzzy 

set �� in � is a set of ordered pairs 

�� = {(
, �� (
)|
 ∈ �)}. 
Where �� (
): � → [0,1] is the membership function of the 

generic element mapping all the elements in the universe of 

discourse into the membership space [0, 1] Therefore, the 

membership in a fuzzy set is a continuum of gradation. 

However, the fuzzy set so defined is a Type-1 Fuzzy Set since 

the membership values are real numbers. We shall denote 

type-1 fuzzy sets as %1&'( Now, let �: � → [0,1] be a fuzzy 

subset of a nonempty universe �, we shall denote the totality 

of all such fuzzy sets in �  by ℱ(x) . In particular, if the 

universe of discourse is the set of real numbers ℝ, then the 

gradation membership �:	ℝ → [0,1] is called a fuzzy number, 

which is obviously an extension of the classical set of real 

number system and we denote the set of all fuzzy numbers by ℛℱ . 

Definition [1]: Let ℛℱ  be the set of all fuzzy subsets of �:	ℝ → [0,1] satisfying the following conditions; 

1. ∀	� ∈ ℛℱ , � is upper semi-continuous 

2. ∀	� ∈ ℛℱ , � is fuzzy convex 

3. ∀	� ∈ ℛℱ , � is normal 

4. {
 ∈ ℝ|�(
) > 0} is compact. 

Then ℛℱ  is called the space of fuzzy numbers. Clearly, ℝ ⊂ ℛℱ . 
Definition [2]: Let �� be a fuzzy subset of some universe of 

discourse � and / ∈ [0,1]. Then, the set 

��0 = {
|
 ∈ �, ��(
) ≥ /}                         (2) 

is called the /-level set or the /-cut and the set 

(233	�� = {
 ∈ �|��(
) > 0}                         (3) 

is the support of the level set. The core of the level set is 

given by 

��4 = {
 ∈ �|��(
) = 1}.                         (4) 

Now, from (1), we have the following representation 

theorem. 

Theorem 2.1 [2] Let �� be a fuzzy set in some universe �. 

for any element 
 ∈ �, its membership degree to ��  can be 

expressed as follows 

��(
) = ⋃ 	6∈� 7 /.                              (5)    

Definition: A membership function � is said to be upper 

semi-continuous if and only if the /-level sets (1) are closed. 

Definition: A Membership function � is said to be lower 

semi-continuous if and only if the set 

{
 ∈ �: �(
) > /}, / ∈ [0,1]	8(	93:; 

3. Operators on Type-1 Fuzzy Sets 

In this section, standard and non-standard operators on 

T1FSs and their examples are presented. To this end, let ��, < , =�  and >? ∈ ℱ(X)  be T1FSs, then, [18] defines the 

standard operators on T1FSs as follows; �� A(
) = 1 − �� (
)	the cmpement operator 

�C�(
) = �� ∪E (
) = max{�� (
), �E (
)}	Hℎ:	J98;H	93:KLH9K 

�M?(
) = �� ∩E (
) = min{�� (
), �E (
)}	Hℎ:	P::H	93:KLH9K 

Obviously, operations on T1FSs are some kind of 

generalisations of their counterpart in the classical set theory. 

Thus, the above operators will form the basis for defining 

non-standard operators. Therefore, in the following result, the 

properties of these operators are characterised. 

Proposition 3.1 [7]. Considering the basic connectives in 

fuzzy set theory, the following properties hold; 

1. (��Q)Q = ��. Involution 

2. �� ∪ < = < ∪ �� 
�� ∩ < = < ∩ ��. =9PP2HLH8S8HT 

3. (�� ∪ < ) ∪ =� = �� ∪ (< ∪ =�) 
(�� ∩ < ) ∩ =� = �� ∩ (< ∩ =�). �((9V8LH8S8HT 

4. �� ∩ (< ∪ =�) = (�� ∩ < ) ∪ (�� ∩ =�) 
�� ∪ (< ∩ =�) = (�� ∪ < ) ∩ (�� ∪ =�). >8(HK8X2H8S: 

5. �� ∪ �� = �� 
�� ∩ �� = ��. Z[:P39H:;VT 

6. �� ∪ (�� ∩ < ) = �� 
�� ∩ (�� ∪ < ) = ��	�X(9K3H89;	XT	�� 

�� ∪ � = � 

�� ∩ ] = ]. �X(9K3H89;	XT	�	L;[	] 

7. �� ∪ ] = �� 
�� ∩ � = ��. Z[:;H8HT 

8. �� ∪ < = �� ∩ <  

�� ∩ < = �� ∪ < . >:	`9KaL;′(	cLd 
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Proof. The proof of the above proposition can be found in 

[6]. 

Remark 3.2 We remark that the law of contradiction and 

the law of excluded middle does not hold in fuzzy sets. 

Proposition 3.3 [2]. If ��  is a non-classical fuzzy set ��: � → [0,1]. Then, (8) �� ∩ ��Q ≠ ] (88) �� ∪ ��Q ≠ � 

Proof. see [2] 

3.1. The Complement Operator 

Let us take the universe of discourse � = [0,1]. Then, an 

operator =: [0,1] → [0,1] is called the complement operator 

and it mapped the membership function �� (
) of a fuzzy set �� to [0,1] and the mapped value is denoted by =(�� (
)) and 

satisfies the following complement axioms; Axiom-C1 =(0) = 1, =(1) = 0 Boundary condition 

Axiom-C2 for any �� (
), �� (T), 
, T ∈ � . If �� (
) <�� (T), then =(�� (
)) ≥ =(�� (T)) Monotonicity Condition 

Aaxiom-C3 = is a continuous operator 

Axiom-C4 = is involutive. 

Remark 3.4 It is sufficient for a complement function to 

satisfy axiom-C1 and axiom-C2 known as the "axiomatic 

skeleton" [13] 

Example 3.1 [13] The function 

=(L) = �1, if	a ≤ t0, if	a > H 

The function satisfy only the "axiomatic skeleton" 

conditions and it is a complement function. Exampe 3.2. The 

function =(
) = 1 − sin	(h6i ), 
 ∈ [0,1]  is a complement 

function that satisfy axioms-C1-C3 but not axiom-C4. 

Verification. 

It is sufficient to verify that axiom-C4 does not hold. Now, 

let 
 = 0.23 ∈ [0,1] , then =(0.23) = 0.65  but =(0.65) =0.15  and since 0.23 ≠ 0.15  the involution property fails. 

Exampe 3.3 The function 

=(
) = � 1, if	x = 01 − x, if	0 < 
 ≤ 1 

is a complement function that satisfy all the four axioms 

(axiom-C1-axiom-C4). 

Solution 

It suffices to show the involutive property. To this end, let 0.1 ∈ (0,1] , then =(0.1) = 0.9  and =(0.9) = 0.1  showing 

that the involution property hold. 

Exampe 3.4 [13]. The Yager function is given as 

=k(L) = (1 − Lk)4k 	dℎ:K:	d ∈ (−1,∞). 
This function reduces to the standard complement function 

for d = 1.  

Exampe 3.5. This example is a variant of the Yager 

Complement function defined as 

=(
) = m 1, if	x = 0n(1 − x), if	0 < 
 ≤ 1 

This function satisfy axiom-C1, axiom-C2 and axiom-C3 

but not axiom-C4.  

3.2. Fuzzy Union Operator 

An operator o  is called the union operator provided the 

following axioms hold; Axiom-U1: o(0,0) = 0, o(0,1) =1, o(1,0) = 1, o(1,1) = 1	<92;[LKT	=9;[8H89; 

Axiom-U2: o(
, T) = o(T, 
) , for any 
, T ∈[0,1]. =9PP2HLH8S8HT	3K93:KHT 

Axiom-U3: If 
 ≤ 
p and T ≤ Tp, then o(
, T) ≤ o(
p, Tp) 
Axiom-U4: For any 
, T, q ∈ [0,1],  o(o(
, T), q) =o(
,o(T, q)) Associativity Property. 

In the study [13] axiom-U1 to axiom-U4 are called the 

"axiomatic skeleton" and the necessary axioms that a 

function must satisfy to be a fuzzy union operator. In what 

follows, two more operators are added 

Axiom-U5: U is continuous 

Axiom-U6: U is idempotent. That is o(
, 
) = 
 

Next we provide some example to demonstrate the 

operator so define. 

Exampe 3.6. Consider the fuzzy sets defined as 

��(
) =
rst
su 0, if < 1x − 16 , if	1 ≤ x < 710 − x, if	7 ≤ x < 100, if	10 < 


 

and 

< (
) =
rs
t
su 0, if	x < 2x − 2, if	2 ≤ x < 31, if	x ≤ x < 46 − x2 , if	4 ≤ x ≤ 60, if	6 < 


 

Therefore, the joint of the two fuzzy sets is 

�� ∪ < = �� ∪E (
) = max{�� (
), �E (
)} �� ∪ < = {(0,0), (1,0), (2,0.17), (3,1), (4,1), (5,0.67), 
(6,0.83), (7,1), (8,0.67), (9,0.33), (10,0)}. 

Example 3.7 Let � denote the universe of the hight (in cm) 

of students in Ahmadu Bello University,. Zaria. Then, � = {140,150,160,170,180,190}.  Consider the fuzzy sets 

"Short", "Average hight" and "tall". Our interest is to use the 

Yager’s union operator using these sets. to this end, Let 

��(
) 

= {(140,1), (150,1), (160,0.9), (170,0.7), (180,0.3), (190,0)}, 
< (
) 

= {(140,0), (150,0), (160,0.1), (170,1), (180,0.8), (190,0)} 
and 

=�(
) 
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= {(140,0), (150,0), (160,0), (170,0), (180,0.3), (190,1)}. 
The Yager’s union operator satisfy axioms-U1-U5 but not 

idempotency. The function is defined as 

ok(L, X) = min{1, (Lk + Xk)4k}, d ∈ (0,∞) 
For d = 1 , the Yager function reduces to o4(L, X) =min{1, L + X} , for d = 2 , the Yager function becomes oi(L, X) = min{1, n(Li + Xi)} . However, as d → ∞ , the 

function becomes ow(L, X) = limk→wmin{1, (Lk + Xk)yz} 	= max{L, X}. where 

a and b are membership fucntions 

Now, we shall use the example on hight of students 

considering "short" and "Average hight" as our fuzzy sets. 

This is illustrated in table 1 for d = 1, table 2 for d = 2 and 

table 3 for d = ∞. 

Table 1. The Yager Union Operator for d = 1. 

{, | 1 1 0.9 0.7 0.3 0 

00 1 1 0.9 0.7 0.3 0 

00 1 1 0.9 0.7 0.3 0 

00.1 1 1 1 0.8 0.4 0.1 

11.0 1 1 1 1 1 1 

00.8 1 1 1 1 1 1 

00 1 1 0.9 0.7 0.3 0 

Table 2. The Yager Union Operator for d = 2. 

{, | 1 1 0.9 0.7 0.3 0 

0 1 1 0.9 0.7 0.3 0 

0 1 1 0.9 0.7 0.3 0 

0.1 1 1 1 0.8 0.4 0.1 

1.0 1 1 1 1 1 1 

0.8 1 1 1 1 1 0.8 

 1 1 0.9 0.7 0.3 0 

Table 3. The Yager Union Operator for d = ∞. 

{, | 1 1 0.9 0.7 0.3 0 

 1 1 0.9 0.7 0.3 0 

 1 1 0.9 0.7 0.3 0 

.1 1 1 0.9 0.7 0.3 0.1 

.0 1 1 1 1 1 1 

.8 1 1 0.9 0.8 0.8 0.8 

 1 1 0.9 0.7 0.3 0 

Exampe 3.8. The Probabilistic Sum Operator: The Fuzzy 

probabilistic sum ��+}<  is defined as 

�� ~}E (
) = �� (
) + �E (
) − �� (
)�E (
)	∀
 ∈ �. 
It has been established in [13] that the probabilistic sum 

satisfy commutative, associative, identity and De Morgan’s 

law. Revisiting our previous example on fuzzy sets modeling 

the linguistic "Short" and "Average hight" we obtained the 

probabilistic sum as 

�� ~}E (
) = 

{(140,1), (150,1), (160,0.91), (170,1), (180,0.86), (190,0)}, ∀
∈ � 

Exampe 3.9. The Bounded Sum [13]: The bounded sum 

�� ⊕ <  is defined as 

�� ⊕E (
) = min{1, �� (
) + �E (
)}	∀
 ∈ �. 
Clearly, the Yager fuzzy union function reduces to the 

bounded operator for d = 1, hence, table 1 is the illustration. 

Exampe 3.10. Drastic sum [13]: The Drastic sum �� ⊎ <  is 

defined as 

�� ⊎E (
) = ��� (
), 8�	�E (
) = 0�E (
), 8�	�� (
) = 01, �9K	9Hℎ:K(  

Exampe 3.11. Hamacher’s Sum [13]: The Hamacher’s sum �� ∪ <  is define as 

�� ∪E (
) = �� (
) + �E (
) − (2 − �)�� (
)�E (
)1 − (1 − �)�� (
)�E (
) ,	 
∀
 ∈ �, � ≥ 0 

Again, using are previous example we obtained the 

Hamacher’s Sum which is also a fuzzy set as 

�� ∪E (
)= {(140,1), (150,1), (160,0.92), (170,1), (180,0.91), (190,0)} 
3.3. Fuzzy Intersection Operator 

Let Z: [0,1] × [0,1] → [0,1] be an operator. Then Z is called 

a fuzzy intersection operator defined as 

�� ∩E (
) = Z[�� (
), �E (
)] = min{�� (
), �E (
)} 
provided Z satisfy the following axioms 

Axiom-I1: Boundary Condition Z[0,0] = 0, Z[0,1] = 0, Z[1,0] = 0, Z[1,1] = 1 

Axiom-I2: Commutativity 

Z(L, X) = Z(X, L) for �� (
) = L and �E (
) = X. 

Axiom-I3: Monotonic nondecreasing 

If L ≤ Lp, X ≤ Xp, then Z(L, X) ≤ Z(Lp, Xp) 
Axiom-I4: Associativity 

Z(Z(L, X), V) = Z(L, Z(X, V)) 

The four axioms are called the "axiomatic skeleton". 

However, two more axioms are added 

Axiom-I5: I is a continuous function 

Axiom-I6: Idempotency 

Z(L, L) = L 

The Following are examples of the fuzzy intersection 

functions. 

Exampe 3.12. The Yager fuzzy intersection function. This 

function is defined as 

Zk(L, X) = 1 − min{1, ((1 − L)k + (1 − X)k)yz}, d ∈(0,∞). 
This function reduces to Z4(L, X) = 1 − min{1,2 − L −
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X}, �9K	d = 1  and Zi(L, X) = 1 − min{1 − n(1 − L)i + (1 − X)i}, �9K	d = 2 . 

However, for very large d, the function becomes 

Zw(L, X) = limk→w[1 − min	{1, ((1 − L)k + (1 − X)k)4k}] 
= min	(L, X). 

Exampe 3.13. The Algebraic Product. The algebraic 

product ��< �  is defined as 

�� E � (
) = �� (
)< � (
)	∀
 ∈ �. 
Exampe3.14. Bounded Product. The bounded product �� ⊙ <  is defined as 

�� ⊙E (
) = max{0, �� (
) + �E (
) − 1}	∀
 ∈ � 

3.4. Classifications of Operators on T1FSs 

This section is devoted to classifications of operators on 

T1FSs. Thus, the operators are classified into two groups 

namely; the triangular-norm operators and the triangular-

conorm operators. 

Definition [13] A binary operation ∗: [9, 1] × [0,1] → [0,1] 
is a triangular-norm (t-norm) provided the following 

conditions holds (8)  
 ∗ T = T ∗ 
  for (
, T) ∈ [0,1] × [0,1]. 
Commutativity property (88)  
 ∗ (T ∗ q) = (
 ∗ T) ∗ q  for 
, T, q ∈ [0,1]. 
Associativity property (888) If 
 ≤ T, then 
. q ≤ T. q monotonicity property (8S) 
 ∗ 1 = 1. The boundary condition 

Therefore, following the above definition, the following 

operators are t-norms 

1. The Fuzzy Intersection Operator 

2. The Algebraic Product Operator 

3. The Bounded Product Operator and 

4. The Drastic Product Operator. 

Definition 3.5 [13] Let %: [0,1] × [0,1] → [0,1]  be an 

operator. Then, ∀
, T, 
p, Tp, q ∈ [0,1]  T is said to be a 

triangular-conorm (t-conorm) provided the following 

conditions holds (8) %(
, 0) = 0, %(
, 1) = 1. Boundary Condition (88) %(
, T) = %(T, 
). Commutativity (888)  If (
 ≤ 
p, T ≤ Tp) → %(
, T) ≤ %(
p, Tp). 
Monotonicity (8S) %(%(
, T), q) = %(
, %(T, q)). Associativity. 

Therefore, the fuzzy union operator, the algebraic sum 

operator, the bounded sum operator, the Drastic sum operator 

and the Disjoint sum operators ars t-conorm operators. 

4. Operators on Type-2 Fuzzy Sets 

(T2FSs) 

In this section, we denote Type-2 Fuzzy Sets (T2FSs) by �� 
and is devoted to operations on T2FSs. Thus, we begin with a 

definition 

Definition (Type-2 Fuzzy Sets). A fuzzy set ��  define in 

some universe of discourse �, having primary membership 2 

say and secondary membership ���(
) is called a T2FS, if the 

secondary membership function is a T1FS. That is ��: � →ℱ	([0,1]) defined as 

 �� = � 	6∈� ���(
)/
 = � 	� [� 	��� �6(2)/2/
, �6� = {(
, 2): 2 ∈[���(
), ���(
)]} ⊆ [0,1]                      (6) 

Consequently, the above definition can be extended to 

type-3 fuzzy sets and in general, type-n fuzzy sets if the 

secondary membership functions depend on T2FS and type-

(n-1) fuzzy sets respectively. However, we conjecture that 

mathematical theory establishing the fact that T2FSs 

provides better results at all times than T1FSs remain open so 

also mathematical theory for type-3 fuzzy sets. Next we 

present a representation theorem of T2FSs. 

Theorem 4.1 [14] Assume that the primary variables 
 is 

sample at � values, 
4, 
i, . . . , 
� and at each of these values 

is its primary membership 2�  are sampled at 2�  values 2�y , 2�� , . . . , 2��� . Let ����  denote the J��  type-2 embedded set 

for T2FS ��. That is, 

���� ≡ {
� , (2��, �6�(2��)), 2�� ∈ 

{2�� , � = 1, . . . , �̀ , 8 = 1, . . . , �}} 
in which �6�(2��) is the secondary grade at 2�� . Then, �� can be 

represented as the union of its type-2 embedded sets, i.e 

�� =  	¡¢
�£4 ���� , ;� = ¤	�

�£4 �̀ . 
However, let us consider two T2FSs 

�� = � 	6∈� ���(
)/
 = � 	� [� 	��� �6(2)/2]/
, �6� = {(
, 2): 2 ∈[���(
), ���(
)]} ⊆ [0,1]                              (7) 

and 

<� = � 	6∈� �E�(
)/
 = � 	� [� 	��z �6(d)/d]/
, �6k ={(
, d): d ∈ [�E�(
), �E�(
)]} ⊆ [0,1].          (8) 

Therefore, following the argument in [15], that the union 

of two T2FSs is another T2FSs we defined the union of 

T2FSs. 

Definition [3] Let ��  and <�  be any two T2FSs. Then, the 

union of ��  and <�  is given as �� ∪ <� = � 	6∈� [���(
) ∪�E�(
)]/
 = � 	�∈��� � 	k∈��z �6(2) ⋆ a6(d)/(2 ∪ d)	∀
 ∈ �. 
In computations, the joint between two T2FSs is carried 

out point-wisely between every pair of primary membership. 

The union operations on T2FSs is computed as t-conorm 

operation between the corresponding secondary grades of ���(
), �E�(
), �6(2)  and a6(d)  respectively ∀
 ∈ � . When 

more than one combination of any two primary membership 

gives the same point 2 ∪ d, then in the joint we keep the one 

with the largest membership grade. 
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In all, Karnik and Mendel [11] argue that due to the 

complexity in computing the joint of T2FS for arbitrary 

T2FSs, that is, for ; convex and normal T1FSs &4, &i, . . . , &¡ 

characterised by membership functions �4(¦), . . . , �¡(¦), 
respectively, where �4(S4) =. . . �¡(S¡) = 1 and ��(¦) are re-

ordered so that S4 ≤ Si ≤. . . ≤ S¡ , the membership function 

of o�£4¡ �� using the maximum t-conorm and either minimum 

or product t-norm can be expressed as 

�⊔�¨y© &�(¦) = � %�£4¡ ��(¦)8�	¦ < S4,%�£4ª ��(¦), if	Sª ≤ ¦ ≤ Sª~4, 1 ≤ � ≤ ; − 1∩�£4¡ ��(¦),  

However, the above formula is di 	8�	¦ > S¡ .  fficult in 

computation. 

Definition [14]. As in T1FSs, the intersection of any two 

T2FSs is also a T2FS whose membership function is 

computed via 

���∩E�(
) = « 	�∈��� « 	k∈��z �6(2) ⋆ a6(d)2 ∩ S  

= ���(
) ⊓ �E�(
), ∀
 ∈ �. 
Where ⊓ denote the meet operation. AS in the case of the 

joint operation, the meet between two secondary membership 

functions ���(
)  and �E�(
), S = 2 ∩ d  must be performed 

between every possible pair of primary membership 2 and d, 
such that 2 ∈ �6�  and d ∈ �6k  and the secondary grade must 

be computed as the t-norm operation between the 

corresponding secondary grade for all 
 ∈ �.  If however, 

more than one combination of any two primary membership 

gives the same point 2 ∩ d, then we keep the one with the 

largest membership grade. More over, [11] constructed 

�⊓�¨y© &�(¦) = �⋃ 	¡�£4 ��(¦), 8�	¦ < S4∩�£4ª ��(¦),∩�£4¡ ��(¦), 8�	S¡ ≤ ¦ ≤ Sª~4, 1 ≤
� ≤ ; − 1                                     (9) 

as the formula for the membership of ∩�£4¡ ��  using the 

maximum t-conorm (∪)  and the minimum t-norm (∩) . 

Sadly, the above formula is difficult in application and its 

variant for the product t-norm of (6) remains of open till date. 

Definition. The complement of a T2FS is yet another T2FS 

and is define as 

��p = «	� ���­(
)/
. 
Finally, in this section, we provide an example and 

demonstrate how operations on T2FSs are computed. 

Exampe 4.2. [3] Let ��  and <�  be two T2FSs, with 

membership function given as 

���(
) = 0.5/0.1 + 0.8/0.2	L;[	�E�(
) = 0.4/0.5 + 0.9/0.9 

using the operations of t-norm and t-conorm, we have that, 

���∪E�(
) = ���(
) ∪ �E�(
) = (0.5/0.1 + 0.8/0.2) ∪ (0.4/0.5 + 0.9/0.9) 

= (0.5 ∩ 0.4)/(0.1 ∪ 0.5) + (0.5 ∩ 0.9)/(0.1 ∪ 0.9) + (0.8 ∩ 0.4)/(0.2 ∪ 0.5) + (0.8 ∩ 0.9)/(0.2 ∪ 0.9) 
= 0.4/0.5 + 0.5/0.9 + 0.4/0.5 + 0.8/0.9 

= max{0.4,0.4}/0.5 + max{0.5,0.8}/0.9 

= 0.4/0.5 + 0.8/0.9 

���∩E�(
) = ���(
) ∩ �E�(
) = (0.5/0.1 + 0.8/0.2) ∩ (0.4/0.5 + 0.9/0.9) 

= (0.5 ∩ 0.4)/(0.1 ∩ 0.5) + (0.5 ∩ 0.9)/(0.1 ∩ 0.9) + (0.8 ∩ 0.4)/(0.2 ∩ 0.5) + (0.8 ∩ 0.9)/(0.2 ∩ 0.9) 
= 0.4/0.1 + 0.5/0.1 + 0.4/0.2 + 0.8/0.2 

= max{0.4,0.5}/0.1 + max{0.4,0.8}/0.2 

= 0.5/0.1 + 0.8/0.2 

���p(
) = 0.5/(1 − 0.1) + 0.8/(1 − 0.2) 
= 0.5/0.9 + 0.8/0.8 

5. Conclusion and Future Works 

In this paper, existing literature on operation on T1FSs 

and T2FSs were reviewed and examples were provided to 

show the computational aspect of the membership 

function. However, it is worthy of note to mention that 

computational aspects of these operators are difficult 

especially in T2FSs. we Identify some open problems 

which include among others lack of mathematical theory 

establishing the fact that T2FS is by far better than T1FSs 

in modeling linguistic and an establish theory in particular 

on type-3 fuzzy sets and in general type-n fuzzy sets. We 

also pointed out that a variant of (7) constructed is yet to 

be establish. In future research work, we shall aim at 

looking at the problems. 

 



36 Alhaji Jibril Alkali and Sylvanus Kupongoh Samaila:  A Study of Operators on Fuzzy Sets  

 

 

References 

[1] Armand, A., Allahviranloo, T. and Gouyandeh G. (2019). 
Some undamental results on fuzzy calculus. Iranian Journal of 
Fuzzy Systems 15 (3), 27-46. 

[2] Bede, B. (2013). Mathematics of Fuzzy Sets and Fuzzy Logic, 
Springer-Verlag, New York. 

[3] Castillo, O. and Aguilar, T. (2019). Type-2 Fuzzy logic in 
control of nonsmooth systems: Theoretical concepts and 
Applications. Springer Nature, Switzerland AG, Switzerland. 

[4] Chang S. and Zadeh, L. A. (1972).  On Fuzzy Mappings and 
Control. IEEE Transactions on systems Man and cybernetics, 
SMC-2 (1) 30-34. 

[5] Chen, G. and Pham, T. (2001). Introduction to fuzzy sets, 
fuzzy logic and fuzzy control systems CRC Press, New York. 

[6] Dubois, D. and Prade, H. (1980). Fuzzy stes and systems: 
Theory and Applications. Academic Press, INC, New York. 

[7] Dubois, D. and Prade, H. (2000). Fundamentals of Fuzzy Sets, 
Kluwer Academic Publishers, New York. 

[8] H. Garg,, H., Gwak, J., Mahmood, T. and Ali, Z. (2020). 
Power Aggregation Operators and VIKOR methods for a 
complex q-Rung Orthopair Fuzzy Sets and Thier Applications 
mathematics, 8, 538. 

[9] Gen, M., Tsujimura, Y., and Zheng, D. (1997). An application 
of fuzzy set theory to inventory control model. Computers Ind. 
Engng 33, 553-556. 

[10] Hamrawi, H. (2011). Type-2 fuzzy alpha-cuts PhD Thesis, De 
Mentfort University, London, (2011). 

[11] Karnik, N., and Mendel, J. (2001a). Centroid of a type-2 fuzzy 
set. Information Sciences 132, 195-220. 

[12] Karnik, N. and Mendel, J. (2001b). OPerations on Type-2 
Fuzzy sets. Fuzzy Sets and Systems 122, 327-348. 

[13] Lee, H. K., (2005). First Course on Fuzzy sets: Theory and 
Applications Springer. 

[14] Mendel, J. M., (2017). Advances in type-2 fuzzy sets and 
systems Information Sciences 177, 84-110. 

[15] Mizumoto, M. and Tanaka, K (1976). Some Properties of 
fuzzy sets of type-2. Information and Controll. 

[16] Mizumoto, M. and Tanaka, K. (1981). Fuzzy sets of type-2 
under product and algebraic sum Fuzzy sets and Systems 5, 
277-290. 

[17] Negoita, C. and Ralescu, D., (1975). Application of Fuzzy sets 
to systems Analysis Springer Basel AG, Germany. 

[18] Zadeh, L. A. 1965. Fuzzy Sets, Information and Control 8, 
338-353. 

[19] H. J. Zimmermann, H-J (1996). Fuzzy set theory and its 
Applications 3rd Edition. Kluwer Academic Publishing 
Group, London. 

[20] H. J. Zimmermann, H-J (1991) Fuzzy set theory and its 
Applications 2nd Edition. Kluwer Academic Publishing Group, 
USA (1991). 

[21] Zimmermann, H-J, (2001). Fuzzy set theory and its 
Applications 4th Edition. Springer Science + Business Media 
LLC, New York. 

 

 


