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Abstract: A genetic algorithm for mixture model clustering using variable data segmentation and model selection is proposed 
in this study. Principle of the method is demonstrated on mixture model clustering of Ruspini data set. The segment numbers of 
the variables in the data set were determined and the variables were converted into categorical variables. It is shown that variable 
data segmentation forms the number and structure of cluster centers in data. Genetic Algorithms were used to determine the 
number of finite mixture models. The number of total mixture models and possible candidate mixture models among them are 
calculated using cluster centers formed by variable data segmentation in data set. Mixture of normal distributions is used in 
mixture model clustering. Maximum likelihood, AIC and BIC values were obtained by using the parameters in the data for each 
candidate mixture model. Candidate mixture models are established, to determine the number and structure of clusters, using 
sample means and variance-covariance matrices for data set. The best mixture model for model based clustering of data is 
selected according to information criteria among possible candidate mixture models. The number of components in the best 
mixture model corresponds to the number of clusters, and the components of the best mixture model correspond to the structure 
of clusters in data set. 

Keywords: Cluster Centers, Data Clustering, Data Mining, Genetic Algorithm, Information Criteria,  
Mixture Model Clustering, Model Selection, Variable Data Segmentation 

 

1. Introduction 

Analysis of clusters by means of mixture distributions is 
called mixture model cluster analysis [1]. Mixture model 
based clustering is one of the clustering methods for 
partitioning of p  - dimensional multivariate data into 

meaningful subgroups [2]. Each component in the mixture 
model of multivariate normal densities corresponds to a 
cluster in multivariate data. The number of components in 
mixture model is determines the number of clusters in 
multivariate data [3]. The number of components in mixture 
model determines the number of clusters and the structure of 
components in mixture model forms the structure of clusters 
in multivariate data. 

Mixture model of multivariate normal densities is defined 
as 
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where ( , )i i iψ µ= Σ  for 1, ...,i k=  denotes parameters vector of 

component densities and, iµ  and iΣ  for 1, ...,i k=  denotes 

mean vector and covariance matrix respectively. 
Bozdogan [4] proposed a method for choosing the number 

of clusters, subset selection of variables, and outlier detection 
in the standart mixture model cluster analysis. Bozdogan [5] 
developed a method for mixture model cluster analysis using 
model selection criteria and defined a new informational 
measure of complexity. Soffritti [6] identified multiple cluster 
structures in a data matrix. Bozdogan [7] proposed a 
computationally feasible intelligent data mining and 
knowledge discovery technique that addresses the potentially 
daunting statistical and combinatorial problems presented by 
subset regression models. McLachlan and Chang [8] studied 
mixture modelling for cluster analysis. In their approach to 
clustering, the data can be partitioned into a specified number 
of clusters k  by first fitting a mixture model with k  
components. 

Galimberti and Soffritti [9] used model based clustering 
methods to identify multiple cluster structures in a 
multivariate data set. Durio and Isaia [10] developed a method 
for model selection in mixture of normal densities. Scrucca 
[11] used information on the dimension reduction subspace 
obtained from the variation on group means and, depending on 
the estimated mixture model, on the variation on group 
covariances. His method aims at reducing the dimensionality 
by identifying a set of linear combinations, ordered by 
importance as quantified by the associated eigenvalues, of the 
original features which capture most of the cluster structure 
contained in the data. 

Seo and Kim [12] developed root selection method for 
identifying the underlying group structure in the data using 
finite mixtures of normal densities. Fraley et al. [13] defined a 
method of normal mixture modeling for model based 
clustering, classification, and density estimation studied. A 
model selection algorithm for mixture model clustering is 
defined by Erol [14]. Huang et al. [15] studied model selection 
for Gaussian mixture models. Their method is statistically 
consistent in determining the number of components. They 
used a modified EM algorithm [16] and applied to 
simultaneously select the number of components, and to 
estimate the mixing weights. 

Galimberti and Soffritti [17] studied conditional 
independence for parsimonious model based Gaussian 
clustering. They asumed that the variables can be partitioned 
into groups resulting to be conditionally independent within 
components, thus producing component-specific variance 
matrices with a block diagonal structure. McLachlan and 
Rathnayake [18] studied the number of components in terms 
of density estimation. Wei and McNicholas [19] used mixture 
model averaging for clustering. Model-based clustering of 
high-dimensional data studied by Bouveyrona and 
Brunet-Saumardb [20]. 

A new data mining method with a new genetic algorithm 
using variable data segmentation and model selection for 
mixture model clustering of multivariate data is proposed in 

this study. The genetic algorithm has 6 steps. These steps are: 
(i) Variable data segmentation, (ii) Determining total number 
of cluster centers, (iii) Computing total number of mixture and 
candidate models, (iv) Obtaining candidate mixture models as 
binary string representation, (v) Calculating parameter 
estimation of possible (candidate) mixture models from 
sample and (vi) Selecting the best model among candidate 
mixture models. 

The proposed mixture model clustering based on variable 
data segmentation and model selection will be explained on a 
data set, known as namely Ruspini data set [21]. Akogul and 
Erisoglu [28] proposed a new approach for determining the 
number of clusters in a model-based clustering analysis. 
Akogul and Erisoglu [29] used the information criteria on 
determining the number of clusters in the model correctly and 
effectively. Celeux et al. [30] proposed an approach to 
determining the number G of components in a mixed 
distribution in model-based clustering. Gogebakan and Erol 
[31] used model-based clustering of normal mixture 
distributions in the semi-supervised classification of clusters 
in the mixture model. The multivariate data set consists of two 
real or numeric valued variables with each variable containing 
four partitions, so they are heterogeneous. 

2. The Method 

The proposed data mining clustering method with a genetic 
algorithm for mixture model clustering of multivariate data 
based on model selection using variable data segmentation 
will be explained on Ruspini data set [21] in the following 
sections. 

2.1. Determination of Heterogeneous Variables in 

Multivariate Data for Variable Data Segmentation 

A heterogeneous variable is a variable that its values have at 
least two subgroups otherwise it is considered as a 
homogeneous variable. Each of two variables 1X  and 2X  in 

Ruspini data set [21] are heterogeneous each with four 
segmentations. Variable data segmentation is the first step of 
genetic algorithm for the proposed mixture model clustering 
based on model selection. Number of partitions of each 
variable data can be obtained by applying mixture of 
univariate normal distributions to each variable in data set. 
Mixture of univariate normal distribution is of the form 

( ) ( ; , )
1

k
f π f xi i i i

i
µ σ∑=

=
x;θ                (3) 

where ( )f x  denotes the probability density function for the 

mixture of univariate normal distributions; k  denotes the 
number of components in the mixture of univariate normal 
distributions; πi  denotes mixing proportion for component 

densities and ( ); ,f x i ii µ σ  denotes probability density 

functions of components. Probability density functions of 
univariate normal distributions are given as 
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where iµ  and iσ  denotes mean and standard deviations of 

component probability density functions respectively. In order 
to reveal partitions in each variable data log-likelihood, 
Akaike Information Criteria (AIC) [22] and Bayesian 
Information Criteria (BIC) [23] values are examined in 
mixture of univariate normal distributions. The number of 
components in each mixture of univariate normal distribution 
mixture models for each variable data corresponds to the 
number of variable data partitions for each variable in data set. 

Table 1. Log-likelihood, AIC and BIC values according to the number of 

components in the mixture of univariate normal distributions for the variable 

data of 1X  in data set. 

k Log-l AIC BIC 

k=1 -363.27 730.55 735.18 

k=2 -359.06 728.12 739.71 

k=3 -359.05 734.11 752.65 

k=4 -357.44 736.88 762.37 

k=5 -357.03 742.88 774.18 

Table 2. Log-likelihood, AIC and BIC values according to the number of 

components in the mixture of univariate normal distributions for the variable 

data of 2X  in data set. 

k Log-l AIC BIC 

k=1 -397.89 799.78 804.42 

k=2 -382.25 774.51 786.09 

k=3 -370.93 757.86 776.40 

k=4 -362.50 747.01 772.50 

k=5 -360.03 748.24 780.51 

By evaluating the results in Table 1 and Table 2, one can see 
that the optimal number of components is 4 for the mixture 
models for each variable data of 1X  and 2X . Let ki  be the 

number of partitions in X i  for 1, 2i =  so k1=k2=4. Moreover, 

graphical methods such as histograms and cumulative 
distribution plot should be used in determining the 
segmentations of each variable [24]. Probability plots and 
histograms showing the variable data partitions for 1X  and 

2X are illustrated in Figure 1 and Figure 2. 

 

(a) 

 

(b) 

Figure 1. (a) Probability plot and (b) histogram for variable 1X  of Ruspini 

data set. 

 

(a) 

 

(b) 

Figure 2. (a) Probability plot and (b) histogram for variable 2X  of Ruspini 

data set. 

 

Figure 3. Partitions in variable data in 1X  and 2X  forms a sixteen cluster 

centers in Ruspini data set. 

According to the results in Table 1 and Table 2, and in 
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Figure 1 and Figure 2 1X  is partitioned as 11X , 12X , 13X  

and 14X ; 2X  is partitioned as 21X , 22X , 23X  and 24X . 

This partitions forms sixteen cluster centers in Ruspini data set 
[21] as illustrated in Figure 3. 

Segmentations in variables data forms the cluster centers 
are shown Figure 3. The 1st cluster center is obtained from 

11X  and 21X  variable data partitions. The 2nd cluster center is 

obtained from 12X  and 21X  variable data partitions. The 3rd 

cluster center is obtained from 13X  and 21X  variable data 

partitions. The 4th cluster center is obtained from 14X  and 

21X  variable data partitions. The 5th cluster center is obtained 

from 11X  and 22X  variable data partitions. The 6th cluster 

center is obtained from 12X  and 22X  variable data 

partitions. The 7th cluster center is obtained from 13X  and

22X  variable data partitions. The 8th cluster center is obtained 

from 14X  and 22X  variable data partitions. The 9th cluster 

center is obtained from 11X  and 23X  variable data partitions. 

The 10th cluster center is obtained from 12X  and 23X  

variable data partitions. The 11th cluster center is obtained 
from 13X  and 23X  variable data partitions. The 12th cluster 

center is obtained from 14X  and 23X  variable data partitions. 

The 13th cluster center is obtained from 11X  and 24X  

variable data partitions. The 14th cluster center is obtained 
from 12X  and 24X  variable data partitions. The 15th cluster 

center is obtained from 13X  and 24X  variable data 

partitions. The 16th cluster center is obtained from 14X  and 

24X  variable data partitions. 

2.2. Computations for Total Number of Cluster Centers 

The assumption of proposed method is that each column 
and row must have at least one cluster center in Figure 3. The 
method proposed by Servi and Erol [24] can be used to 
compute the minimum and maximum number of cluster 
centers, denoted by minC  and maxC , respectively in data set 

as 

{ }maxminC ks= 1, ...,s p=              (5) 

and 

max

1

p

s

s

C k

=

= ∏                    (6) 

where p  denotes number of variables and ks  denotes the 

number of partitions in each variable data for 1X  and 2X . 

Thus, k1=k2=4 for Ruspini data set [21]. 2n ×  data matrix for 

X  is of the form 1 2X X X =   . 

Partitions of 1X  variable data in 1n elements is of the form 

11
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X

X
X

X

X
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 
  

 where 11X , 12X , 13X  and 14X  partitions 

having 11n , 12n , 13n  and 14n  elements respectively. Thus, 

1 11 12 13 14n n n n n= + + + . Partitions of 2X  variable data in 2n  

elements is of the form 

21

22
2

23

24

X

X
X

X

X

 
 
 =  
 
  

 where 21X , 22X , 23X  

and 24X  partitions having 21n , 22n , 23n  and 24n  elements 

respectively. Thus, 2 21 22 23 24n n n n n= + + + . For the case 

considered, { }max 4,4 4minC = =  and 4.4 16max 1 2C k k= = = . So 

the minimum number of cluster centers is 4 and the maximum 
number of cluster centers is 16 for Ruspini data set [21]. 
Partitions of variables data and cluster centers are illustrated in 
Figure 3. 

Observations for variables can be assigned to partitions of 
variables using clustering algorithms such as k-means 
algorithm [25]. So variable data segmentations are obtained 
from both graphical methods: such as probability plots and 
histograms; and computational methods: such as mixture of 
univariate normal distributions and k-means. Variable data 
partitions and their sizes for variable 1X  and 2X  in Ruspini 

data set [21] are given in Table 3. 

Table 3. Variable data segments and their sizes for 1X  and 2X  variables of 

Ruspini data set. 

Variable 1X
 

Number of Partitions 11X
 12X

 13X
 14X

 
Number of 
Observation 

1211n =  2812n =  
2313n =

 
1214n =  

Total 1 75n =
 

Variable 2X
 

Number of Partitions 21X
 22X

 23X
 24X

 
Number of 
Observation 

1521n =  2022n =  
1723n =

 
2324n =  

Total 2 75n =
 

Mean vectors and variance-covariance matrices of 
candidate cluster centers are obtained for construction of 
mixture models using variable data segmentations in 
multivariate data set or Ruspini data set [21]. General form of 
mean vectors in component probability density functions, thus 
bivariate normal probability density functions, corresponding 
to each candidate cluster center is of the form 

1
µ

2

p
i

q

µ

µ

 
 =
  

 for 1, ...,i k=  and 1, ...,16k = , , 1, ..., 4p q =  (7) 

where 1pµ  and 2qµ  corresponds to 11X , 12X , 13X  and 

14X  segments for 1X , and 21X , 22X , 23X  and 24X  

segments for 2X , respectively. 

General form of variance-covariance matrices in 
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component probability density functions, thus bivariate 
normal probability density functions, corresponding to each 
candidate cluster center is of the form 

2
1 21

Σ
2

2 1 2

i p qp
i

i q p q

σ ρ σ σ

ρ σ σ σ

 
 

=  
 
 

 for 1, ...,i k=  and 1, ...,16k =    (8) 

where 1pσ  and 2qσ  corresponds to 11X , 12X , 13X  and 

14X  segments for 1X , and 21X , 22X , 23X  and 24X  

segments for 2X , respectively. Correlations between 

partitions of variables are defined as (X , X )1 ,2 1 2Corrp q p qρ = . 

Mean vectors and variance-covariance matrices are used in 
construction of mixture models for mixture model clustering 
using variable data segmentation and model selection. 

2.3. Computations for Total and Possible Number of 

Mıxture Models Usıng Cluster Centers 

The total number of mixture models for cluster centers, 
obtained from variable data segmentation and denoted by 

TotalM , for Ruspini data set [21] can be computed by the 

relation proposed by Erol [14] as follows 

max2 1C
TotalM = −                 (9) 

where maxC  as in (6). Minus one term is used to eliminate 

the case of no cluster center. 

TotalM  can be obtained as 162 1 65535TotalM = − =  for 

Ruspini data set [21]. The number of cluster centers, the 
number of total mixture models, the number of possible 
mixture models and the number of free parameters in mixture 
models are given in Table 4. Some cases of mixture models 
does not satisfy the assumption which is each column and row 
has at least one cluster center, so they are eliminated. The 
remaining mixture models are called candidate mixture 
models. The number of possible or candidate mixture models 
can be computed using the relation formula proposed by 
Cheballah et al. [26] as 

( )( )
( , , , ) ( 1) ( 1)

0 0

n mn m n i m ji jf n m s k
i j ki j

 − −   
∑ ∑= − −       

     = =
    (10) 

where n  and m  corresponds to number of partitions in 

variables 1X  and 2X  respectively. Indices i  and j  are 

used for the number of cluster centers. k  denotes the cases 
for the number of cluster centers in mixture models. 

Table 4. The number of cluster centers, the number of total mixture models, the number of possible mixture models and the number of free parameters. 

Number of Cluster Centers Number of Total Mixture Models Number of Possible Mixture Models Number of Free Parameters 

1 16
16

1

 
  =
  
 

 - 6 

2 120
2

16 
  =
  
 

 - 11 

3 560
3

16 
  =
  
 

 - 17 

4 1820
4

16 
  =
 
 

 24 23 

5 4368
5

16 
  =
  
 

 432 29 

6 8008
6

16 
  =
  
 

 2248 35 

7 11440
7

16 
  =
  
 

 5776 41 

8 12870
8

16 
  =
  
 

 9066 47 

9 11440
9

16 
  =
  
 

 9696 53 

10 8008
10

16 
  =
  
 

 7480 59 
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Number of Cluster Centers Number of Total Mixture Models Number of Possible Mixture Models Number of Free Parameters 

11 4368
11

16 
  =
  
 

 4272 65 

12 1820
12

16 
  =
  
 

 1812 71 

13 560
13

16 
  =
  
 

 560 77 

14 120
14

16 
  =
  
 

 120 83 

15 16
15

16 
  =
  
 

 16 89 

16 1
16

16 
  =
 
 

 1 95 

Total 65535 41503 - 

 

2.4. Binary String Representation Of Possible Mixture 

Models Using Cluster Centers 

Mixture model clustering using variable data segmentation 
and based on model selection uses a genetic algorithm. The 
genetic algorithm is used to calculate the information criteria 
of each candidate mixture model. String representation of 
each candidate model consists of 1 and 0 digits. In Table 5 the 

zeros and/or the ones represent whether the centers used in 
construct of the mixture model or not. Binary string 
representations of possible mixture models with each 
corresponding to one of 41503 possible models numbers is 
given in Table 4. For instance the binary string representation 
of the saturated mixture model that uses all cluster centers is 
given in Table 5. 

Table 5. All sixteen cluster centers represented by one (1) means that all constructed the model. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

2.5. List Of Possible Mixture Models Using Cluster Centers 

Each binary string representation of candidate mixture 
model corresponds to one of 41503 possible mixture models. 

General form of mixture model with k  (4≤k≤16) 
components and having binary string representation is of the 
form as 

( ) ( ) ( ) ( ) ( ) ( )

1

( ; , ) ( ; , )
k

u u u u u u
i i i i

i

f x f xµ π µ
=

Σ = Σ∑  for 1, ..., 41503u =                      (11) 

where mixing proportions for component density function is 
of the form 

( )
4

1

u i
i

l
l

π
π

π
=

∑
=

 for 1, ..., 41503u =           (12) 

mean vector for component density function is of the form: 

( )
1( )

( )
2

u
pu

i u
q

µ
µ

µ

 
 

=  
 
  

 for 1, ..., 41503u =           (13) 

variance-covariance matrices for component density function 
is of the form: 

( ) ( ) ( ) ( )2( )1 1 ,2 1 2( )

( ) ( ) ( ) ( ) 2( )2 ,1 2 1 2

u u u u
p p q p qu

i u u u u
q p q p q

σ ρ σ σ

ρ σ σ σ

 
 

Σ =  
 
  

 for 1, ..., 41503u =   (14) 

where component density function is probability density 
function for bivariate normal distribution. 

There are 24 possible mixture models with four components 
( 4k = ) of the form as in (11). Parameters in the mixture 

models are ( )u
iπ , ( )u

iµ  and ( )u
iΣ  as in (12), (13) and (14) 

respectively with 1, ..., 24u = . There are 432 possible mixture 

models with five components ( 5k = ) of the form as in (11). 

Parameters in the mixture models are ( )u
iπ , ( )u

iµ  and ( )u
iΣ  as 

in (12), (13) and (14) respectively with 25, ..., 456u = . There are 
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248 possible mixture models with six components ( 6k = ) of 

the form as in (11). Parameters in the mixture models are ( )u
iπ , 

( )u
iµ  and ( )u

iΣ  as in (12), (13) and (14) respectively with 

457, ..., 2704u = . There are 5776 possible mixture models with 

seven components ( 7k = ) of the form as in (11). Parameters in 

the mixture models are ( )u
iπ , ( )u

iµ  and ( )u
iΣ  as in (12), (13) 

and (14) respectively with 2705, ..., 8480u = . There are 9066 

possible mixture models with eight components ( 8k = ) of the 

form as in (11). Parameters in the mixture models are ( )u
iπ , 

( )u
iµ  and ( )u

iΣ  in (12), (13) and (14) respectively with 

8481, ...,17546u = . There are 9696 possible mixture models with 

nine components ( 9k = ) of the form as in (11). Parameters in 

the mixture models are ( )u
iπ , ( )u

iµ  and ( )u
iΣ  in (12), (13) and 

(14) respectively with 17547, ..., 27242u = . There are 7480 

possible mixture models with ten components ( 10k = ) of the 

form as in (11). Parameters in the mixture models are ( )u
iπ , 

( )u
iµ  and ( )u

iΣ  in (12), (13) and (14) respectively with 

27243, ..., 34722u = . There are 4272 possible mixture models 

with eleven components ( 11k = ) of the form as in (11). 

Parameters in the mixture models are ( )u
iπ , ( )u

iµ  and ( )u
iΣ  in 

(12), (13) and (14) respectively with 34723, ..., 38994u = . There 
are 1812 possible mixture models with twelve components 
( 12k = ) of the form as in (11). Parameters in the mixture 

models are ( )u
iπ , ( )u

iµ  and ( )u
iΣ  in (12), (13) and (14) 

respectively with 38995, ..., 40806u = . There are 560 possible 

mixture models with thirteen components ( 13k = ) of the form 

as in (11). Parameters in the mixture models are ( )u
iπ , ( )u

iµ  

and ( )u
iΣ  in (12), (13) and (14) respectively with 

40807, ..., 41366u = . There are 120 possible mixture models with 

fourteen components ( 14k = ) of the form as in (11). 

Parameters in the mixture models are ( )u
iπ , ( )u

iµ  and ( )u
iΣ  in 

(12), (13) and (14) respectively with 41367, ..., 41486u = . There 
are 16 possible mixture models with fifteen components 
( 15k = ) of the form as in (11). Parameters in the mixture 

models are ( )u
iπ , ( )u

iµ  and ( )u
iΣ  in (12), (13) and (14) 

respectively with 41487, ..., 41502u = . There is 1 possible 

mixture model with sixteen components ( 16k = ) of the form 

as in (11). Parameters in the mixture models are ( )u
iπ , ( )u

iµ  

and ( )u
iΣ  in (12), (13) and (14) respectively with 41503u = . 

2.6. Estimation of Parameters for Possible Mixture Models 

Using Cluster Centers 

Mixture model clustering using variable data segmentation 
and based on model selection, proposed in this study, is a data 
mining method. The method developed for mixture model 
clustering has its own genetic algorithm explained in the 

previous sections. Since variable data segmentation applied to 
each variable in the data set; mean vectors, 
variance-covariance matrices and mixing proportions for each 
component of possible mixture models can be estimated from 
the sample. The complexity of mixture model clustering using 
variable data segmentation and based on model selection is 
less than other clustering methods. Each binary string 
representation, as in Table 5, corresponds to one of 41503 
possible mixture models of the form as in (11). 

The estimate of mixing proportions for component density 
functions are of the form 

( )

1

nu i
i k

nl
l

π =
∑
=

⌢  for 1, ..., 41503u =          (15) 

where k  denotes the number of components in the possible 
mixture models. The estimate of mean vectors for component 
density functions are of the form 

( )
1( )

( )
3

u
x

pu
i u

x
q

µ

 
 

=  
 
  

⌢  for 1, ..., 41503u =          (16) 

The estimate of variance-covariance matrices for 
component density functions are of the form 

( ) ( ) ( ) ( )2( )1 1 ,2 1 2( )

( ) ( ) ( ) ( ) 2( )2 ,1 2 1 2

u u u u
S r S S

p p q p qu
i u u u u

r S S S
q p q p q

 
 

Σ =  
 
  

⌢

 for 1, ..., 41503u =   (17) 

Parameter estimate ( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 of 24 possible 

mixture models with four components ( 4k = ) as in (15), (16) 
and (17) respectively with 1, ..., 24u = . Parameter estimate 

( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 of 432 possible mixture models with 

five components ( 5k = ) as in (15), (16) and (17) respectively 

with 25, ..., 456u = . Parameter estimate ( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 

of 2248 possible mixture models with six components ( 6k = ) 
as in (15), (16) and (17) respectively with 457, ..., 2704u = . 

Parameter estimate ( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 of 5776 possible 

mixture models with seven components ( 7k = ) as in (15), (16) 
and (17) respectively with 2705, ..., 8480u = . Parameter estimate 

( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 of 9066 possible mixture models with 

eight components ( 8k = ) as in (15), (16) and (17) respectively 

with 8481, ...,17546u = . Parameter estimate ( )u
iπ⌢ , ( )u

iµ⌢  and 

( )u
iΣ
⌢

 of 9696 possible mixture models with nine components 

( 9k = ) as in (15), (16) and (17) respectively with 

17547, ..., 27242u = . Parameter estimate ( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 of 

7480 possible mixture models with ten components ( 10k = ) as 
in (15), (16) and (17) respectively with 27243, ..., 34722u = . 

Parameter estimate ( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 of 4272 possible 

mixture models with eleven components ( 11k = ) as in (15), 
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(16) and (17) respectively with 34723, ..., 38994u = . Parameter 

estimate ( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 of 1812 possible mixture 

models with twelve components ( 12k = ) as in (15), (16) and 
(17) respectively with 38995, ..., 40806u = . Parameter estimate 

( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 of 560 possible mixture models with 

thirteen components ( 13k = ) as in (15), (16) and (17) 

respectively with 40807, ..., 41366u = . Parameter estimate ( )u
iπ⌢ , 

( )u
iµ⌢  and ( )u

iΣ
⌢

 of 120 possible mixture models with fourteen 

components ( 14k = ) as in (15), (16) and (17) respectively with 

41367, ..., 41486u = . Parameter estimate ( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 

of 16 possible mixture models with fifteen components ( 15k = ) 
as in (15), (16) and (17) respectively with 41487, ..., 41502u = . 

Parameter estimate ( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 of 1 possible 

mixture model with sixteen components ( 16k = ) as in (15), 
(16) and (17) respectively with 41503u = . 

2.7. Computation of Information Criteria for Possible 

Mixture Models 

Likelihood function for the mixture of multivariate normal 
densities is defined as 

(π, µ, Σ) (x ;θ) π (x ;µ ,Σ )
1 1 1

n n k
L f fj i i j i i

j j i

∏ ∏= = ∑
= = =

      (18) 

and log-likelihood function for the mixture of multivariate 
normal densities is computed as 

log (π, µ, Σ) log( π (x ; µ , Σ ))
1 1

n k
L fi i j i i

j i
∑ ∑=
= =

        (19) 

The Maximum Likelihood Estimation method is used in 
mixture distributions to obtain the parameters in the data set 
[27]. Log-likelihood function values for possible mixture of 
bivariate normal densities are computed using the estimated 

values of ( )u
iπ⌢ , ( )u

iµ⌢  and ( )u
iΣ
⌢

 for the Ruspini data set [21]. 

Akaike’s information criterion (AIC) can be computed by 

ˆˆ ˆAIC -2 log (π, µ, Σ) 2L d= +                (20) 

Bayesian information criterion (BIC) can be computed by 

ˆˆ ˆBIC -2 log (π, µ, Σ) logL d n= +              (21) 

where ˆˆ ˆlog (π, µ, Σ)L  is the value of log-likelihood function for 

possible mixture of multivariate normal densities; d  is the 
number of free parameters in possible mixture of bivariate 
normal densities and n  is the number of observation. The 
number of free parameters in possible mixture of multivariate 
normal densities d  can be computed by: 

( )1
( 1)

2

p
d k kp kp

 +
= − + +  

 
                 (22) 

where k  is the number of components, p  is the number of 
variables or dimension in mixture model [5]. Log-likelihood 
function, AIC and BIC values are computed from partitions of 
variables data using mean vectors and variance-covariance 
matrices. Log-likelihood function, AIC and BIC values will be 
used as criteria for selecting the best mixture model of 
bivariate normal densities. All calculations are performed 
using MATLAB. 

2.8. Selection of The Best Model In a Set of Possible Mixture 

Models 

Selection of the best mixture model among possible mixture 
of bivariate normal densities for the Ruspini data set [21] 
according to the information criteria is performed using the 
values of log-likelihood function, AIC and BIC. The mixture 
model having maximum Log-likelihood function value and, 
the mixture model having minimum AIC and BIC values is 
selected as the best mixture model among the possible 41503 
mixture models. The string representation of the best mixture 
model is given in Table 6. 

Table 6. The best mixture model string representation. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 

The number of components, log-likelihood, AIC and BIC values of the best mixture model is given in Table 7. 

Table 7. Log-likelihood, AIC and BIC values of the best mixture model. 

Number of Component Log-l AIC BIC 

4 -1560.4 3124.7 3130.0 

 
The best mixture model is selected as the mixture of four 

component bivariate normal densities for Ruspini data set [21]. 
The best mixture model is the 12th mixture model among 

41503 possible mixture models. The scatter plot and the 
surface plot of the best mixture model is illustrated in Figure 
4. 
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Figure 4. (a) The scatter plot and (b) The surface plot of the best mixture 

model. 

3. Conclusions 

In this study, a new data mining method using genetic 
algorithm for mixture model clustering based on variable data 
segmentation and model selection was developed and 
performed on Ruspini data set. In the developed genetic 
algorithm, we calculated the number of candidate cluster 
centers and structures resulting from segmentation of 
heterogeneous variables. All mixture models that can be 
formed from these candidate cluster centers and the number of 
possible mixture models that are appropriate for the 
hypothesis were calculated. Possible mixture models 
corresponding to candidate cluster centers were generated 
using genetic algorithm. In order to be able to compute 
possible mixture models, string representation of each 
possible mixture model was obtained. To be used in 
calculations, unknown parameters for possible mixture of 
bivariate normal distributions were calculated from the 
sample. The information complexity of the proposed mixture 
model clustering is less than other clustering methods that is 
why algorithms such as Expectation and Maximization (EM) 
is not used in computations for estimation of parameters. 
According to the calculated values thus, log-likelihood, AIC 
and BIC, the best mixture model that matches the best data 
clustering structure for Ruspini data set was decided. 

It can be heuristically stated that the partitions in the 
heterogeneous variable data affects and determines the 
number and structure of clusters in data set with no matter 
what the number of the variable in data is. The clustering 
method proposed in this study is developed specially for 
model based clustering of big data. 

As a future work, the proposed method will be applied on 
human brain studies. The study will cover, the number of 
human brain function centers, magnitude of these brain 
function centers, correlation between these brain function 
centers, and constructing mixture models for these brain 
function centers of human behaviours and activity movements. 
Furthermore, the method can be applied on robotics, artificial 
intelligence and logical circuit design for decision making 
applications. 
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