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Abstract: Although the modified simple equation method effectively provides exact traveling wave solutions to nonlinear 

evolution equations in the field of engineering and mathematical physics, it has some drawbacks. Particularly, if the balance 

number is greater than 1, the method cannot be expected to yield any solution. In this article, we present a process to 

implement the modified simple equation method to solve nonlinear evolution equations for balance number greater than 1, 

namely with balance number equal to 2. To validate our theory through applications, two equations have been chosen to 

undergo the proposed process, the Boussinesq and the Fisher equations, to which traveling wave are found and analyzed.  For 

special parameters values, solitary wave solutions are originated from the exact solutions. We analyze the solitary wave 

properties by the graphs of the solutions. This shows the validity, usefulness, and necessity of the process. 

Keywords: Boussinesq Equation, Fisher Equation, Modified Simple Equation Method, Nonlinear Evolution Equations, 

Solitary Wave Solutions 

 

1. Introduction 

The mathematical modeling of complex phenomena that 

change over time depends closely on the study of a variety of 

systems of ordinary and partial differential equations. Similar 

models are developed in diverse fields of study, ranging from 

the natural and physical sciences, population ecology to 

economics, infectious disease epidemiology, neural networks, 

biology, mechanics etc. In spite of the eclectic nature of the 

fields wherein these models are formulated, different groups 

of them contribute adequate common attributes that make it 

possible to examine them within a unified theoretical 

structure. Such studies make for a large area of functional 

analysis, usually called the theory of evolution equations 

(EEs) which may be linear or nonlinear. The latter are usually 

more challenging than their linear counterparts, and richer in 

terms of adequately modeling and describing complex 

phenomena. Therefore, the investigation of solutions to 

nonlinear evolution equations (NLEEs) plays a very 

important role to uncover the obscurity of many phenomena 

and processes throughout the natural sciences. However, one 

of the essential problems is to obtain their exact solutions. 

Therefore, in order to find out exact solutions to NLEEs 

different groups of mathematicians, physicist, and engineers 

have been working tirelessly. Accordingly, in the recent years, 

they establish several methods to search exact solutions, for 

instance, the inverse scattering method [1], the Hirota’s 

bilinear transformation method [2], the Backlund 

transformation method [3], [4], the Darboux transformation 

method [5], the Painleve expansion method [6], the Adomian 

decomposition method [7], [8], the He’s homotopy 

perturbation method [9], [10], the Jacobi’s elliptic function 

method [11], [12], the Miura transformation method [13], the 

sine-cosine method [14], [15], the homogeneous balance 

method [16], the tanh-function method [17], [18], the 

extended tanh-function method [19], [20], the first 

integration method [21], the F-expansion method [22], the 

auxiliary equation method [23], the Lie group symmetry 

method [24], the variational iteration method [25], the ansatz 

method [26], [27], the Exp-function method [28], [29], the 

( / )G G′ -expansion method [30], [31], [32], [33], [34], [35], 

the exp( ( ))φ η− -expansion method [41], [42], and the various 

versions and improvements of the
 

( / )G G′ -expansion 

method [45], [46], [47], [48], [49], and [50]. 

The modified simple equation method, [36], [37], [38], 
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[39], [40], being recently developed, is rising in use. Its 

computation is straightforward, systematic, and needs not the 

symbolic computation software to manipulate the algebraic 

equations. However, the method has some shortcomings. The 

main problem is that when the balance number is greater than 

one, the method usually does not give any solution. To the 

best of our knowledge, till now only two articles are 

available in the literature concerning higher balance number 

(for balance number two). In [43], Salam used the MSE 

method to the modified Liouville equation (wherein the 

balance number is two) and written down a solution to this 

equation. However, unfortunately the obtained solution does 

not satisfy the equation. Also, in Ref. [44], Zayed and Arnous 

solved the KP-BBM equation by means of the MSE method 

and found some solutions of this equation. Unfortunately, 

there is no guideline in this article, how one can solve other 

NLEEs for the higher balance number. In the present article, 

we have considered two equations; the balance number for 

each of these equations is two. If the balance number is 

greater than one, usually there arise difficulties in solving the 

NLEEs by means of the MSE method. One cannot use the 

MSE method in straight away. In this case, we need to take in 

some strategy. Inserting the assumed solution to the 

corresponding ordinary differential equation and then 

equating the coefficients of ( ) , ( 0,1,2, , )js j Nξ − = ⋯  yields 

an over-determined set of algebraic and differential equations. 

During determination of the unknown function, there born a 

third order linear ordinary differential equation in s and ξ .A 

polynomial appearing in the solution of s , ξ will make it 

ineligible for a solitary wave solution, because in this case, 

we have 0u →  as ±∞→ξ  [7]. Therefore, the coefficients 

of the polynomial must be zero. This constraint is essential to 

solve NLEEs for higher balance number. 

The article is organized as follows: In section 2, we 

summarize the description of the method. In section 3, we 

employ the method to NLEEs with balance number is 2, and 

in section 4, we give conclusions. 

2. The Modified Simple Equation (MSE) 

Method 

To elaborate on the MSE method, let us consider the 

nonlinear evolution equation of the form, 

( , , , , , , ,...) 0
t x y z x x t t

H u u u u u u u = ,                (1) 

where ( , )u u x t= is an unidentified function, H  is a 

polynomial in ( , )u x t  and its partial derivatives, which 

include the highest order derivatives and nonlinear terms of 

the highest order, and the subscripts denote partial derivatives. 

In order to solve Equation (1) by means of the MES method 

[36], [37], [38], [39], and [40], we have to execute the 

following steps: 

Step 1: The traveling wave variable, 

( , , , ) ( )u x y z t u ξ= ,with, ( )k x y z tξ ω= + + ± ,        (2) 

Permits for the change of Eq. (1), into the following ordinary 

differential equation (ODE): 

( , , , ) 0G u u u′ ′′ =⋯ ,                           (3) 

Where, G  is a polynomial in ( )u ξ  and its derivatives, 

wherein ( )
d u

u
d

ξ
ξ

′ = . 

Step 2: We suppose that Eq. (3) has the solution in the 

form, 

0

( )
( )

( )

i
N

i

i

s
u a

s

ξξ
ξ=

′ 
=  

 
∑ ,                        (4) 

where ,ia ( 0,1,2, , )i N= ⋯  are unknown constants to be 

determined, such that 0Na ≠ , and ( )s ξ  is an unknown 

function to be evaluated. In sine-cosine method, tanh-

function method, ( / )G G′ -expansion method, Jacobi elliptic 

function method, Exp-function method etc., the solutions are 

proposed in terms of some functions established in advance, 

but in the MSE method, ( )s ξ is not pre-defined or not a 

solution of any pre-defined differential equation. Therefore, it 

is not possible to conjecture from earlier what kind of 

solutions one may get through this method. This is the 

individuality and distinction of this method. Therefore, some 

fresh solutions might be found by this method. 

Step 3: The positive integer N appearing in Eq. (4) can be 

determined by taking into account the homogeneous balance 

between the highest order nonlinear terms and the derivatives 

of highest order occurring in Eq. (3). If the degree of ( )u ξ is

deg[ ( )]u Nξ = , therefore, the degree of the other expressions 

will be as follows: 

( )
deg[ ]

m

m

d u
N m

d

ξ
ξ

= + , 

and, 

( )
deg[ ( ) ] ( )

l
m p

l

d u
u m N p N l

d

ξ
ξ

= + + . 

Step 4: We substitute Eq. (4) into Eq. (3) and then we 

account the function ( )s ξ . As a result of this substitution, we 

get a polynomial of ( )( ) / ( )s sξ ξ′  and its derivatives. In the 

resultant polynomial, we equate all the coefficients of 

( )( ) , ( 0,1,2,..., )
i

s i Nξ − =  to zero. This procedure yields a 

system of algebraic and differential equations which can be 

solved for getting the values of ia ( 0,1,2, , )i N= ⋯ , ( )s ξ  and 

the value of the other needful parameters. 

3. Applications of the MSE Method 

In this section, we will execute the MSE method to extract 
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solitary wave solutions to the Boussinesq equation and the 

Fisher equations which are very important in the fields of 

surface wave propagation in coastal regions, heat and mass 

transfer, biology, ecology, gene propagation, physiology, 

crystallization, plasma physics, and reaction-diffusion 

systems. 

3.1. The Boussinesq Equation 

In this sub-section, we will implement the MSE method to 

find the exact solutions and then the solitary wave solutions 

to the Boussinesq equation in the form: 

2( ) 0t t x x xx xxxxu u u uα β− + + = .                  (5) 

whereα  and β  are real constants.  

To construct solitary wave solutions of the Boussinesq 

equation by applying the MSE method, we use the wave 

variable 

( , ) ( ) , ( )u x t U k x tξ ξ ω= = − .                 (6) 

The traveling wave transformation (3.2) reduces Eq. (3.1) 

to the following ODE: 

2 2 2 ( )( 1) ( ) 0ivU U k Uω α β′′ ′′− + + = ,               (7) 

where prime denotes the ordinary derivatives with respect to 

ξ . Now, integrating Eq. (7) twice with respect to ξ  and 

setting the constant of integration to zero, we obtain a new 

ODE in the form:
 

2 2 2( 1) 0U U k Uω α β ′′− + + = .                   (8) 

Balancing the highest order derivative term U ′′  and the 

nonlinear term of the highest order 
2

U , we obtain 2N = . 

Therefore, the solution (4) takes the form, 

2

0 1 2
( )

s s
U a a a

s s
ξ

′ ′   = + +   
   

,                      (9) 

where 0 1,a a  and 
2a  are constants such that

2 0a ≠  and ( )s ξ  

is an unknown function to be determined. Now, it is easy to 

make out, 

2

21

3

3

2

2

2

1 22

s

ssa

s

sa

s

sa

s

sa
U

′′′
+

′′
+

′
−

′
−=′ .             (10) 

2

21

2

2

2

3

2

2

2

1

4

4

2

3

3

1 2210362

s

ssa

s

sa

s

sa

s

ssa

s

ssa

s

sa

s

sa
U

′′′′
+

′′′
+

′′
+

′′′
−

′′′
−

′
+

′
=′′ .(11) 

Substituting the values of ,U U ′  and U ′′  from (9)-(11) 

into Eq. (8) and then equating the coefficients of 
0 1 2 3 4, , , ,s s s s s− − − −

 to zero, we respectively obtain 

2

0 0( 1 ) 0,a aω α− + + =
                           

(12) 

2 2

1 0( 1 2 ) 0,a a s k sω α β′ ′′′− + + + =                 (13) 

2 2 2 2 2

1 1 2 0

2 2 2

( ) 3 ( 1 2 ) ( )

2 ( ) 0

a s k a s s a a s

k s k s s

α β ω α
β β
′ ′ ′′ ′− + − + +

′′ ′ ′′′+ + =
    

(14) 

2 2 2

1 2 22( ) ( ( ) 5 ) 0,s a k a s k a sβ α β′ ′ ′′+ − =
        

(15) 

2 4

2 2(6 ) ( ) 0.a k a sβ α ′+ =
                   

(16) 

From Eq. (12) and Eq. (16), we obtain 

2

0

1
0,a

ω
α

−= and
2

2

6
,

k
a

β
α

= − since 2 0a ≠ . 

Therefore, we obtain the following two cases arises for the 

values of 0a . 

Case 1: When 0 0a = , then From Eq. (13)-(15), we get 

2

1

6 (1 )k
a

β ω
α

−
= ±  

And

2
12

1

22
( ) ,

1

kk c
s e c

ξ ω
ββξ

ω

−±

= +
−

 

where
1c  and 2c are integrating constant. 

Now, using the values of 0 1 2, ,a a a  and ( )s ξ into Eq. (9), 

we obtain the solution 

( )

( )

2

2

2 12 2

1 2

2
1

2 2

1 2

6 1
( )

1

k

k

k c c
U e

k c e c

ξ ω
β

ξ ω
β

β ω
ξ

α β ω

−±

−±

− +
=

 
 − − +
 
 

.   (17) 

Simplifying the required solution (17), we derive the 

following close-form solution of the Boussinesq equation: 

( )
( ) ( )

( ) ( ) ( )

2
2 2

1 2

2

2 2

2

1

2 2

2

2

6 1
( , )

1 1
cosh sinh

2 2

1 1
1 cosh sinh

2 2

k c c
u x t

x t x t
k c

x t x t
c

β ω

ω ω ω ω
β

β β
α

ω ω ω ω
ω

β β

− +
=

     − − − −     ±           
     − − − −     − − +            

∓

.  (18) 

Since 1c  and 2c  are arbitrary constants, one may 

arbitrarily pick their values. If we choose 
2

1 1c ω= − + and 

2

2c k β= then from solution (18), we obtain 

( ) ( ) 2
2

2 2

1

1
3 1 cos

2
( , )

2

x t
ech

u x t

ω ω
ω

β

α

 − −
 − +
 
 = .   (19) 

Again if we choose
2

1 1c ω= − + and 
2

2c k β= − then from 

solution (18), we have the following solitary wave solution: 
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( ) ( ) 2
2

2 2

2

1
3 1 sec

2
( , )

2

x t
h

u x t

ω ω
ω

β

α

 − −
 − +
 
 = − .   (20) 

On the other hand, if 1 1c = and 2 1c = , from solution (18), 

we derive the solitary wave solutions in the form: 

( )

( ) ( )

( ) ( )

2
2 2

3 2
2

2 2

2

2 2

6 1
( , )

1
1 cosh

2

1
1 sinh

2

k
u x t

x t
k

x t
k

β ω

ω ω
β ω

β
α

ω ω
β ω

β

− +
=

  − −
  + +

     
 

  − −
 ± − + + 
    

. (21) 

Also when 1 1c = and 2 1c = − , then from solution (18) can 

be written as the following solitary wave solutions in the 

form: 

( )

( ) ( )

( ) ( )

2
2 2

4 2
2

2 2

2

2 2

6 1
( , )

1
1 cosh

2

1
1 sinh

2

k
u x t

x t
k

x t
k

β ω

ω ω
β ω

β
α

ω ω
β ω

β

− − +
=

  − −
  − + +

    
 

  − −
 ± + −     

.  (22) 

The solutions (19)-(20) are plotted and shown in Figure 1 

and solutions (21)-(22) are plotted and shown in Figure 2 and 

3 respectively for 1, 2kα β ω= = = = . 

Case 2: When
2

0

1
a

ω
α

−= then from Eqs.(13)-(15), we 

obtain, 

2

1

6 ( 1 )k
a

β ω
α
− +

= ± , while 

2
12

1

22
( ) ,

1

kk c
s e c

ξ ω
ββξ

ω

− +±

= +
−

 

Where,
1c  and 2c are integrating constant. 

Now, using the values of 0 1 2, ,a a a  and ( )s ξ  in Eq. (9), 

we obtain the solution in the form: 

( ) ( ) ( )

( )

2 2

2

2 1 1
2

2 4 2 2 2 2 2 2

1 1 2 2

2
1

2 2

1 2

1 4 1 1

( )

1

k k

k

k c e k c c e c

U

k c e c

ξ ω ξ ω
β β

ξ ω
β

ω β β ω ω

ξ

α β ω

− + − +± ±

− +±

 
 − + − − + + − + 
  =

 
 + − + 
  

.                                (23) 

Switching the exponential solution (23) into trigonometric function, we derive the solution of the Eq. (5): 

( )

( ) ( )

( )

( ) ( ) ( )

( )

2 2

4 2 2

1

2 2 2

1 2

2 2
2

2 2

2

2

2

1

1 1
cosh sinh

1 4 1

1 1
1 cosh sinh

( , )

1
cosh si

2

x t x t
k c

k c c

x t x t
c

u x t

x t
k c

ω ω ω ω
β

β β

ω β ω

ω ω ω ω
ω

β β

ω ω
β

β
α

     − − − −     ± 
          

 − − − +
 
     − − − −     + − +            =

 − −
  ±
 
 

−

∓

( )

( ) ( ) ( )

2
2

2 2

2

2

1
nh

2

1 1
1 cosh sinh

2 2

x t

x t x t
c

ω ω
β

ω ω ω ω
ω

β β

   − −    
      

     − − − −     + − +            

∓

.                           (24) 

Thus, we get the exact solution (24) to the Boussinesq equation (5). But, since 1c  and 2c  are arbitrary constants, one may 

randomly pick their values. So, if we take 
2

1 1c ω= − +  and 
2

2c k β=  then the solitary wave solution (24) becomes, 
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( ) ( ) ( )2 2 2

2

1

1 1 1
( , ) 2 cosh sec

2

x t x t
u x t h

ω ω ω ω ω
α β β

    − − − − −    = − − + 
        

.                                (25) 

Again, if we choose 
2

1 1c ω= − +  and 
2

2c k β= −  then from (24), we obtain the following solitary wave solutions in the 

form:  

( ) ( ) ( )2 2 2

2

2

1 1 1
( , ) 2 cosh cos

2

x t x t
u x t ech

ω ω ω ω ω
α β β

    − − − − −    = − + 
        

.                                     (26) 

On the other hand, if we take
2

1 1c ω= − +  and 

4 2

2
c k β= ± −  then from (24), we get the solution in the 

form: 

( ) ( )

( )

2

2

3
2

1
1 2 sinh

( , )

1
1 sinh

x t
i

u x t

x t
i

ω ω
ω

β

ω ω
α

β

  − −  − + 
    =

  − −  − 
    

.     (27) 

Also, if
2

1 1c ω= − +  and 4 2

2c k β= −∓  then we derive 

the solitary wave solution (24) can be written in the form: 

( ) ( )

( )

2

2

4
2

1
1 2 sinh

( , )

1
1 sinh

x t
i

u x t

x t
i

ω ω
ω

β

ω ω
α

β

  − −  − − 
    =

  − −  + 
    

.       (28) 

The solutions (25)-(26) are plotted and shown in Figure 4 

and solutions (27)-(28) are plotted and shown in Figure 5, for 

1, 2α β ω= = = . 

The major advantage of the MSE method is that the 

calculations are not sophisticated and easy to control. It is not 

required any computer algebra system to facilitate the 

calculations as it take to the Exp-function method, the 

( / )G G′ -expansion, the tanh-function method, the homotopy 

analysis method etc. But the solutions obtained by the MSE 

method are equivalent to those solutions obtained by the 

above mentioned method. Since 
1c  and 

2c  are arbitrary 

constants for other choices of 
1c and 

2c , we might obtain 

much new and more general exact solutions of Eq. (5) by the 

MSE method without any aid of symbolic computation 

software. 

Remark 1: Solutions (19)-(22) and (25)-(28) have been 

verified by putting them back into the original equation and 

found correct. 

3.2. Physical Interpretations of the Boussinesq Equation 

Solutions 

In this sub-section, we will depict the graph and signify the 

obtained solutions to the Boussinesq equation. The solutions 

(19) and (20) represent the singular periodic solutions. 

Periodic solutions are traveling wave solutions that are 

periodic, such that Fig. 1 shows the shape of the solutions (19) 

and (20) for 1, 2α β ω= = = within 2 , 2.x t− ≤ ≤ Solitons 

are solitary waves with resilient scattering property. Solutions 

(21) and (22) are complex solutions, therefore, the modulus 

and arguments of these solutions have been plotted. The 

graph of modulus of the solutions (21) and (22) have been 

shown in Fig. 2, and their arguments have been shown in 

Figs. 3 and 4 respectively for 1, 2kα β ω= = = =  within 

2 , 2.x t− ≤ ≤  On the other hand, Fig. 5 shows that the 

solution (25) is the bell shape soliton and solution (26) is 

singular bell shape soliton. Also, the solutions (27) and (28) 

are complex solutions, therefore, the modulus and arguments 

of these solutions have been plotted. The graph of modulus 

and arguments of that solutions have been shown in Fig. 6 

and 7 respectively for 1, 2α β ω= = = , such that,

2 , 2.x t− ≤ ≤  

 

Fig. 1. Periodic solutions 1u  and 2u in (19) and (20) to the Boussinesq equation (5). 
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Fig. 2. Plot of the modulus of the solutions 1u  and 2u in (21) and (22) to the Boussinesq equation (5). 

 

Fig. 3. Plot of the arguments of the solution 3u in (21) to the Boussinesq equation (5). 

 

Fig. 4. Plot of the arguments of the solution 4u in (22) to the Boussinesq equation (5). 

 

Fig. 5. Bell shape solution 1u  in (25) and singular bell shape solution 2u in (26) to the Boussinesq equation. 
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Fig. 6. Plot of the modulus and arguments of the solutions 3u in (27) to the Boussinesq equation (5). 

 

Fig. 7. Plot of the modulus and arguments of the solutions 4u in (28) to the Boussinesq equation (5).

3.3. The Fisher Equation 

In this sub-section, we will make use of the MSE method 

to obtain new and more general exact solutions and then the 

solitary wave solutions to the Fisher equation in the form: 

(1 ) 0t xxu u u u− − − = .                              (29) 

The traveling wave transformation in Eq. (6) helps reduce 

Eq. (29) to the following ODE, 

2 (1 ) 0k U k U U Uω ′ ′′+ + − = ,                     (30) 

where prime denotes the derivatives with respect to ξ . 

Balancing the highest order derivative term U ′′  and highest 

order nonlinear term 
2

U , we have 2N = . Therefore, the 

form of the solution of Eq. (30) is similar to the form of the 

solution in Eq. (9). 

Substituting the values of ,U U ′  and U ′′  from (9)-(11) 

into Eq. (30) and then equating the coefficients of 
0 1 2 3 4, , , ,s s s s s− − − −

 to zero, we respectively obtain the 

following equations,  

0 0( 1 ) 0a a− − + = .                               (31) 

( ){ }1 0(1 2 ) 0a a s k s k sω′ ′′ ′′′− + + = .           (32) 

( )
( ){ }

2 2

1 1

2 2 2

2 0

( )

(1 2 )( ) 2 ( ) 2 0

a s k a s s k s

a a s k s k s s k s

ω

ω

′ ′ ′ ′′− − +

′ ′′ ′ ′′ ′′′+ − + + + =
.  (33) 

( ){ }2 2

1 2 22( ) ( ) 5 0s a k a s k a s k sω′ ′ ′ ′′− − + = .      (34) 

2 4

2 2(6 )( ) 0a k a s′− = .                           (35) 

From Eq. (31), (34) and (35), we obtain 

0 0, 1a = ; 
2

2 6a k= , since 2 0a ≠ , and,

( )
( )1

2

6 5
2

301

2

1

30

6 5

k a

kk c
s e c

k a

ξ ω

ξ
ω

− −

= +
− −

, 

where
1c  and 2c are constants of integration. Hence the 

following two cases arise for the values of 0a . 

Case 1: When 0 0a = , then from Eq. (32)-(33), we obtain 

{ }1 1

1

5
0, , 6 , 0 ,

6

5
2 6 , .

6

a a i k

i
a i k

ω ω

ω

 = = ± = ± = 
 

 = ± = 
 

∓
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Therefore, three cases arises depending on the values for

1a . 

Case 1(a): When 1 0a = and
5

6
ω = ± , then using the 

values of 0 1 2, ,a a a  and ( )s ξ in Eq. (3.5), we get 

( )
2

2 2 3
1

2

6

1 2

6

6

k

k

k c e
U

k c e c

ξ

ξ
ξ =

 
 
 
 

∓

∓

∓

.                   (36) 

Simplifying the solution (36) of the Fisher equation (29), 

we obtain 

( )
2 2

1

2

1

2

5 5
6 cosh sinh

6 66 6
,

5 5
6 cosh sinh

12 122 6 2 6

5 5
cosh sinh

12 122 6 2 6

t x t x
k c

u x t

t x t x
k c

t x t x
c

    − ± −    
    =

     − ± −     
     

      + − + −          
∓

.  (37) 

Hence we get the more general exact solution (37) of the 

Eq. (29). Since, 
1c  and 

2c  are arbitrary constants, we might 

randomly opt their values. Therefore, if we take 
2

6c k= ±
and 

1 1c = , we derive the solitary wave solution of the Fisher 

equation (29) from Eq. (37) as follows: 

( ) 2

1

1 5 5 5
, cos cosh sinh

4 12 6 62 6 6 6

x t t x t x
u x t ech

      = − − ± −      
      

.(38) 

Again, if choose 
2

6c k= ∓  and 
1 1c = then from the 

solution Eq. (37),we obtain the following solitary wave 

solution: 

( ) 2

2

1 5 5 5
, sec cosh sinh

4 12 6 62 6 6 6

x t t x t x
u x t h

      = − − ± −      
      

. (39) 

Solution (38)is plotted and shown in Figure 8 and solution 

(39)is plotted and shown in Figure 9. 

Case 1(b): When 1 6a i k= ±  and 0ω = then substituting 

the values of 0 1 2, ,a a a  and ( )s ξ  in Eq. (9), we get 

( ) 1 2

2

1 2

6

i

k

i

k

i k c c e
U

k c e i c

ξ

ξ
ξ =

 
 
 

∓

∓

∓

∓

.                     (40) 

Now, simplifying the exponential solution (40), we obtain 

( ) 1 2

2

1 2

6
,

cos sin cos sin
2 2 2 2

i k c c
u x t

x x x x
k c i c i

=
           + +           

           

∓

∓ ∓
. (41) 

Since, in this case 0ω = , i.e. the wave speed is zero, the 

wave is no more traveling wave. Therefore, we are not 

interested to discuss this case. Hence it is rejected. 

Case 1(c): When 1 2 6a i k= ±  and 
5

6

iω = ∓ then 

substituted the values of 0 1 2, ,a a a  and ( )s ξ in Eq. (9), we get 

( )

6 6

1 1 2

2

6

1 2

2 3 6

6

i i

k k

i

k

k c e k c e i c

U

k c e i c

ξ ξ

ξ
ξ

± ±

±

 
 ±
 
 =

 
 ±
 
 

.       (42) 

Now, simplifying the solution (42), we obtain the 

following trigonometric function solution: 

( )

1

1

2

1

5 5
2 cosh sinh

12 122 6 2 6

5 5
3 cosh sinh

12 122 6 2 6

5 5
6 cosh sinh

12 122 6 2 6
,

5
6 cosh

t x t x
kc i i

t x t x
k c i i

t x t x
i c i i

u x t

t
k c

     ± + ±     
     

       ± + ±            ×        ± ± − ±             =
2

2

5
sinh

12 122 6 2 6

5 5
cosh sinh

12 122 6 2 6

x t x
i i

t x t x
i c i i

     ± + ±     
     

      ± ± − ±          

.  (43) 

Thus, we get the more general exact solution (43) of the 

Fisher equation. Since 1c  and 2c  are constants of integration, 

we may intuitively choose their values. Therefore, if we 

choose 2 6c k= , and,
1c i= ± , then the solution(43)is 

simplified to yield, 

( ) 2

1

1 5 5
, 3 2 tanh tanh

4 12 122 6 2 6

t x t x
u x t i i

    = + ± − ±    
    

.  (44) 

Again if 2 6c k=  and 
1c i= ∓ then from the exact 

solution (43) we derived the following solitary wave solution, 

( ) 2

2

1 5 5
, 3 2coth coth

4 12 122 6 2 6

t x t x
u x t i i

    = + ± − ±    
    

. (45) 

Another way is that we choose 1 6c i= ±  and 
2 3c k=  

then from solution (43), we get, 

( )3

5 5
4 1 cosh sinh

6 66 6
,

5 5
4 5cosh 3sinh

6 66 6

t x t x
i i

u x t
t x t x

i i

    + ± + ±    
    =
   + ± + ±   
   

.  (46) 

Also, if we take 1 6c i= ∓  and 
2 3c k=  then the solution 

(43) becomes 
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( )4

5 5
4 1 cosh sinh

6 66 6
,

5 5
4 5cosh 3sinh

6 66 6

t x t x
i i

u x t
t x t x

i i

    − + ± + ±    
    =
   − + ± + ±   
   

.(47) 

These solutions (44)-(47) are plotted as shown in Figure 

10 to 15, respectively. 

Case 2: When 0 1a =   then from Eq. (32)-(33), we obtain 

{ }

1 1

1

5 5
0, , 2 6 , ,

6 6

6 , 0 .

i
a a k

a k

ω ω

ω

   = = ± = ± =   
   

= ± =

∓

 

Again for values of 1a we can discuss the following three 

cases. 

Case 2(a): When, 1 0a = , and,
5

6

iω = ± , then using the 

values of using the values of 0 1 2, ,a a a  and ( )s ξ  in Eq. (9), 

we obtain exponential solution: 

( )
2

2 2 3
1

2

6

1 2

6
1

6

i
k

i
k

k c e
U

i k c e c

ξ

ξ
ξ = +

 
 ± +
 
 

∓

∓

.                   (48) 

After simplification, from solution (48) we obtain the 

following trigonometric solution of the Fisher equation (29): 

( )

2

1

2

1

5 5
cosh sinh

12 122 6 2 6

5 5
2 6 cosh sinh

12 122 6 2 6

5 5
cosh sinh

12 122 6 2 6
,

5
6 cosh

t x t x
c i i

t x t x
i kc i i

t x t x
c i i

u x t

i k c

     ± + ±     
     

       ± ± − ±            ×        + ± + ±             =

±
2

2

5
sinh

12 122 6 2 6

5 5
cosh sinh

12 122 6 2 6

t x t x
i i

t x t x
c i i

     ± − ±     
     

      + ± + ±          

. (49) 

The solution (49)is more general exact solution of the 

Fisher equation(29). If we pick 2 6c i k= ± and 
1 1c = , from 

solution(49), we obtain the following solitary wave solution: 

( ) 2

1

1 5 5
, 3 2 tanh tanh

4 12 122 6 2 6

t x t x
u x t i i

    = + ± − ±    
    

. (50) 

Again, if we put, 2 6c i k= ∓ , and, 
1 1c =  then the 

solution(49) of the Fisher equation becomes, 

( ) 2

2

1 5 5
, 3 2coth coth

4 12 122 6 2 6

t x t x
u x t i i

    = + ± − ±    
    

. (51) 

On the other hand, if 2 2 6c i k= ± and 
1 1c =  then we 

derive the following exact solution of Eq. (49): 

( )3

5 5
4 1 cosh sinh

6 66 6
,

5 5
4 5cosh 3sinh

6 66 6

t x t x
i i

u x t
t x t x

i i

    + ± + ±    
    =
   + ± + ±   
   

. (52) 

Also, if we choose 2 2 6c i k= ∓  and 
1 1c =  then from Eq. 

(49), we obtain the following solitary wave solution: 

( )4

5 5
4 1 cosh sinh

6 66 6
,

5 5
4 5cosh 3sinh

6 66 6

t x t x
i i

u x t
t x t x

i i

    − + ± + ±    
    =
   − + ± + ±   
   

. (53) 

On the other hand, if we set 
1 1c = and 

2 1c = , from Eq. 

(3.45), we get 

( )
( ) ( )

5

2 2

5 5
2 6 cosh sinh

6 66 6
,

5 5
2 6 6 1 cosh 1 6 sinh

6 66 6

t x t x
k i i i

u x t
t x t x

k i k i i k i

    ± + ±    
    =
   ± − ± + ±   
   

∓

∓

. (54) 

Finally if we take
1 1c =  and 

2 1c = −  then the exact 

solution (49) can be written as: 

( )
( ) ( )

6

2 2

5 5
2 6 cosh sinh

6 66 6
,

5 5
2 6 6 1 cosh 1 6 sinh

6 66 6

t x t x
k i i i

u x t
t x t x

k i k i i k i

    ± ± + ±    
    =
   − ± ± + ±   
   

∓

. (55) 

The solutions (50)-(55) are drawn in Figure 16-24, 

respectively. 

Case 2(b): When 1 2 6a k= ±  and 
5

6
ω = ∓ then 

substituting the values of 0 1 2, ,a a a  and ( )s ξ in Eq. (3.5), we 

get 

( )
2

2 3
2

2

6

1 26

k

k

c e
U

k c c e

ξ

ξ
ξ =

 
 
 
 

∓

∓

∓

.                      (56) 

Now, simplifying the solution (56) we obtain the following 

close-form of the Fisher equation: 

( )
2

2

2

1

2

5 5
cosh sinh

6 66 6
,

5 5
6 cosh sinh

12 122 6 2 6

5 5
cosh sinh

12 122 6 2 6

t x t x
c

u x t

t x t x
k c

t x t x
c

    ± ± ±    
    =

     ± + ±     
     

      + ± ± ±          

∓

. (57) 

Since 1c  and 2c  are arbitrary constants, so we may take

2
6c k= ± and 

1 1c = , then the general solution(57) can be 
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written as the following form: 

( ) 2

1

1 5 5 5
, cos cosh sinh

4 12 6 62 6 6 6

t x t x t x
u x t ech

      = ± ± + ±      
      

.  (58) 

Again, if we set
2

6c k= ∓  and 
1 1c =  then from Eq. (57), 

we obtain the following solitary wave solution, 

( ) 2

2

1 5 5 5
, sec cosh sinh

4 12 6 62 6 6 6

x t t x t x
u x t h

      = ± ± + ±      
      

.(59) 

Solutions (58) - (59) are plotted as shown in Figure 21-22, 

respectively. 

Case 2(c): When 1 6a k= ± and 0ω = , then substituting the 

values of 0 1 2, ,a a a  and ( )s ξ  into Eq. (3.5), we derive the 

exponential form general solution: 

( )
2

2 2 2

1 1 2 2

2

1 2

4 k k

k

k c kc c e c e
U

k c i c e

ξξ

ξ
ξ ± +

=
 
 
 

∓ ∓

∓

∓

.       (60) 

Simplifying the exponential solution transformed to the 

trigonometric function in the following close-form solution 

of the Eq. (29): 

( ) ( ) ( ){ } ( ) ( ){ }
2

21

2

221

2

1

2

2
sinh

2
cosh

2
sinh

2
cosh

sinhcosh4sinhcosh
,

























±

































±+±
=

xx
c

xx
ck

xxcckcxxck
txu

∓∓

∓

. (61) 

This is the more general exact solution (61)to the Fisher 

equation(29). But, this is not the traveling wave solution, 

since the wave velocity is null. So, we are not interested to 

discuss the general solution (61) to the Fisher equation (29). 

Imperative is it now to point out that solutions derived by 

the MSE method are equipotential to those solutions obtained 

by the previously mentioned method. Since,
1c  and 

2c  are 

arbitrary constants, we may obtain new and/or more general 

exact solutions to Eq. (29) by the MSE method without any 

aid of symbolic computation software. 

Remark 2: Solutions (38)-(39), (41),(44)-(47), (50)-(55), 

(58)-(59) and (61) have been confirmed by setting them into 

the original equation. 

3.4. Physical Interpretations of the Fisher Equation 

Solutions 

In this sub-section, we discuss the physical interpretation 

of the solutions to the Fisher equation. The solution (38) 

represents the bell shape soliton and the solution (39) 

represents the kink. The bell shape soliton is a localized 

surface “wave envelope” that causes a temporary increase in 

wave amplitude and the kink waves are traveling waves 

which arise from one asymptotic state to another. The kink 

solutions are approach to a constant at infinity. Figs. 8 and 9 

show the shape of the solutions (38) and (39) within 

10 , 10x t− ≤ ≤ .Solutions (44)-(47) and (50)-(55) are 

complex solutions, therefore, the modulus and arguments of 

these solutions have been plotted. The graph of modulus of 

the solutions (44)-(47) and (50)-(55) have been shown in 

Figs. 10, 13, 16, 19 and 22 respectively. On the other hand, 

the graph of arguments of the solutions (44)-(47) and (50)-

(55) have been shown in Figs. 11, 12, 14, 15, 17, 18, 20,21, 

23 and 24 respectively. These solutions are plotted for 

1k = .within 10 , 10x t− ≤ ≤ . Solutions (58) represent the 

bell shape solitons and solution (59) represents the kink. The 

shapes of these solutions are plotted in Figs. 25 and 26 within

10 , 10x t− ≤ ≤ . 

 

Fig. 8. Bell shape solitary wave solution given in (38) to the Fisher equation (29). 
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Fig. 9. Kink soliton obtained from (39) to the Fisher equation (29). 

 

Fig. 10. Plot of the modulus of the solitary wave solutions 1u  and 2u given in 44) and (45) to the Fisher equation (29). 

 

Fig. 11. Plot of the arguments of the solitary wave solution 1u in (44) to the Fisher equation (29). 

-10

-5

0

5

10

x

-10

-5

0

5

10

t

0

0.25

0.5

0.75

1

u

-10

-5

0

5
x

-10

-5

0

5

10

x

-10

-5

0

5

10

t

0

0.25

0.5

0.75

1

u

-10

-5

0

5
x

-10

-5

0

5

10

x

-10

-5

0

5

10

t

0

1

2

u

-10

-5

0

5
x

-10

-5

0

5

10

x

-10

-5

0

5

10

t

0

1

2

u

-10

-5

0

5
x

-10

-5

0

5

10

x

-10

-5

0

5

10

t

-2

0

2

u

-10

-5

0

5
x

-10

-5

0

5

10

x

-10

-5

0

5

10

t

-2

0

2

u

-10

-5

0

5
x



12 Md. Ashrafuzzaman Khan et al.:  Solitary Wave Solutions for the Boussinesq and Fisher Equations  

by the Modified Simple Equation Method 

 
Fig. 12. Plot of the arguments of the soliton (45) to the Fisher equation (29). 

 

Fig. 13. Graph of the modulus of the solitary wave solitons 3u  and 4u to the Fisher equation. 

 

Fig. 14. Plot of the arguments of the solitary wave solution 3u in (46) to the Fisher equation (29). 
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Fig. 15. Figure of the arguments of the soliton 4u in (47) to the Fisher equation. 

 

Fig. 16. Figure of the modulus of the solitons 1u  in (50) and 2u in (51) to the Fisher equation (29). 

 

Fig. 17. Sketch of the arguments of the solitary wave solution 1u in (50) to the Fisher equation. 
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Fig. 18. Sketch of the arguments of the soliton 2u in (51) to the Fisher equation. 

 

Fig. 19. Plot of the modulus of the solitons (52) and (53) to the Fisher equation. 

 
Fig. 20. To the figure of the arguments of the solution 3u in (52) to the Fisher equation. 
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Fig. 21. Sketch of the arguments of the soliton 4u in (53) to the Fisher equation. 

 

Fig. 22. Plot of the modulus of the solution 5u in (54) and 6u in (55) to the Fisher equation (29). 

 
Fig. 23. Plot the arguments of the soliton 5u in (54) to the Fisher equation. 
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Fig. 24. Plot of the arguments of the solitary wave solution 6u in (55) to the Fisher equation (29). 

 

Fig. 25. Sketch of the Bell shape solitary wave soliton (58) to the Fisher equation (29). 

 

Fig. 26. Kink solitons obtained from the solitary wave solution 2u in (59) to the Fisher equation (29).
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solution of ( )s ξ  consists of polynomial of the wave variable

ξ , it will not be the solitary wave solution, since it does not 

meet the condition 0u →  as ξ → ±∞  for solitary wave 

solution. In this case, each coefficient of the polynomial must 

be zero. This constraint is crucial to solve NLEEs for higher 

balance number. By using this achieved process, we solved 

the above mentioned NLEEs and found some new traveling 

wave solutions. When the parameters receive special values, 

solitary wave solutions are derived from the exact solutions. 

Although the method has been applied in two equations, it 

can clearly be applied to many other nonlinear evolution 

equations whose balance number is equal to 2. 
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