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Abstract: Digraphs are generalization of graphs in which each edge is given one or two directions. For each digraph, there
exists a transitive digraph containing it. Moreover, all the formal linear combinations of allowed elementary paths form a basis
of the path complex for a transitive digraph. Hence, the study of discrete Morse theory on transitive digraphs is very important
for the further study of discrete Morse theory on general digraphs. As we know, the definition of discrete Morse function on a
digraph is different from that on a simplical complex or a cell complex: each discrete Morse function on a digraph is a discrete
flat Witten-Morse function. In this paper, we deform the usual boundary operator, replacing it with a boundary operator with
parameters and consider the induced Laplace operators. In addition, we consider the eigenvectors of the eigenvalues of the
Laplace operator that approach to zero when the parameters approach infinity, define the generation space of these eigenvectors,
and further give the Witten complex of digraphs. Finally, we prove that for a transitive digraph, Witten complex approaches to
its Morse complex. However, for general digraphs, the structure of Morse complex is not as simple as that of transitive digraphs
and the critical path is not directly related to the eigenvector with zero eigenvalue of Laplace operator. This is explained in the
last part of the paper.
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1. Introduction distinct, n > 1. Obviously, digraphs and transitive digraphs
without directed loops can be regarded as hypergraphs and
simplicial complexes, respectively.

There have been rich topological research on simplicial
complex. Discrete Morse theory is an important mathematical
theory and tool. It can greatly reduce the number of cells
and simplices, simplify the calculation of homology groups,
and can be applied to topological data analysis. The discrete
Morse theory of simplicial complex or cell complex was first
proposed by R. Forman in 1998 (cf. [5, 8]) and since then, it
" has been improved and developed (cf. [6, 7]). Subsequently,
distincy). . R Ayalaetal. (cf. [1,2,3, 4]) studied the discrete Morse

Let G be a digraph. An elementa.ry n-path (or n-path) is theory on graphs based on [5]. Recently, by regarding the path
a sequence vovy - - Un Of 7 + 1 vertices on Fhe vertex set V space of a digraph as a graded submodule of the path space of
of G. An allowed elementary n-path Or.l G 1§ an elementary its transitive closure, we consider the discrete Morse theory on
path vovy : -- v, such that vl — Vi41 1S a dlrgcted edge of digraphs (cf. [17, 19]).

G,0 < i < n-—1. A directed loop on G is an allowed
elementary path vgvy - --v,vo with all v;,7 = 0,--- ,n are

Digraph is an important topological model of complex
network. It is determined by a binary set consisting of vertices
set and directed edge set. That is, digraph G = (V,E)
is consisted of a finite set V' and a non-empty subset E of
V x V' \ {diag}. Denote each directed edge (u,v) € E as
u — v. A transitive digraph is a digraph whose directed edges
satisfy transitivity. In other words, if v — v and v — w are
two directed edges, u — w is also a directed edge (u, v, w are

There are many different definitions of homology on
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digraphs. In this paper, the homology of digraphs mentioned
refers to the path homology defined by A. Grigor’yan, etc (cf.
[9, 10, 11, 12, 13, 14, 15]). Next, we give a brief review of
path homology of digraphs.

Let R be an arbitrary commutative ring with a unit. Let
A, (V) be the R-module generated by all n-paths on V. The
i-th face map is defined as the R-linear map

di : A (V) — Ay (V)

which sends vgvy---v, to vg---U;---v,, Where U; means

omission of the vertex v;. Define the boundary operator as:
n

Op = 'Zo(_
linear map from A, (V') to A,,—1(V) satisfying 0,,0,,+1 = 0
for each n > 0. Hence {A,,(V'), 9, } >0 is a chain complex.
Let P,(G) be the R-module generated by all allowed
elementary n-paths on G. Then P,(G) is a submodule
of A,(V). However, the image of an allowed elementary
path under the boundary operator 0 does not have to be
allowed. That is, 0P, (G) C P,—1(G) may not hold. Hence,
consider the R-module €2,,(G) which is generated by all the 0-
invariant n-paths in P, (G). Obviously, €2,,(G) is a submodule
of P,(G) satisfying 9Q,(G) < €Q,-1(G) . The path
homology of G is defined as the homology of chain complex
{Q,(G), O, }n>0 and denoted as H,(G; R). Therefore,

Hm,({Qn(G)a an}nZO)a

In this paper, based on the existing discrete Morse theory
and path homology theory on digraphs, we mainly prove that
the Witten complex of a transitive digraph approaches to its
Morse complex in Theorem 3.1 and Corollary 3.1, which is
not necessarily true for general digraphs.

1)%d;. Then it is easy to verify that 9, is an R-

2. Preliminaries

In this section, we mainly review the definition of discrete
Morse functions on digraphs.

Let G be a digraph. Define a partial order < among all
allowed elementary paths on GG. Let « and 3 be two allowed
elementary paths on G. Then if 5 can be obtained from « by
removing some vertices, we call &« > S or 5 < a.

Definition 2.1. (cf. [19]) A nonnegative map f : V(G) —
[0,400) is called a discrete Morse function on G, if for any
allowed elementary path « = wvgv; - - - v, on G, both of the
followings hold:

. #{1"D > a™ | f(7) = fa)} <1:
(i), #{8""D <a™ | (8) = f(a)}

IN
—

where

n

v) = 3 f(w).

=0

fla) = f(vovy -

Particularly, if both inequalities (i) and (ii) in Definition 2.1

hold strictly for «, v is called critical. Precisely,
Definition 2.2. An allowed elementary n-path (™) is called
critical, if both of the followings hold:

Gy #{8 <ol | £(8) = f(a)} = 0.
iy #{7" > ) | f(7) = f(a)} = 0.

It follows from Definition 2.2 that an allowed elementary
n-path is not critical if and only if either of the following
conditions holds

(1)” there exists an allowed elementary path
B~ such that 8 < avand f(B) = f(a);
(i1)” there exists an allowed elementary path
~(+1) such that v > avand f(v) = f().

Then we give an important property of discrete Morse
functions on digraphs.

Lemma 2.1. (cf. [17, Lemma 2.5]) Let G be a digraph and
f adiscrete Morse function on G as defined in Definition 2.1.
Then for any allowed elementary path in GG, there exists at most
one index such that the corresponding vertex is with zero value.

By Lemma 2.1,

Lemma 2.2. [19] Let f be a discrete Morse function on
digraph G. Then for any allowed elementary path o =
voU1 - - Up, on G, (1)” and (ii)” cannot both be true.

Definition 2.3. (cf. [8, Definition 0.6]) A function f :
V(G) — [0, 4+00) is called a discrete Witten-Morse function
on G, if for any allowed elementary path «, both of the
followings hold:

@) f(a) <average{f(11),f
a,v2 > aand vy # 723

(i) f(a) > average{f(51), f(B2)} where
p1 < a, B2 <aand By # Pa.

Note that each Witten-Morse function is, in fact, a Morse
function.

Definition 2.4. (cf. [8, Definition 0.7]) A discrete Witten-
Morse funtion is flat, if for any allowed elementary path «,

(i) f(a) < min{f(71), f(72)} where y1 > a,

Y2 > aand y1 # 793
(i) f(a) > max{f(51), f(B2)} where 81 < a,

Ba < cavand By # fa.

Proposition 2.1. (cf. [20]) Each discrete Morse function on
a digraph is a discrete flat Witten-Morse function.

(v2)} where v; >

3. Witten Complexes of Transitive
Digraphs

In this section, we prove that Witten complex of a transitive
digraph approaches to its Morse complex.

Let G be a transitive digraph and R a field . Similar to [8],
consider the chain complex

00— (G) -5 2,1(G) L - -5 Q(G) — 0. (1)
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Define a chain homomorphism
el 0, (G) — 2,.(G)
by setting
et (a) = etfl@) )

for any allowed elementary path o on (, and extending
linearly to Q(G). Replace the boundary operator 9 with

9, = etToe .
Then

o = e (a)
= e geti@),

= e_tf(a)etf(aa)
= Z (B, B)etf A= (g,

B<a,BeQ(G)

Hence, 0;a € Q(G) which implies that

00— (G) 25 0, 1(G) 25 - 25 00(G) — 0 (3)

is still a chain complex. Moreover, by a similar argument to
[18, Section 5.1, P.54], we have that

Proposition 3.1. Let G be a transitive digraph. Then for each
t € R, the complexes (1) and (3) have the same path homology.
That is,

Hm({Qn(G)7 3n}n20) = Hm({Qn(G)7 625}720)-

Proof Note that Q(G) = P(G) for transitive digraphs. For
any = € Kerd, under the map (2), we have that

el (z) = eo(x)
= ¢t (0x)
= 0.

That is, e/ (z) € Kerd,. And if z = dy € Imd, then

el (y) = €(oy)

= etf(x).

Hence, et/ (z) € Imo;.

Therefore, the mapping (2) is an invertible map from n-
paths which are closed but not exact in the usual sense of 0
to n-paths which are closed but not exact in the sense of 0.

The proposition is proved.

Let

An(t) = 0,07 + 00,

be the Laplace operator induced by 0; where 9J; is the adjoint
of 0, with respect to the inner product on the chain spaces
A, (V) such that all paths are orthonormal. Then by [16,

Witten Complex of Transitive Digraph and Its Convergence

Section 3.1],
Ker(An() = Hu({20(G), 0:}nz0).
Hence, by Proposition 3.1,
Ker(An(t)) = Hn({Q2n(G), Ontn>0)- C)

Denote W, (t) as the span of the eigenvectors of A, (¢)
corresponding to the eigenvalues which tend to 0 as ¢ — oo.
Since A(t)0y = 0:A(t), O; preserves the eigenspaces. The
Witten complex is defined as

0—Wi(t) 25 Wi (t) 25 - 25 Wo(t) — 0.

Let Crit,,(G) be the span of the critical n-paths on G. We
have the following theorem.
Theorem 3.1. Let G be a transitive digraph and f a discrete
Morse function on G. Then
tgrgo W, (t) = Crit,, (G).
Proof Since G is transitive, P,(G) = ,(G) for each

n > 0. By [8, Theorem 2.1] and Proposition 2.1, we have
that

Anta = [ (9, B)* 2@ =F ()
B<a
+ Y (97, )2 @O T Mg 1 O(et)
>

for some ¢ > 0, where 7, a, (5 are allowed elementary paths on
G. Hence, if and only if « is critical, the eigenvalues of A,, ()

(AnBe,e) = Y (9a,B)’ eV A=F)

B<a

+ Z (8, )22t (@)=F ()

Y>>

tend to 0 as t — oo.

The theorem is proved.

Corollary 3.1.Let G be a transitive digraph. Then
Witten complex {W,,(t), O }n>0 approaches to the complex
{Crit,,(G), On }n>0-

Proof By [17, Theorem 2.1],

Hp ({Critn(G), On }n>0) 2 Hp({Qn(G), 0 bnz0)-
By (4), for all £,
Hm({Wn(t)a at}nZO) = Hm({Qn(G)a an}n20)~

Therefore, by Theorem 3.1, the assertion is followed.

Remark 3.1. Let G be a transitive digraph. By [17], the
chain complex consisting of all ®-invariant chains is the Morse
complex of G, where ® is the discrete gradient flow of G.
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Moreover, by [19], the Morse complex of G is equivalent to
chain complex {Crit,(G), d, }, where 9 = (500)*1 0o d "
and @ is the stabilized map of ®. Hence, by Corollary 3.1,
Witten complex of GG approaches to its Morse complex.

Remark 3.2. Note that for general digraph G, the image of
each O-invariant element x € €2,,(G) under 9; may be not in
Q,,—1(G). This implies that {Q(G), 9, } is not a chain complex
in general.

Finally, we give an example to illustrate Remark 3.2.

Example 3.1.Let G be a square with vertex set
V. = A{wvg,v1,v2,v3} and directed edge set E =
{vov1, vov2, v1vs, Uovs }. Then

QUG) = {vo,v1,v2,v3, 0001, Vov2,

V103, U2U3, VgU1 U3 — VU203 }
and

Ot (vov1v3 — vov2v3)
= 797 (vov1vs — vovavs)
_ tf g, —tf tf o —tf
= e’0e " (vovrvz) — e 9e " (vovaus)

e—tf(uomv:s)etfa( e—tf(vov2v3)eifa(

1}01)21}3)
[f(v1iv3)—f(vovivs)]

UOU1U3) —

[et[f(vovl)*f(vovlvs)]vovl + et

_[et[f(vovz)*f(vovzvs)]

U1U3]

f(v2vg)—f(vovavs)

vovs + €'l ]U2U3]

Jr[et[f(vove,)—f(vovzve,)],UO,U3 _ et[f(vov3)—f(vov1v3)]vov3]. (3)
Since the coefficient of vgvs in (5) may not be zero, it
follows that
8t(v0v1v3 - Uo’Ug’Ug) € Ql(G)
Moreover,

0" o) (vovr)
(8 |Q(G))*(U0U1) =

VoV1V3,

VoV1V3 — VpUaVs.
Hence,

o # (@law)"

Therefore, we will further consider the path homology
of general digraphs based on the results of [17] instead of
techniques from Hodge theory in a subsequent paper.

4. Conclusion

For a transitive digraph, there may exist directed loops on
it. Hence, path complexes of transitive digraphs are different
from simplicial complexes. However, for a transitive digraph,
there exists a basis of path complex which is generated by
all allowed elementary paths. In addition, path space of
a transitive digraph is a A-set. Therefore, Morse complex
of transitive digraphs consistent with Morse complex of
simplicial complexes. Through the research in this paper, the
Witten complex of a transitive digraph has a similar property to
the Witten complex of cell complexes. That is, Witten complex

of a transitive digraph approaches to its Morse complexes.

For general digraphs which are not transitive, path spaces
can be considered as graded set of A-set. All allowed
elementary paths can not generate a basis of the path complex.
Hence, discrete Morse theory on digraphs are different from
discrete Morse theory on simplicial complexes.
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