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Abstract: HIV destroys T-cells in order to target the body's defence mechanism. Without treatment HIV infection advances 

in stages causing destruction and reduction in T-cells thus, rendering the body incapable of fighting other infections such as 

respiratory infections, sexually transmitted diseases and some cancers. Kaposi’s sarcoma is the cancer that allows a tumour to 

grow in an HIV patient and its presence in a patient is an indication that HIV has fully developed into AIDS in the patient. 

Research has indicated that AIDS-associated Kaposi Sarcoma was on the rise in sub-Saharan Africa until the introduction of 

Antiretroviral Therapy (ART). The Kenyan community has struggled in the past decade to combat the spread of HIV/AIDS 

and successes have been recorded in many areas. However, Kaposi Sarcoma, an opportunistic infection, has continued to rise 

steadily through the years. In this study, a simple model for the coinfection of HIV/AIDS and KS is developed and studied. The 

model solution is explored for positivity and boundedness while the DFE point is determined for stability where it was verified 

that the infection-free equilibrium E0 is locally asymptotically stable when � � 1. The NGM is used to derive the basic 

reproduction number of the model. By providing treatment to the HIV and the co-infected population immune system is 

strengthened and thus progression rate to AIDS is reduced. 
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1. Introduction 

The CD4 Lymphocyte cells also called the T-cells, are 

white cells that protect humans against any external infection 

and are in abundance among the white blood cells. They are 

produced in the bone marrow and are transported to the area 

of the body under attack to fight the incoming disease, illness 

or infection. HIV is a virus that aims at destroying T-cells. 

HIV infection, as stated by Wang and Li [1], gradually 

eradicate the T-cells and eventually, exposes the host to 

subsequent infections. These opportunistic infections include 

respiratory infections (such as tuberculosis and pneumonia) 

and STDs (such as syphilis and gonorrhoea among others). 

HIV infection advances in three stages. The first stage of 

HIV infection is Acute HIV infection, which is experienced 

within less than four weeks of infection. During this time, the 

patient has symptoms like rash, fever and/or headache. HIV 

replicates speedily and transmits throughout the body 

destroying the soldier T cells. Introducing ART at this early 

stage usually proves very beneficial to the patient’s health. 

The next stage is the chronic (or asymptomatic or clinical 

latency) HIV infection, where the virus rate of replication is 

very low. At this stage, the symptoms are subdued and the 

patient may seem very healthy while the virus continues to 

destroy the remaining T cells. Without treatment, the third 

stage is reached. This is the fully developed AIDS, a situation 

where the body's immune system has been utterly destroyed 

beyond repair. At this stage, the body's immune system 

cannot fight incoming diseases or infections. It is at this stage 

that cancer in the form of KS prevails. People with AIDS 

easily transmit HIV to other humans through the exchange of 

body fluids. HIV is commonly transmitted from infected 

individuals to uninfected ones through unprotected sex, and 

an exchange of body fluids, mother-to-child transmission at 

birth or during breastfeeding, and sharing tattooing or 

piercing needles and needles used for injecting drugs. HIV 
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prevention and treatment with an aim of ending AIDS is a 

key global health strategic objective. This is achieved by 

improving the medicine, promoting diagnosis and enhancing 

a patient-centred mode of service delivery. The management 

of people living with advanced HIV disease has been 

strengthened. Despite the measures in place, 1.5 million 

people are estimated to live with HIV in Kenya, out of which 

1,136,000 are on ART, according to National AIDS & STI 

Control Program 2018. AIDS-related Kaposi sarcoma 

(AIDS-KS) caused by HIV co-infection with HHV-8 remains 

endemic in Kenya and sub-Saharan Africa [2, 3]. 

A common illness among HIV patients who have a good 

CD4 count is KS. It is cancer in form of a tumour in HIV 

patients. The human herpes virus 8 (HHV-8) is the causative 

agent with spreads commonly among African gay men [4]. 

According to Warpe [5], KS builds up when cancer cells, 

septic blood cells and infected blood vessels begin to grow, 

without stoppage, under the skin, in lymph nodes, or the 

mouth lining. They show up as red or purple patches or 

lesions starting from one or many body parts simultaneously. 

The presence of the HHV-8 in the mouth makes its 

transmission possible via kissing with an infected individual, 

lubricating the genitals with saliva during sex, or during oral 

sex (common among gays). The immune system of a healthy 

individual is able to keep the HHV-8 under control and to 

also ensure it does not develop into KS. Meanwhile, the 

presence of HHV-8 in an HIV patient, not using ART, is 

prone to quickly metamorphose into KS. To understand the 

mechanisms and the dynamics of HIV and KS coinfection as 

well as establish the disease transmission, prevention and 

control strategies, a mathematical model has been used. 

Through quantitative and qualitative analysis and numerical 

simulations, definite treatment regimens to boost anti-viral 

immunity and enhance long-term control of the virus have 

been designed. Mathematical models for HIV dynamics, 

disease progression, and therapy as well as HIV and KS 

coinfection have been proposed on different scales. 

Wang and Li [1] proposed a model with a simplified 

logistic growth of the susceptible CD4+T cells. Their main 

interest was to thoroughly investigate the global dynamics of 

the model and the qualitative changes resulting from changes 

in logistic terms. The results indicated that if � � 1, the T 

cells will get rid of the HIV infection but otherwise, the 

infection remains. The global stability region for chronic 

infection was also obtained. Srivastava et al. [6] developed 

and analysed a stochastic model for the effect of reverse 

transcriptase inhibitors on the viremia level. Cai et al. [7] 

included treatment in the model. The authors established the 

model has two infective stages; the asymptomatic and 

symptomatic phases and proved that ℛ is enough to unravel 

the dynamics of HIV. Ogunlaran and Noutchie [8] used 

minimum drug therapy to minimize the viral load. They 

assumed that the logistic growth function incorporated 

constant recruitment and death of new uninfected cells. The 

T-cells infection rate by free virions was assumed to be 

saturated by overcrowding of free virions and the choice of 

the patient on protection measures. Numerical simulation 

results were used to confirm the effectiveness of the treatment 

strategy. In 2016, Hikal and Zahra [9] investigated a 

fractional order time delay model with treatment. The 

population in their model was divided into a susceptible class, 

asymptomatic infection phase, symptomatic infection phase 

and the group of AIDS patients. The obtained results 

concurred with those of Cai et al. [7]. Vaidya and Rong [10] 

integrated several drug-related parameters into the model. 

The results show that once a patient reaches the latent stage, 

it is impossible to remove the virus completely by any 

treatment; rather the treatment suppresses the viral load. 

Tarfulea [11] unravelled the influence of how mitosis 

influences HIV transmission using a mathematical model. 

Four dynamic variables were considered in the model. It was 

shown that the DFE is locally asymptotically stable if ℛ ≪ 1. 
The author further recommended that the stability and other 

properties of the infected equilibrium be determined in future. 

In their work, Zhang and Wang [12] proposed a model for 

the variability of HIV infection of T cells, with the response 

of the immune and rate of cure. They developed a 

mathematical model that catered for the concentration of 

cells that are not infected, the concentration of cells that are 

infected and can produce a virus and the concentration of 

CTLs. They analysed the local stability of the DFE, immune 

absence and immune present equilibriums using the 

characteristic equation and Hurwitz criterion and obtained	ℛ. 

Their model suggested that the T-cells concentration is a 

good criterion to measure the progression of HIV infection. 

Thus, the cure rate increases as the concentration of T cells 

increase. Modelling within-host viral infections with drug 

therapy give rise to dynamical systems whose local and 

global analysis is very essential. Prevention of HIV and 

providing tests and ART treatment as a fight against HIV 

infection was quantified by Omondi et al. [13] who 

constructed a model for epidemiological HIV trends. 

Through sensitivity analysis, the authors concluded that 

effective contact rates intensify HIV transmission while the 

effectiveness of ART inhibits the incidence rate. 

It is recorded that 84% of the world case of KS is found in 

sub-Saharan Africa, making KS a common cancer in Sub-

Saharan Africa occurring in the context of immunodeficiency. 

According to the available statistics, the same region is more 

heavily impacted by HIV/AIDS than any other [14-16]. 

Currently, 38 million people have HIV and 690,000 died in 

2019 from HIV and/or its complications according to the 

World Health Organization. Without treatment HIV and KS 

coinfection can reduce lifespan [17]. Therefore, massively 

expanded prevention and treatment are fundamental in 

disease monitoring. Modelling the coinfection of HIV and 

KS is uncommon in literature yet they redound to the 

understanding of HIV and KS synergy. The model proposed 

in the current study incorporates prevention and treatment for 

both HIV/AIDS and KS. A mathematical model for the 

coinfection of HIV/AIDS and KS is studied. The solution is 

explored for positivity and boundedness. The stability of the 

DFE point is obtained. The basic reproduction number is 

derived using the Next Generation Matrix. The specific 
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objectives of this study are to: 

1) Model coinfection of HIV and Kaposi’s sarcoma with 

treatment. 

2) Verify the model solutions are non-negative and 

bounded. 

3) Determine the DFE point of the model and the local 

stability. 

4) Establish the basic reproduction number. 

2. Methodology 

2.1. Model Formulation 

The force of infection in the above model is taken as the 

probability of exposure to HIV, KS or both HIV and KS co-

infected individuals. Susceptible individuals increases due to 

(i) newly recruited individuals, (ii) those who recover 

naturally from KS infection and (iii) full recovery after 

treatment. Infected individuals join the HIV, KS or co-

infected classes �	
�, �	
�  and 
	
�  respectively and 

progress for treatment at the rates ��, �� and �� respectively. 

We assume that the recovered individuals can still be 

infected by KS or HIV. Thus a fraction of the HIV and co-

infected individuals join the treatment class �	
� while the 

rest progress to AIDS class �	
�.  The KS-infected 

individuals join the treatment compartment and the fraction 

that fully recovers after treatment moves back to the 

susceptible class while the remaining join the AID class 

where they die a natural death or death due to the suppressed 

immunity. 

 

Figure 1. HIV/Kaposi Sarcoma Coinfection flowchart. 

The following assumptions have been taken into account 

in formulating the model: 

1) The susceptible population is a general population that 

is at risk of getting an HIV and KS infection at a rate 

proportional to the density of HIV- and KS-infected 

people respectively. 

2) The transmission of HIV from an infective to susceptive 

is through horizontal transmission. 

3) All parameters are positive. 

4) The treatment is for both HIV and KS patients 

5) The coinfection of HIV and Kaposi Sarcoma is 

modelled by the system; 
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The flow chart for the transmission of HIV/AIDS and KS, 

with their coinfection in a single host, is shown in Figure 1. 

2.2. Equilibrium Points 

The equilibrium points are obtained by setting each of the 

equations to 0. 
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From equation (10) 
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By adding (7), (8), and (9) 

$ � @
8 %

�
8 A

B:/
"� �

	�)��*�
 � 	7��8�

" � 7!�C�8
� D��                                                        (16) 

For the disease-free equilibrium DFE, we set � � � � 0, and that means, 


 = 0, � = 0, � = 0, $ = @8,  
So that the disease-free equilibrium point EF is 

EF = 	$F, �F, �F, 
F, �F, �F� = A@8 , 0, 0, 0, 0, 0D.  
and for the endemic equilibrium point E� is obtained by setting � = �� and � = �� so that 


� = 	�)��*�"���,	��6�7)�8. , �� = 9 67�	:�8�"� + 7!	:�8��� + 67)	�)��*�	:�8�,	��6�7)�8. ;����  

�� = <	�=6�7�"� + 	�=6�7)	�)��*�,	��6�7)�8. + 	1 − '�( 9 67�	:�8�"� + 7!	:�8��� + 67)	�)��*�	:�8�,	��6�7)�8. ;> "���?�8   

$� = @8 + �8 A B:/"��� − 	�)��*� − 	7��8�"� − 7!�C�8�� D����.  
and thus E� = 	$�, ��, ��, 
�, ��, ���.  
2.3. Reproduction Number 

The reproduction number is obtained using the next-generation matrix [18-23]. Start by setting 

G = � Hα�	� + J
�$ − K���K��$ − KL��	K� + KL��� M,	  
N = H 	�� + #��	�� + & + + + #��,	1 + -��� + #.
 M  

and we find the Jacobian of G and N as follows 

O = ∇G = � Qα�$ − K�� −K�� α�J$−KL� K�$ − KL� 0	K� + KL�� 	K� + KL�� 0 R,  
S = ∇N = H�� + # 0 00 �� + & + + + # 00 0 	1 + -��� + #M,  

The characteristics equation of OS=� at the DFE is 

TT
2�@	7��8�8 −U 0 2��@,	��6�7)�8.8 0 �!@	7!�V�C�8�8 −U 00 0 −U TT = 0  

From where 

U = 0, 2�@	7��8�8 , �!@	7!�V�C�8�8 .  
The reproduction numbers are; 
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WF� �	 2�@
	7��8�8 , WF" =	 �!@	7!�V�C�8�8 .  

2.4. Stability of the Disease-Free Equilibrium Point 

Theorem 1: The DFE is locally asymptomatic stable if WF� < 1 and WF" < 1. 
Proof: 

Evaluating the Jacobian XF of the system (1 – 6) at the disease-free equilibrium point EF, we have 

XF =
Y
ZZZ
ZZ[
−# ��@8 & − ���@8 	'( 00 ��@8 − 	�� + #� 0 ���@8 0 00 0 �!@8 − 	�� + & + + + #� 0 0 00 0 0 −,	1 + -��� + #. 0 00 -�� �� 0 −	( + #� 00 	1 − -��� 0 	1 − -��� 	1 − '�( −	1 + #�\

]]]
]]̂

  

The characteristic equation is 

T
T
T−# −U

��@8 & − ���@8 	'( 00 ��@8 − 	�� + #� −U 0 ���@8 0 00 0 �!@8 − 	�� + & + + + #� − U 0 0 00 0 0 −,	1 + -��� + #. − U 0 00 -�� �� 0 −	( + #� − U 00 	1 − -��� 0 	1 − -��� 	1 − '�( −	1 + #� − UT
T
T
= 0  

where U is the eigenvalue and by evaluating the determinant, we have; 

	−# − U�	−	1 + #� − U�	−	( + #� − U� A��@8 − 	�� + #� − UD  
A�!@8 − 	�� + & + + + #� − UD ,−,	1 + -��� + #. − U. = 0,  

from which, 

U� = −#,U� = −	1 + #�,U� = −	( + #�,UL = ��@8 − 	�� + #�,  
U_ = �!@8 − 	�� + & + + + #�,U` = −,	1 + -��� + #..  U�, U�, U� and U` are all negative for all values of the parameters, but 

UL < 0	only	if	 ��@8 − 	�� + #� < 0	 ⇒ 	 ��@8 	7��8� < 1	 ⇒ WF� < 1  

and 

U_ < 0	only	if	 �!@8 − 	�� + & + + + #� < 0 ⇒ 	 �!@8 	7!�V�C�8� < 1 ⇒ WF" < 1  

Hence, the DFE is locally asymptomatically stable if and only if WF� < 1 and WF" < 1.∎ 

2.5. Positivity and Boundedness of Solution 

Theorem 1: The solution space is bounded in the region 

ℛ = i	$, �, �, 
, �, ��	|	$ + � + � + 
 + � + � ≤ @8l.  
Proof: 

By summing up equations (1 – 6) 
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�
�� 	$ % � % � % 
 % � % �� � � � 	#	$	 % � % � % 
 % � % �� � +� � -��
 � 1�  

and setting m � $ % � % � % 
 % � % �,	we have 

� �� = � − 	#m − +� − -��
 − 1� ≤ � − 	#m  

And thus, 

m	
� ≤ @8 − n@8 − 	m	
F�o exp,−#	
 − 
F�. 	⇒ 	 lim�→um	
� = @8  

Thus, we can conclude that m	
� ≤ @8, for all time 
. Therefore, the solution is bounded in the region 

ℛ = i	$, �, �, 
, �, ��	|	$ + � + � + 
 + � + � ≤ @8l. ∎ 

Theorem 2: The solution space 	$, �, �, 
, �, �� remains positive whenever the initial conditions are such that $	
F� > 0, �	
F� > 0, �	
F� > 0, 
	
F� > 0, �	
F� > 0, �	
F� > 0, 
Proof: Start with equation (1) 

���� = � − ��	������ − �!"� − 	#$	 + &� + 	'(� ≥ −#$ ⇒ $	
� ≥ $	
F� exp,−#	
 − 
F�..  
This clearly indicates that $	
� ≥ 0 provided $	
F� > 0. Next, from equation (2) 

���� = 2�	x�y��� − �)"� − 	�� + #�� ≥ −	�� + #�� ⇒ �	
� ≥ �	
F� exp,−	�� + #�	
 − 
F�..  
Thus, �	
� ≥ 0 provided �	
F� > 0. 
From equation (3) 

�"�� = �!"� − �*"� − 	�� + & + + + #�� ≥ −	�� + & + + + #��  

⇒ �	
� ≥ �	
F� exp,−	�� + & + + + #�	
 − 
F�. > 0	provided	�	
F� > 0.  
Considering equation (4) 

���� = �)"� + �*"� − ,	1 + -��� + #.
 ≥ −,	1 + -��� + #.
  
⇒ 
	
� ≥ 
	
F� exp A−,	1 + -��� + #.	
 − 
F�D > 0	provided	
	
F� > 0.  

Considering the Treatment class in equation (5) 

�/�� = -��� + -��
 + ��� − 	( + #�� ≥ −	( + #��  

⇒ �	
� ≥ �	
F� exp,−	( + #�	
 − 
F�. > 0	provided	�	
F� > 0.  
Finally, from equation (6) 

�0�� = 	1 − -���� + 	1 − -���
 + 	1 − '�(� − 	1 + #�� ≥ −	1 + #�� ⇒ �	
� ≥ �	
F� exp,−	1 + #�	
 − 
F�. >0	provided	�	
F� > 0.  
Hence, any solution 	$, �, �, 
, �, �� of the system (1 – 6) 

remains positive provided the initial conditions are positive.  

3. Numerical Procedure 

The Runge-Kutta RK (4,5) (also called the Dorman-Prince 

method) is an adaptive numerical technique that computes 

the accurate solutions of the initial value problem. 

}~ = G	}�, }	
F� = }F 

where } = 	�� �� ⋯ ���/ , G = 	O�, O�, ⋯ , O��/ , }F =	��	
F� ��	
F� ⋯ ��	
F��/ ,  
using the Runge-Kutta of orders 4 and 5. The difference 

between the two solutions is considered as the error and the 
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stepsize is adjusted based on the tolerance chosen. The 

modified Butcher tableau of the Dorman-Prince method is 

c A 

 &�"L 

&�"_ 

where 

�	 � 	

�
�
�
�
�
�
�
�
�
� 0 0 0 0 0 0 01 0 0 0 0 0 0�L �L 0 0 0 0 0��� − �L� LF� 0 0 0 0L�L��L_� − ���F�L� �F_`��� − _��`� 0 0 0�F����`� − �__�� L`���_�L� L���` − _�F���`_` 0 0�_��L 0 _FF���� ��_��� − ����`��L ���L 0��

���
���
��
  

&�"L = � _���_�`FF 0 �_���``�_ ���`LF − ��F������FF �����FF �LF�/ ;  
&�"L 	= 	 � �_��L 0 _FF���� ��_��� − ����`��L ���L 0�/ ;  

�	 = �0 �_ ��F L_ �� 1 1�/ .  
The Dorman-Prince method is coded into the ode45 

MATLAB solver. The system of equations (1 – 6) is solved 

with the tolerance set to 10=� (see [24-25] for other methods 

of solutions). The parameter values are chosen based on the 

study of Wang et al. [1] and Onyango and Njiru [2] as 

follows; � = 800; - = 0.1; ( = 0.01; + = 0.1; ' = 0.3; # = 0.02; K� = 0.4801; K� = 0.002; K� = KL = 0.001; & = 0.2; 1 = 0.333; J = 0.05;	�� = 0.2, �� = 0.1; �� = 0.05. 
4. Analysis and Discussion of Results 

The effects of varying the parameters of the model on the 

different classes of the population are analysed and discussed 

in this section. 

Figures 1 – 6 illustrate the effects of varying the proportion 

of HIV-infected individuals who have access to treatment. 

Figure 1 shows that increasing the access of HIV-infected 

individuals to treatment increases the population of the 

treated individuals, which means the susceptible class also 

increases as shown in figure 3. The class of individuals who 

are coinfected with HIV and KS will decrease as the 

treatment rate for HIV individuals increases (figure 4) and 

the HIV class decreases (figure 5). Clearly, a decrease in the 

HIV class will also lead to a decrease in the AIDS class as 

revealed in figure 6. Figure 7 shows that the population of the 

coinfected individuals increases as the rate of coinfection 

increases. By increasing the rate at which HIV-infected 

individuals get access to treatment, the population of the 

susceptible class increases (figure 8), the population of the 

coinfected individuals decreases (figure 9) and the population 

of individuals who are infected with HIV only decreases 

(figure 10). 

 

Figure 2. Effects of the proportion of HIV-infected individuals who get 

treated on the Treatment class. 

 

Figure 3. Effects of the proportion of HIV-infected individuals who get 

treated on the Susceptible class. 

 

Figure 4. Effects of the proportion of HIV-infected individuals who get 

treated on the individuals coinfected with HIV and Kaposi Sarcoma. 
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Figure 5. Effects of the proportion of HIV-infected individuals who get 

treated on HIV-infected individuals. 

 

Figure 6. Effects of the proportion of HIV-infected individuals who get 

treated on the AIDS class. 

 

Figure 7. Effects of the rate of coinfection on the coinfected class. 

 

Figure 8. Effects of the rate at which HIV-infected individuals get treated on 

the Susceptible class. 

 

Figure 9. Effects of the rate at which HIV-infected individuals get treated on 

coinfected individuals. 

 

Figure 10. Effects of the rate at which HIV-infected individuals get treated 

on HIV class. 
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5. Conclusion and Recommendation 

5.1. Conclusion 

HIV and KS affect millions of people across overlapping 

geographic locations. The risk of transmission of both 

diseases can be increased because of co-infection if there is 

no treatment and preventive measures in place. The model 

predicts that there is a potential increase in HIV transmission 

if treatment of HIV and KS is not administered. 

Mathematical analysis of the model showed that it had a 

(DFE) with EF � A	@8 , 0, 0, 0, 0, 0D. Depending on the value of 

the infection rate and the death rate, the results proposed the 

existence of a unique endemic equilibrium E� =		$�, ��, ��, 
�	��, ���.  The infection-free equilibrium EF  is 

locally asymptotically stable whenever WF" < 1 and WF" < 1. 
This means that KS and HIV diseases will persist in the 

population if the reproductive number is > 1 and it go to 

extinction if it is < 1. 

5.2. Recommendation 

HIV/AIDS and KS eradication are of concern in 

developing countries. Thus, there exists a need to strengthen 

the control interventions and develop new ones that are more 

effective in combating the scourge. In this regard, we 

recommend that: 

1) KS should be treated as soon as possible to assist 

strengthen the immune response, which lowers the rate 

at which AIDS class progression occurs. 

2) Co-infection of KS and HIV/AIDS programs should 

strengthen the awareness and education campaigns with 

a lot of emphasis on the importance of prompt 

recognition of symptoms, correct disease diagnosis, 

HIV screening and early commencement of ARV 

treatment. 

5.3. Possible Future Work 

There is a need to have comprehensive research aimed at 

discovering effective methodological control strategies to 

curb the scourge of the two diseases thus analysis of the 

global properties and optimal control of the model should be 

incorporated. In the future fractional differential equations 

instead of ordinary differential equations should be adopted. 

Abbreviations Nomenclature 

HIV Human immunodeficiency virus 

AIDS Acquired immune deficiency syndrome 

KSHV Kaposi's sarcoma-associated herpes virus 

RT Reverse transcriptase inhibitor 

HAART Highly active antiretroviral therapies 

CD4+/T cell White blood cells in charge of body immunity 

PrEP Post-exposure prophylaxis 

NRTIs Nucleoside or nucleoside reverse transcriptase inhibitors 

NNRTIs Non-nucleoside reverse transcriptase inhibitors 

KS Kaposi’s sarcoma 

HHV-8 Human herpes virus 8 

AIDS-KS AIDS-related Kaposi’s sarcoma 

ART Antiretroviral therapy 

PIs Protease inhibitors 

TB Tuberculosis 

DFE Disease free equilibrium 

NGM Next generation matrix α� rate of infection of susceptible individuals with Kaposi’s sarcoma α� contact infection rate of HIV-infected individuals with KS J probability of coinfection of susceptible individuals with HIV and KS ΑL contact infection rate of KS-infected individuals with HIV ' proportion of KS infective who recovered after treatment �� rate at which �	
� compartment go for treatment ℛ Basic reproduction number � recruitment rate into the susceptible population �	
� KS individuals infected at time, 
 m	
� total human population at time, 
 ( treatment rate + Kaposi sarcoma induced mortality rate # per capita natural death rate & natural recovery rate for KS infectives 1 AIDS induced mortality rate 
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�� progression rate of coinfected HIV and KS for treatment 

- proportion of HIV infected individuals receiving treatment 

�� rate at which �	
� compartment go for treatment 
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