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Abstract: This paper addresses the design of robust Kalman estimators (filter, predictor and smoother) for the time-varying 

system with uncertain noise variances. According to the unbiased linear minimum variance (ULMV) optimal estimation rule, the 

robust time-varying Kalman estimators are presented. Specially, two robust Kalman smoothing algorithms are presented by the 

augmented and non-augmented state approaches, respectively. They have the robustness in the sense that their actual estimation 

error variances are guaranteed to have a minimal upper bound for all admissible uncertainties of noise variances. Their 

robustness is proved by the Lyapunov equation approach, and their robust accuracy relations are proved. The corresponding 

steady-state robust Kalman estimators are also presented for the time-invariant system, and the convergence in a realization 

between the time-varying and steady-state robust Kalman estimators is proved by the dynamic error system analysis (DESA) 

method and the dynamic variance error system analysis (DVESA) method. A simulation example is given to verify the 

robustness and robust accuracy relations. 

Keywords: Uncertain System, Uncertain Noise Variance, Robust Kalman Filtering, Minimax Estimator, Robust Accuracy, 

Lyapunov Equation Approach, Convergence 

 

1. Introduction 

Kalman filtering is a most widely used methodology in 

estimation and control fields including signal processing and 

tracking. In classical Kalman filtering theory, the Kalman 

filter is designed based on a key assumption that the systems 

have exact model parameters and noise variances. When there 

exist uncertainties of the model parameters and/or noise 

variances, the system model used in constructing the filter 

differs from the real (true) system model that generates the 

actual measurement, so that the performance of the Kalman 

filter will degrade [1], and an inexact model may cause the 

filter to diverge. In practice, there inevitably exist 

uncertainties in the system model either due to unmodeled 

dynamics (modeling error) or due to model parameter drifting, 

or due to uncertain disturbance. This has motivated many 

studies of designing robust Kalman filters. An important class 

of robust Kalman filters is to design a Kalman filter for a 

family of system models yielded by uncertainties such that its 

actual filtering error variances are guaranteed to have a 

minimal or less conservative or optimized upper bound for all 

admissible uncertainties. 

 In order to design the robust Kalman filters for the systems 

with the model parameters uncertainties, two important 

approaches are the Riccati equation approach [1-6] and the 

linear matrix inequality (LMI) approach [7, 8]. The former is 

based on the solution two Raccati equations or one Raccati 

equation to obtain the optimized (minimal) upper bound of 

actual filtering error variances, by searching the scaling 

parameters. The latter is based LMI to obtain the optimized 

upper bound which is obtained by solving convex 

optimization problem with the LMI constraints using the 

Matlab LMI Toolbox. The time-varying (finite-horizon) and 

the steady-state (infinite-horizon) robust Kalman filters were 

investigated in [2, 4], where the convergence analysis of the 

finite-horizon robust Kalman filter is given. The limitation of 

the above robust Kalman filters is that only model parameters 

are assumed to be uncertain, while the noise variances are 

assumed to be exactly known. 
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Notice that the adaptive Kalman filtering [9-11] for system 

with unknown but deterministic model parameters and/or 

noise variances is different from the robust Kalman filtering 

[1-8], because it only handle one system model with unknown 

deterministic constant or time varying model parameters 

and/or noise variances, so that it does not solve the robust 

Kalman filtering problem for a family of system models 

yielded by uncertain model parameters and/or noise variances. 

The adaptive filtering approaches have some limitations, 

where the correlation approach [9] only is suitable for 

time-invariant stochastic system, the two-stage coupled 

adaptive Kalman filtering approach for estimating the state 

and noise variances [10] may cause the filter to diverge 

because the filter accuracy is very sensitive with respect to its 

initial values, and the self-tuning Kalman filtering approach 

[11] requires the on-line system identification in noisy 

environment, which is a difficult open problem. 

So far, the robust Kalman filter for systems with uncertain 

noise variances are seldom considered [12, 13]. A minimax 

robust steady-state filter was presented for the descriptor 

systems with uncertain noise variances in [12], and a robust 

Kalman filter was presented for the systems with both the 

parameters and noise variances uncertainties by the Riccati 

equation approach in [13]. In this paper, we consider the 

problem of designing the robust Kalman estimators for 

time-varying system with uncertain noise variances. Using the 

minimax robust estimation principle [14,15], based on the 

worst-case conservative system with the conservative upper 

bounds of noise variances, according to the unbiased linear 

minimum variance (ULMV) rule, the robust time-varying 

Kalman estimators including the filter, predictor and smoother 

are presented, whose actual estimation error variances are 

respectively guaranteed to have a minimal upper bound for all 

admissible uncertainties of noise variances. The five robust 

weighted fusion Kalman filters [16] have been presented for 

multisensor uncertain system with uncertain noise variances, 

according to the minimax robust estimation principle and the 

ULMV optimal estimation rule, based on the worst-case 

conservative system with conservative upper bound of noise 

variances.  

Furthermore, the robustness of the proposed robust Kalman 

estimators is proved by a Lyapunov equation method [14-16], 

which is completely different from the Riccati equation 

method and the LMI method. The concept of robust accuracy 

is discussed and the robust accuracy relations of the robust 

Kalman estimators are proved. Specially, the corresponding 

robust steady-state Kalman estimators are presented for 

time-invariant systems with uncertain noise variances, and the 

convergence in a realization between the time-varying and 

steady-state robust Kalman estimators is rigorously proved by 

using the dynamic error system analysis (DESA) method [17] 

and the dynamic variance error system analysis (DVESA) 

method [18], which are different from the convergence 

analysis method in [19], where the problem of their 

convergence in a realization was not solved [19]. 

The remainder of this paper is organized as following: 

Section 2 gives the problem formulation. The robust 

time-varying Kalman filter is presented in Section 3. The 

robust time-varying Kalman predictor is presented in Section 

4. The robust time-varying Kalman smoother is proposed in 

Section 5. The robust steady-state Kalman estimators are 

presented in Section 6. The robust accuracy comparison is 

given in Section 7. The simulation example is given in Section 

8. The conclusions are proposed in Section 9. 

2. Problem Formulation 

Consider the linear discrete time-varying system with 

uncertain noise variances. 

( ) ( ) ( ) ( ) ( )1x t t x t t w tΦ Γ+ = +            (1) 

( ) ( ) ( ) ( )y t H t x t v t= +               (2) 

where t represents the discrete time, ( ) nx t R∈  is the state,

( ) my t R∈ is the measurement, ( ) rw t R∈ is the input noise, 

( ) mv t R∈ is the measurement noise, ( )tΦ , ( )tΓ  and 

( )H t are known time-varying matrices with appropriate 

dimensions. 

Assumption 1. ( )w t and ( )v t are uncorrelated white noises 

with zero means and unknown uncertain actual (true) 

variances ( )Q t and ( )R t , ( )Q t and ( )R t are known 

conservative upper bounds of ( )Q t and ( )R t , respectively, 

i.e., 

( )
( ) ( ) ( )( ) ( )

( )
Τ 0

Ε
0

tk

w t Q t
w k v k

v t R t
δ

    
=    

     
  (3) 

( ) ( ) ( ) ( ),Q t Q t R t R t≤ ≤              (4) 

where E is the mathematical expectation operator, the 

superscript T is the transpose. tkδ is the Kronecker δ function, 

( )1, 0
tt tk

t kδ δ= = ≠ . 

Assumption 2. The initial state ( )0x  is independent of the 

noises ( )w t  and ( )v t and has mean value µ  and unknown 

uncertain actual variance ( )0 | 0P which satisfies 

( ) ( )0 | 0 0 | 0P P≤               (5) 

where ( )0 | 0P is a known conservative upper bound of 

( )0 | 0P . 

The robust Kalman estimate problem is to design the the 

time-varying Kalman estimators ( )ˆ |x t t N+ for uncertain 

system (1) and (2), such that its actual filtering error variances 

( )|P t t N+ yielded by all admissible uncertainties ( )Q t ,

( )R t and ( )0 | 0P satisfying (4) and (5), have a minimal upper 
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bound ( )|P t t N+ , i.e., 

( ) ( )| |P t t N P t t N+ ≤ +             (6) 

For 0N = , 0N < or 0N > , they are called as robust filters, 

predictors or smoothers, respectively. 

3. Robust Time-Varying Kalman Filter 

Based on the worst-case conservative system           (1) 

and              (2) with the conservative upper bounds 

( )Q t and ( )R t of noise variances, the conservative optimal 

time-varying Kalman filter is given by [20] 

( ) ( ) ( ) ( ) ( )ˆ ˆ| 1| 1
f f

x t t t x t t K t y tΨ= − − +                                 (7) 

( ) ( ) ( ) ( )= 1f n ft I K t H t tΨ Φ − −                                     (8) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1
T T= | 1 | 1fK t P t t H t H t P t t H t R t

−
 − − +                            (9) 

( ) T T 1 T T( )[ ( | 1) ( | 1) ( ) ( ) ( | 1) ( ) ( )) ( ) ( | 1)]1 | ( ) ( ) ( )( ) (t P t t P t t t t P t t H t RP t t t H t P t t t tH Q tH tΦ Φ ΓΓ−− − − − += +× −+   (10) 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T1| |P t t t P t t t t Q t tΦ Φ Γ Γ+ = +                               (11) 

( ) ( ) ( ) ( )| | 1n fP t t I K t H t P t t = − −                                        (12) 

with the initial values ( )ˆ 0 | 0x µ= and ( )0 | 0P , where nI is the n n× identity matrix. The notation ( )ˆ |x t t denotes the linear 

minimum variance estimate of the state ( )x t at time t , given the finite-horizon conservative measurements ( ) ( )( )1 , ,y y t⋯ from 

1t = up to t . 

The conservative filtering error variance ( )|P t t can be rewritten as the Lyapunov equation [20] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T
T T T| 1 | 1 1 1 1f f n f n f f fP t t t P t t t t t t Q t t I K t H t K t R t K tΨ Ψ Ι Κ Η Γ Γ   = − − + − × − − − − +     (13) 

with the initial value ( )0 | 0P . 

The actual prediction and filtering errors are 

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ| 1 | 1 1| 1 1 1x t t x t x t t t x t t t w tΦ Γ− = − − = − − + − −ɶ ɶ                      (14) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ| | | 1n f fx t t x t x t t I K t H t x t t K t v t = − = − − − ɶ ɶ                        (15) 

where ( )ˆ |x t t is the actual Kalman filter, and ( ) ( ) ( )ˆ ˆ| 1 1| 1x t t t x t tΦ− = − − is the actual Kalman predictor. Substituting (14) into 

(15) yields 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )| 1 | 1 1 1f n f fx t t t x t t I K t H t t w t K t v tΨ Γ= − − + − − − −ɶ ɶ                  (16) 

From (16), according to Assumptions 1-2, and noting thatt ( )w t and ( )v t are uncorrelated with ( )|x t tɶ , the actual filtering 

error variance ( ) ( ) ( )Τ
| Ε | |P t t x t t x t t =  ɶ ɶ is given by the Lyapunov equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T
T T T| 1 | 1 1 1 1f f n f n f f fP t t t P t t t t t t Q t t I K t H t K t R t K tΨ Ψ Ι Κ Η Γ Γ   = − − + − × − − − − +     (17) 

with the initial value ( )0 | 0P . Notice that ( )|P t t is related to 

the uncertain variances ( )1Q t − , ( )R t and ( )0 | 0P . 

Theorem 1. For uncertain system (1) and (2) with 

Assumptions 1-2, the actual Kalman filter (7) is robust in the 

sense that for all admissible true noise variances and initial 

value satisfying (4) and (5), the corresponding actual filtering 

error variances ( )|P t t satisfy ( ) ( )| |P t t P t t≤ , and ( )|P t t

is a minimal upper bound of ( )|P t t . 

Proof. The proof of the Theorem is similar to the reference 

[14], the detail is omitted. 

4. Robust Time-Varying Kalman 

Predictor 

4.1. Robust Time-Varying Kalman One-step Predictor 

Consider uncertain system (1) and (2) with the Assumption 
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1-2, the conservative optimal time-varying Kalman one-step 

predictor with the conservative upper bound variances ( )Q t  

and ( )R t satisfying (4) is given by [20] 

( ) ( ) ( ) ( ) ( )ˆ ˆ| 1 1 1| 2 1 1
p p

x t t t x t t K t y tΨ− = − − − + − −  (18) 

( ) ( ) ( ) ( )1 = 1 1 1
p p

t t K t H tΨ Φ− − − − −               (19)
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1
T T1 = 1 1| 2 1 1 1| 2 1 1pK t t P t t H t H t P t t H t R tΦ

−
 − − − − − − − − − + −          (20) 

with the initial value ( ) ( ) ( )ˆ 0 | 1 , 0 | 1 0 | 0x P Pµ− = − = . 

The Kalman one-step predictor (18) with the known actual measurements ( )y t  is called as the actual Kalman one-step 

predictor. The conservative prediction error variance ( )| 1P t t − satisfies the Lyapunov equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T| 1 1 1| 2 1 1 1 1 1 1 1
p p p p

P t t t P t t t t Q t t K t R t K tΨ Ψ Γ Γ− = − − − − + − − − + − − −       (21) 

with the initial value ( ) ( )0 | 1 0 | 0P P− = . The actual estimation error is 

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ| 1 | 1 1| 1 1 1x t t x t x t t t x t t t w tΦ Γ− = − − = − − + − −ɶ ɶ                       (22) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ1 | 1 1 1 | 1 1 1 1 | 2 1 1n p px t t x t x t t I K t H t x t t K t v t − − = − − − − = − − − − − − − − ɶ ɶ           (23) 

Substituting (23) into (22) yields 

( ) ( ) ( ) ( ) ( ) ( ) ( )| 1 1 1| 2 1 1 1 1
p p

x t t t x t t t w t K t v tΨ Γ− = − − − + − − − − −ɶ ɶ                  (24) 

Hence the actual prediction error variance satisfies the Lyapunov equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T| 1 1 1| 2 1 1 1 1 1 1 1
p p p p

P t t t P t t t t Q t t K t R t K tΨ Ψ Γ Γ− = − − − − + − − − + − − −       (25)

with the initial value ( ) ( )0 | 1 0 | 0P P− = . 

4.2. Robust Time-varying Kalman Multi-step Predictor 

Consider uncertain system (1) and (2) satisfying the Assumptions 1-2, the actual time-varying Kalman multi-step predictor 

with the conservative upper bounds ( )Q t and ( )R t is given by 

( ) ( ) ( )ˆ ˆ| , 1 1|x t t N t t N x t N t NΦ+ = + + + + + , 0N <                            (26) 

where ( )ˆ | 1x t t −  is the actual one-step predictor computed by (18), and we define that  

( ) ( ) ( ) ( ) ( ), 1 1 2 1 , ,
n

t t N t t t N t t IΦ Φ Φ Φ Φ+ + = − − + + =⋯                         (27) 

The conservative ahead N step prediction error variance ( )|P t t N+ is given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T

T T

2

| , 1 1| , 1

, 1 1 1 ,
t

i t N

P t t N t t N P t N t N t t N

t i i Q i i t i

Φ Φ

Φ Γ Γ Φ
= + +

+ = + + + + + + +

+ − − −∑
 , 0N <                   (28) 

where ( )| 1P t t − is the conservative one-step prediction error variance, which is computed via (10). 

Iterating (1), we have the non-recursive formula 

( ) ( ) ( ) ( ) ( ) ( )
2

, 1 1 , 1 1
t

i t N

x t t t N x t N t i i w iΦ Φ Γ
= + +

= + + + + + − −∑ , 0N <                  (29) 

From (26), we have the actual prediction error  



 Mathematics and Computer Science 2018; 3(6): 113-128 117 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
2

ˆ| |

, 1 1| , 1 1
t

i t N

x t t N x t x t t N

t t N x t N t N t i i w iΦ Φ Γ
= + +

+ = − +

= + + + + + + − −∑

ɶ

ɶ
, 0N <            (30) 

So we have the actual ahead N step prediction error variance  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T

2

| , 1 1 | , 1 , 1 1 1 ,
t

i t N

P t t N t t N P t N t N t t N t i i Q i i t iΦ Φ Φ Γ Γ Φ
= + +

+ = + + + + + + + + − − −∑     (31) 

Theorem 2. For uncertain system (1) and (2) with Assumptions 1-2, the actual ahead N step predictor (26)-(31) is robust in the 

sense that the corresponding actual multi-step prediction error variances ( )|P t t N+ satisfy ( ) ( )| |P t t N P t t N+ ≤ + , 0N < , 

and ( )|P t t N+ is a minimal upper bound of ( )|P t t N+ . 

Proof. The proof of the Theorem is similar to the reference [15], the detail is omitted. 

5. Robust Time-Varying Kalman Smoother 

Introduce the augmented state 

( ) ( ) ( ) ( ) T
T T T1ax t x t x t x t N = − − ⋯ , 0N >                        (32) 

and the augmented matrices 

( )

( ) 0 0

0

0

0 0

n

a

n

t

I
t

I

Φ

Φ

 
 
 =
 
 
  

⋯

⋱ ⋱ ⋮

⋯

, ( )

( )
0

0

a

t

t

Γ

Γ

 
 
 =
 
 
 

⋮
, ( ) ( ) 0 0aH t H t=   ⋯                 (33) 

we have the augmented state system 

( ) ( ) ( ) ( ) ( )1
a a a a

x t t x t t w tΦ Γ+ = +                                  (34) 

( ) ( ) ( ) ( )a a
y t H t x t v t= +                                      (35) 

Hence the problem for designing robust time-varying Kalman smoother for uncertain system (1) and (2) under Assumptions 

1-2 can be converted in to that of designing the following robust time-varying Kalman filter. From (34) and (35), we have the 

actual augmented Kalman filter as [20] 

( ) ( ) ( ) ( ) ( )ˆ ˆ| 1| 1
a a a a

x t t t x t t K t y tΨ= − − +                              (36) 

( ) ( ) ( ) ( )= 1a a a at I K t H t tΨ Φ− −   , ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 1
T T= | 1 | 1

a a a a a a
K t P t t H t H t P t t H t R t

−
− − +         (37) 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T1| |
a a a a a a

P t t t P t t t t Q t tΦ Φ Γ Γ+ = + , ( ) ( ) ( ) ( )| | 1a a a aP t t I K t H t P t t= − −            (38) 

where I denotes the ( 1) ( 1)N n N n+ × + identity matrix, and ( )1|
a

P t t+  satisfies the augmented Riccati equation 

( ) T T 1 T T( )[ ( | 1) ( | 1) ( ) ( ) ( | 1) ( ) ( )) ( ) ( | 1)] ( ) ( ) ( ) (1| )(a a a a a a a a aa a a at P t t P t t t t P t t H t RP t H t Pt t t t t Q t tt H HΦ Φ ΓΓ−+ − − − − + +×= −  (39) 

The conservative filtering error variance satisfies the Lyapunov equation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )TT T T| 1 | 1 1 1 1a a a a a a a a a a a aP t t t P t t t t t t Q t t I K t H t K t R t K tΨ Ψ Ι Κ Η Γ Γ= − − + − × − − − − +        (40) 

The actual filtering error variance is given as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )TT T T| 1 | 1 1 1 1a a a a a a a a a a a aP t t t P t t t t t t Q t t I K t H t K t R t K tΨ Ψ Ι Κ Η Γ Γ= − − + − × − − − − +        (41) 
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Theorem 3. For uncertain system (1) and (2) with 

Assumptions 1-2, the actual time-varying Kalman smoother

( )ˆ |x t t N+  with the fixed lag 0N > , is given as 

( ) ( )ˆ ˆ| |
x a

x t t N H x t N t N+ = + +        (42) 

[ ]0 0
x n

H I= ⋯             (43) 

where ( )ˆ |
a

x t N t N+ +  is the actual Kalman filter with the 

actual measurement ( )y t for the augmented system (34) and 

(35), and the conservative and actual smoothing error 

variances are respectively given as  

( ) ( ) T| |
x a x

P t t N H P t N t N H+ = + + , 0N >      (44) 

( ) ( ) T| |
x a x

P t t N H P t N t N H+ = + + , 0N >      (45) 

where ( )|aP t t and ( )|aP t t  are computed via (40) and (41). 

The actual Kalman smoother (42) is robust in the sense that  

the actual smoothing error variances ( )|P t t N+  satisfy 

( ) ( )| |P t t N P t t N+ ≤ + , 0N > , and ( )|P t t N+ is a 

minimal upper bound of ( )|P t t N+ . 

Proof. The proof of the Theorem is similar to the reference 

[16], the detail is omitted. 

Remark 1. Applying the augmented state method to design 

the robust Kalman smoother will increase the computation 

burden, accompanying with the increasing of the fixed lag N . 

The main computation burden of the Kalman smoother is to 

solve the Riccati equation. Generally, the number of 

multiplications and divisions of the algorithm is defined as the 

operation count or complexity. The complexity of solving 

non-augmented Riccati equation (10) is about 3( )nΟ [21], 

while the complexity of solving augmented Riccati equation 

(39) is about 3((( 1) ) )N nΟ + . The advantage of the augmented 

state method is that the robustness of the Kalman smoother is 

easily proved based on the robustness of the augmented 

Kalman filter, and the actual smoothing error variances are 

easily computed. 

The following Theorem 4 gives an non-augmented state 

approach for simultaneously obtaining the conservative and 

actual smoothing error variances ( )|P t t N+ and 

( )|P t t N+ . 

Theorem 4. For uncertain system (1) and (2) with 

Assumptions 1-2, the robust Kalman smoother ( )ˆ |x t t N+
with the fixed lag N , is given by  

( ) ( ) ( ) ( )
0

ˆ ˆ| | 1 |
N

j

x t t N x t t K t t j t jε
=

+ = − + + +∑ , 0N >                          (46) 

or recursively 

( ) ( ) ( ) ( )ˆ ˆ| | 1 |x t t k x t t k K t t k t kε+ = + − + + + , 0,1, ,k N= ⋯                       (47) 

( ) ( ) ( ) ( )ˆ | 1t j y t j H t j x t j t jε + = + − + + + −                              (48) 

where ( )ˆ | 1x t j t j+ + − is the robust Kalman one-step predictor. The time-varying smoothing gain is computed as 

( ) ( ) ( ) ( ) ( )
1

Τ Τ 1

0
| | 1 Π , 1

j

p
k

t t j P t t t k t j Q t j jεΚ Ψ Η
−

−

=

 + = − + + + ≥ 
 

, ( ) ( )|
f

K t t K t=             (49) 

( ) ( ) ( ) ( ) ( )T| 1Q t H t P t t H t R tε = − +                                   (50) 

The conservative smoothing error variance is given as 

( ) ( ) ( ) ( ) ( )T

0

| | 1 | |
N

j

P t t N P t t K t t j Q t j K t t jε
=

+ = − − + + +∑ , 0N >                      (51) 

or recursively 

( ) ( ) ( ) ( ) ( )T| | 1 | |P t t k P t t k K t t k Q t k K t t kε+ = + − − + + + , 0,1, ,k N= ⋯                  (52) 

The conservative and actual smoothing error variances respectively satisfy the Lyapunov equations 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T

0

| | 1
N

w w v v

N NP t t N t P t t t K t Q t K t K t R t K tρ ρ ρ ρ
ρ

Ψ Ψ ρ ρ
=

 + = − + + + + ∑            (53) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T

0

| | 1
N

w w v v

N NP t t N t P t t t K t Q t K t K t R t K tρ ρ ρ ρ
ρ

Ψ Ψ ρ ρ
=

 + = − + + + + ∑            (54) 

with the definitions 

( ) ( ) ( ) ( ), 1 , ,
p p p p n

t k t t k t t t IΨ Ψ Ψ Ψ+ = + − =⋯ , 

( ) ( ) ( ) ( )
0

| ,
N

N n p

k

t I K t t k H t k t k tΨ Ψ
=

= − + + +∑ , 

( ) ( ) ( ) ( ) ( )
1

| , 1
N

w

p

k

K t K t t k H t k t k t tρ
ρ

Ψ ρ Γ ρ
= +

= − + + + + + +∑ , ( )0, , 1, 0w

N
N K tρ = − =⋯ , 

( ) ( ) ( ) ( ) ( ) ( )
1

| , 1 |
N

v

p p

k

K t K t t k H t k t k t K t K t tρ
ρ

Ψ ρ ρ ρ
= +

= + + + + + + − +∑ , 

( ) ( )0, , 1, |v

N
N K t K t t Nρ = − = − +⋯                                   (55) 

where ( )p
tΨ , ( )p

K t and ( )|K t t k+ are defined by (19), (20) and (49). 

The robust Kalman smoother (46) is robust in the sense that for all admissible uncertainties satisfying (4) and (5), the 

corresponding actual smoothing error variances ( )|P t t N+ satisfy 

( ) ( )| |P t t N P t t N+ ≤ + , 0N >                                      (56) 

and ( )|P t t N+ is a minimal upper bound of ( )|P t t N+ . 

Proof. For the conservative system (1) and (2) with the upper bounds ( )Q t , ( )R t and ( )0 | 0P satisfying (4) and (5), the 

equations (46)-(52) were proved in [20]. Iterating (24), applying (46) and (48), we have (55) and 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

| | 1
N N

w v

Nx t t N t x t t K t w t K t v tρ ρ
ρ ρ

Ψ ρ ρ
= =

+ = − + + + +∑ ∑ɶ ɶ                    (57) 

where ( )wK tρ and ( )vK tρ are given in (55), which are obtained by combining the terms with the same classes. Applying (57) 

directly yields (53) and (54). Subtracting (54) from (53) yields the Lyapunov equation 

( ) ( ) ( ) ( ) ( )T| | 1
N N

P t t N t P t t t U t∆ Ψ ∆ Ψ+ = − +                                (58) 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T

0

N
w w v v

U t K t Q t K t K t R t K tρ ρ ρ ρ
ρ

∆ ρ ∆ ρ
=

= + + +∑                            (59) 

with the definitions 

( ) ( ) ( )| | |P t t N P t t N P t t N∆ + = + − + , ( ) ( ) ( )| 1 | 1 | 1P t t P t t P t t∆ − = − − − , 

( ) ( ) ( ) ( ) ( ) ( ),Q t Q t Q t R t R t R t∆ ρ ρ ρ ∆ ρ ρ ρ+ = + − + + = + − +                      (60) 

Applying (4) yields that  ( ) 0Q t∆ ρ+ ≥  and 

( ) 0R t∆ ρ+ ≥ . From Theorem 2 we have ( )| 1 0P t t∆ − ≥ . 

Hence ( ) 0U t ≥ , so that ( )| 0P t t N∆ + ≥ , that is, (56) holds. 

Similar to Theorem 1, we easily prove that ( )|P t t N+ is a 

minimal upper bound of ( )|P t t N+ . The proof is completed. 

Remark 2. Compared with the augmented state approach in 

Theorem 3, Theorem 4 presents a new robust Kalman 

smoother based on the non-augmented state approach, and 

gives a new proof of the robustness of the robust Kalman 

smoother. In Theorem 4, the two algorithms (51) and (53) for 

computing the conservative variances ( )|P t t N+ are given, 

where the formula (51) can be obtained directly based on (46). 

However, directly applying (46) cannot obtain the actual 

variances ( )|P t t N+ . Since both the augmented and 

non-augmented algorithms are derivate based on the 

projection theory [20], according to the uniqueness of the 

projection, then they are numerically equivalent. Their 

numerical equivalence will be verified in Table 3 of the 

simulation example. 
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6. Robust Steady-state Kalman 

Estimators 

6.1. Robust Steady-state Kalman Filter 

Now we investigate the asymptotic properties of the robust 

time-varying Kalman estimators, and we shall present the 

corresponding steady-state robust Kalman estimators. We 

shall also rigorously prove the convergence in a realization 

between the robust time-varying and steady-state Kalman 

estimators, by the DESA method and DVESA method [17, 

18]. 

Theorem 5. For uncertain time-invariant system (1) and (2) 

with Assumption 1, where ( )tΦ Φ= , ( )tΓ Γ= , 

( )H t H= , ( ) ( ),Q t Q R t R= = , ( )Q t Q= and ( )R t R= are 

all the constant matrices, if ( ), HΦ is a completely detectable 

pair and ( )1/ 2
, QΦ Γ is a completely stabilizable pair, with 

1/ 2 1/ 2 T( )Q Q Q= , according to the steady-state Kalman 

filtering theory [23], from (7)-(10), (13) and (17), the robust 

steady-state Kalman filter is given as 

( ) ( ) ( )ˆ ˆ| 1| 1s s

f f
x t t x t t K y tΨ= − − +        (61) 

=f n fI K HΨ Φ −  , ( ) 1
T T=fK H H H RΣ Σ

−
+      (62) 

where 
fΨ is a stable matrix, the superscript s denotes 

“steady-state”, ( )y t is the actual measurement, and Σ
satisfies the steady-state Riccati equation 

( ) 1
T T T T

= H H H R H QΣ Φ Σ Σ Σ Σ Φ Γ Γ
− − + +  

   (63) 

and the conservative variance P satisfies the steady-state 

Lyapunov equation 

T
T T T

f f n f n f f fP P Q I K H K RKΨ Ψ Ι Κ Η Γ Γ   = + − − +                           (64) 

and the actual variance P also satisfies the Lyapunov equation 

T
T T T

f f n f n f f fP P Q I K H K RKΨ Ψ Ι Κ Η Γ Γ   = + − − +                           (65) 

and we have 

( )f f
tΨ Ψ→ , ( )f f

K t K→ , ( )| 1P t t Σ− → , ( )|P t t P→ , ( )|P t t P→ , as t → ∞            (66) 

The robust steady-state Kalman filters (61) are robust in the 

sense that for all admissible uncertainties of Q  and R  

satisfying ,Q Q R R≤ ≤ , it follows that P P≤ , and P is a 

minimal upper bound of P . 

The robust time-varying and steady-state Kalman filters

( )ˆ |x t t and ( )ˆ |sx t t given by (7) and (61) have the 

convergence in a realization, such that 

( ) ( )ˆ ˆ| | 0
s

x t t x t t − →  , as t → ∞ , i.a.r.,   (67) 

where the notation “i.a.r.” denotes the convergence in a 

realization [17]. 

Proof. The proof of the Theorem is similar to the reference 

[14], the detail is omitted. 

6.2. Robust Steady-state Kalman Predictor 

Similar to the proof of Theorem 5, we easily prove the 

following Theorem 6-8. 

Theorem 6. Under the conditions of Theorem 5, the robust 

steady-state Kalman one-step predictor is given as 

( ) ( ) ( )ˆ ˆ| 1 1| 2 1s s

p p
x t t x t t K y tΨ− = − − + −     (68) 

=p pK HΨ Φ − , ( ) 1
T T=pK H H H RΦΣ Σ

−
+     (69) 

the conservative prediction error variance Σ satisfies the 

steady-state Riccati equation  

( ) 1
T T T T

H H H R H QΣ Φ Σ Σ Σ Σ Φ Γ Γ
− = − + +  

 (70) 

which can be rewritten as the Lyapunov equation 

T T T

p p p p
Q K RKΣ Ψ ΣΨ Γ Γ= + +          (71) 

and the actual prediction error variance Σ is given as 

T T T

p p p p
Q K RKΣ Ψ ΣΨ Γ Γ= + +          (72) 

and we have 

( )| 1P t t Σ− → , ( )| 1P t t Σ− → , as t → ∞      (73) 

The robust steady-state Kalman one-step predictor (68) is 

robust Σ Σ≤  and Σ is a minimal upper bound of Σ . 

The robust steady-state fused Kalman multi-step predictor 

is given as 
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( ) ( )1ˆ ˆ| 1|s N sx t t N x t N t NΦ − −+ = + + +  , 2N ≤ −  (74) 

where ( )ˆ 1|sx t t+ is the robust steady-state one-step predictor 

computed by (68). 

The conservative steady-state N step prediction error 

variances are given as 

( ) 1 ( 1)T T ( )T

2

N
N N N j N j

j

P N QΦ ΣΦ Φ Γ Γ Φ
−

− − − − − − − −

=

= +∑ , 2N ≤ −                      (75) 

The actual steady-state prediction error variances are given as 

( ) 1 ( 1)T T ( )T

2

N
N N N j N j

j

P N QΦ ΣΦ Φ Γ Γ Φ
−

− − − − − − − −

=

= +∑ , 2N ≤ −                      (76) 

and we have 

( ) ( )|P t t N P N+ → , ( ) ( )|P t t N P N+ → ,as t → ∞ , 2N ≤ −                      (77) 

The robust local steady-state Kalman multi-step predictor 

(74) is robust ( ) ( )P N P N≤ , 2N ≤ − and ( )P N is a 

minimal upper bound of ( )P N . 

If the measurement data of ( )y t are bounded, then the 

robust time-varying and steady-state Kalman predictors s

( )ˆ |x t t N+ and ( )ˆ |sx t t N+ , 0N < given by (26) and (74) 

have each other the convergence in a realization, such that 

( ) ( )ˆ ˆ| | 0
s

x t t N x t t N + − + →  , as t → ∞ , i.a.r.， (78) 

6.3. Robust Steady-state Kalman Smoother 

Theorem 7. Under the conditions of Theorem 5, the robust 

steady-state Kalman smoother ( )ˆ |sx t t N+ is given as 

( ) ( )ˆ ˆ| |s s

x a
x t t N H x t N t N+ = + + , 0N > , 

[ ]0 0
x n

H I= ⋯       (79) 

where ( )ˆ |s

a
x t t is the robust steady-state Kalman filter for 

the augmented system (34) and (35), which is given as 

( ) ( ) ( )ˆ ˆ| 1| 1s s

a a a a
x t t x t t K y tΨ= − − +              (80) 

[ ]=
a n a a a

I K HΨ Φ− , ( ) 1
T T=a a a a a aK H H H RΣ Σ

−
+  (81) 

( ) 1
T T T T=

a a a a a a a a a a a a a
H H H R H QΣ Φ Σ Σ Σ Σ Φ Γ Γ

− − + +  
 (82) 

with the definitions 

0 0

0

0

0 0

n

a

n

I

I

Φ

Φ

 
 
 =
 
 
 

⋯

⋱ ⋱ ⋮

⋯

, 0

0

a

Γ

Γ

 
 
 =
 
 
 

⋮

, [ ]0 0
a

H H= ⋯  (83) 

The conservative and actual steady-state smoothing error 

variance can be respectively computed as 

( ) ( )T T,
x a x x a x

P N H P H P N H P H= = , 0N >   (84) 

and we have 

( )|
a a

P t t P→ , ( )|
a a

P t t P→ , ( ) ( )|P t t N P N+ → , ( ) ( )|P t t N P N+ → , as t → ∞            (85) 

where ( )|P t t N+ and ( )|P t t N+  are computed by (44) and (45), aP and 
aP satisfy the Lyapunov equations 

[ ] [ ]TT T T

a a a a a a a a a a a aP P Q I K H K RKΨ Ψ Ι Κ Η Γ Γ= + − − +                        (86) 

[ ] [ ]TT T T

a a a a a a a a a a a aP P Q I K H K RKΨ Ψ Ι Κ Η Γ Γ= + − − +                        (87) 

The robust steady-state Kalman smoother (79) is robust ( ) ( )P N P N≤ , 0N >  and ( )P N is a minimal upper bound of 

( )P N . 

From (46)-(56), the robust steady-state Kalman smoother based on the non-augmented state approach is given as 

( ) ( ) ( ) ( )
0

ˆ ˆ| | 1
N

s s s

j

x t t N x t t K j t jε
=

+ = − + +∑ , 0N >                           (88) 

or recursively 
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( ) ( ) ( ) ( )ˆ ˆ| | 1s s sx t t k x t t k K k t kε+ = + − + + , 0,1, ,k N= ⋯                         (89) 

( ) ( ) ( )ˆ | 1s st j y t j Hx t j t jε + = + − + + −                                 (90) 

where ( )ˆ | 1sx t j t j+ + − is the robust steady-state Kalman one-step predictor, and is computed by (68), and 

( ) Τ Τ 1( ) , 1j

p
j Q jεΚ Σ Ψ Η −= ≥ , ( ) T 10K H QεΣ −= , TQ H H Rε Σ= +                       (91) 

The conservative steady-state smoothing error variance is given as 

( ) ( ) ( )T

0

N

j

P N K j Q K jεΣ
=

= −∑                                    (92) 

or recursively 

( ) ( ) ( ) ( )T1P k P k K k Q K kε= − − , 0,1, ,k N= ⋯                             (93) 

Theorem 8. Under the conditions of Theorem 5, the robust steady-state Kalman smoother (88) and (90) has the conservative 

and actual smoothing error variances as 

( ) T T T

0

N
w w v v

N NP N K QK K RKρ ρ ρ ρ
ρ

Ψ ΣΨ
=

 = + + ∑                               (94) 

( ) T T T

0

N
w w v v

N NP N K QK K RKρ ρ ρ ρ
ρ

Ψ ΣΨ
=

 = + + ∑                               (95) 

with the definitions 

( )
0

N
k

N n p

k

I K k HΨ Ψ
=

= −∑ , 

( ) 1

1

N
w k

p

k

K K k H
ρ

ρ
ρ

Ψ Γ− −

= +

= − ∑ , 0, , 1, 0w

NN Kρ = − =⋯ , 

( ) ( )1

1

N
v k

p p

k

K K k H K K
ρ

ρ
ρ

Ψ ρ− −

= +

= −∑ , ( )0, , 1, v

N
N K K Nρ = − = −⋯                     (96) 

where 
pΨ ,

pK and ( )K k are defined by (69) and (91). 

The robust Kalman smoother (88) is robust ( ) ( )P N P N≤ , 

0N >  and ( )P N is a minimal upper bound of ( )P N . 

If the measurement data of ( )y t are bounded, then the 

robust time-varying and steady-state Kalman smoothers 

( )ˆ |x t t N+ and ( )ˆ |sx t t N+ given by (46)and (88) have each 

other the convergence in a realization, such that 

( ) ( )ˆ ˆ| | 0
s

x t t N x t t N + − + →  , as t → ∞ , i.a.r.,  (97) 

7. The Robust Accuracy Comparison 

Theorem 9. Under the conditions of Theorem 5, the robust 

time-varying and steady-state Kalman filters ( 0)N = , 

predictors ( 0)N < , and smoothers ( 0)N >  have the 

following accuracy relations with the matrix inequalities as
 

( ) ( )| |P t t N P t t N+ ≤ + , 0, 0, 0N N N= < >                          (98) 

( ) ( ) ( ) ( )| | 1 | 1 |P t t P t t P t t N P t t N≤ − ≤ ≤ + + ≤ +⋯ , 1N ≤ −                   (99) 

( ) ( ) ( ) ( )| | 1 | 1 |P t t N P t t N P t t P t t+ ≤ + − ≤ ≤ + ≤⋯ , 1N ≥                   (100) 

( ) ( )P N P N≤ , 0, 0, 0N N N= < >                             (101) 

( ) ( )1P P N P NΣ≤ ≤ ≤ + ≤⋯ , 1N ≤ −                               (102) 
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( ) ( ) ( )1 1P N P N P P≤ − ≤ ≤ ≤⋯ , 1N ≥                               (103) 

with the definitions ( ) ( ) ( ) ( )0 , 0 , 1 , 1P P P P P PΣ Σ= = = − = − . 

Proof. The robustness (98) was proved in the above Theorems. Applying the recursive projection formula [20], we have  

( ) ( ) ( ) ( ) ( ) ( )T 1ˆ ˆ| 1 = | E 1 1 1x t t N x t t N x t t N Q t N t Nεε ε− + + + + + + + + + +  , 1N ≤ −             (104) 

where the innovation ( )1t Nε + + and its variance ( )1Q t Nε + + are computed by (48) and (50). 

When 1N = − , we have 

( ) ( ) ( ) ( )ˆ ˆ| | 1
f

x t t x t t K t tε= − +                                  (105) 

From (105) it follows that ( ) ( ) ( )ˆ| |x t t x t x t t= −ɶ is given as 

( ) ( ) ( ) ( )| | 1
f

x t t x t t K t tε= − −ɶ ɶ                                  (106) 

Noting that ( )|x t tɶ is orthogonal to ( )tε , and 

( ) ( ) ( ) ( )| 1 |
f

x t t x t t K t tε− = +ɶ ɶ                                   (107) 

It follows that  

( ) ( ) ( ) ( ) ( )T| 1 |
f f

P t t P t t K t Q t K tε− = +                            (108) 

Since ( ) 0Q tε > , then ( ) ( ) ( )T 0
f f

K t Q t K tε ≥ , and from (108) it follows that  

( ) ( )| | 1P t t P t t≤ − , 1N = −                                     (109) 

When 1N < − , iterating (1) yields 

( ) ( ) ( )
2

1

0

1 1
N

N k

k

x t x t N w t kΦ Φ Γ
− −

−

=
= + + + − −∑                               (110) 

Substituting (2) into (48) yields 

( ) ( ) ( )1 1| 1t N Hx t N t N v t Nε + + = + + + + + +ɶ                              (111) 

Notice that 

( ) ( ) ( )ˆ1 1| 1|x t N x t N t N x t N t N+ + = + + + + + + +ɶ                            (112) 

Substituting (110)-(112) into (104) yields the recursive predictor 

( ) ( ) ( ) ( ) ( )1 T 1ˆ ˆ| 1 | 1| 1 1Nx t t N x t t N P t N t N H Q t N t NεΦ ε− − −+ + = + + + + + + + + +                (113) 

which yields 

( ) ( ) ( ) ( ) ( )1 T 1| 1 | 1| 1 1Nx t t N x t t N P t N t N H Q t N t NεΦ ε− − −+ + = + − + + + + + + +ɶ ɶ                (114) 

or equivalently 

( ) ( ) ( ) ( ) ( )1 T 1| | 1 1| 1 1Nx t t N x t t N P t N t N H Q t N t NεΦ ε− − −+ = + + + + + + + + + +ɶ ɶ               (115) 

Since ( )| 1x t t N+ +ɶ is orthogonal to ( )| 1t t Nε + + , then we have 

( ) ( )| | 1P t t N P t t N ∆+ = + + +                                    (116) 
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( ) ( ) ( )( )T
1 T 1 11| 1 1|N NP t N t N H Q t N HP t N t Nε∆ Φ Φ− − − − −= + + + + + + + +                  (117) 

where from ( )1 0Q t Nε + + > , we have 0∆ ≥ , and from (116) it follows that  

( ) ( )| 1 |P t t N P t t N+ + ≤ + , 1N < −                                 (118) 

From (109) and (118) we obtain (99). Similarly, (100) can be directly proved from (52). As t → ∞ , taking the limit operations 

for (98)-(100) yields (101)-(103). The proof is completed. 

Corollary 1. Under the conditions of Theorem 5, the robust time-varying and steady-state Kalman estimators have the 

following robust and actual accuracy relations, respectively, 

( ) ( )tr | tr |P t t N P t t N+ ≤ + , 0, 0, 0N N N= < >                           (119) 

( ) ( ) ( ) ( )tr | tr | 1 tr | 1 tr |P t t P t t P t t N P t t N≤ − ≤ ≤ + + ≤ +⋯ , 1N ≤ −                  (120) 

( ) ( ) ( ) ( )tr | tr | 1 tr | 1 tr |P t t N P t t N P t t P t t+ ≤ + − ≤ ≤ + ≤⋯ , 1N ≥                   (121) 

tr ( ) tr ( )P N P N≤ , 0, 0, 0N N N= < >                               (122) 

( ) ( )tr tr tr 1 trP P N P NΣ≤ ≤ ≤ + ≤⋯ , 1N ≤ −                            (123) 

( ) ( ) ( )tr tr 1 tr 1 trP N P N P P≤ − ≤ ≤ ≤⋯ , 1N ≥                           (124) 

Remark 3. Corollary 1 shows that all admissible actual 

accuracies yielded by the uncertainties of noise variances of 

each robust Kalman estimator are higher than its robust 

accuracy, the robust accuracy of the filter is higher than those 

of the predictors, and is lower than those of the smoothers. For 

two robust smoothers with different fixed lags N , the robust 

accuracy of the smoother with larger fixed lag is higher than 

that of the smoother with smaller fixed lag. For two robust 

Kalman predictors with different steps ( )N− ( 0)N < , the 

robust accuracy of the predictor with smaller step is higher 

than that of the predictor with larger step. 

8. Simulation Example 

Consider a tracking system with uncertain noise variances 

( ) ( ) ( )1x t x t w tΦ Γ+ = +             (125) 

( ) ( ) ( )y t Hx t v t= +                (126) 

2
0 0

0

1 0.5
,

0 1

T

T

Τ
Φ Γ

  
= =   
   

, 2H I=         (127) 

where 0 0.25T = is the sample period, ( ) ( ) ( ) T

1 2,x t x t x t=     

is the state, ( )1
x t and ( )2

x t are the position and velocity of 

target at time 0tT . ( )w t and ( )v t are independent Gaussion 

white noises with zero mean and unknown actual variances Q

and R respectively, satisfying Q Q≤ and R R≤ . In the 

simulation, we consider the following two cases: the case 1 

and the case 2. In the case 1, we take 1Q = , diag(8,0.36)R = ,

0.8Q = , diag(6,0.25)R = , the initial values ( ) [ ]T
0 0 0x = , 

0µ = , ( ) ( )2 2
0 | 0 1.2 , 0 | 0P I P I= = . In the case 2, we take 

1Q = , 0.8 0.2sin(2 /100)Q tπ= + , 2R I= , 

2[0.65 0.35sin(2 /100)]R t Iπ= + , the initial values 

( ) [ ]T
0 0 0x = , 0µ = , ( ) 2

0 | 0 1.2 ,P I= ( ) 2
0 | 0P I= , and 

we take 2, 1, 0,1, 2N = − − . 

The traces of the error variances of the time-varying 

Kalman estimators are compared in Tables 1-2, and Figures 

1-2, which verify the accuracy relations (119)-(121), and the 

steady-state robust accuracy relations (122)-(124). From 

Figure 1, we see that the trace of the local and fused robust 

time-variant Kalman filters can quickly converge to the 

corresponding steady-state Kalman filters. From Figure 2 we 

see that the robust and actual accuracy relation (119) of each 

robust Kalman estimator holds. The traces of the error 

variances between the augmented state approach and 

non-augmented state approach are compared in Table 3, which 

verify that the numerically equivalence of the two approaches. 

Table 1. The accuracy comparison of robust and actual time-varying Kalman estimators at 10t =  for case 1. 

tr ( | )P t t  tr ( | )P t t  tr ( | 1)P t t −  tr ( | 1)P t t −  tr ( | 2)P t t −  tr ( | 2)P t t −  

0.7410 0.5719 0.8159 0.6271 0.9395 0.7213 

tr ( | 1)P t t +  tr ( | 1)P t t +  tr ( | 2)P t t +  tr ( | 2)P t t +    

0.6194 0.4743 0.5711 0.4376   
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Table 2. The robust and actual accuracy comparison of robust steady-state Kalman estimators for case 1. 

tr P  tr P  trΣ  tr Σ  tr ( 2)P −  tr ( 2)P −  tr (1)P  tr (1)P  tr (2)P  tr (2)P  

0.5245 0.3815 0.6278 0.4603 0.7541 0.5565 0.4696 0.3417 0.4365 0.3185 

Table 3. The robust and actual accuracy comparison of augmented and non-augmented approaches for case 1. 

 tr (1)P  tr (1)P  tr (2)P  tr (2)P  

Augmented state approach 0.469619202285972 0.341683402305256 0.436478175999641 0.318492157779223 

Non-augmented state approach 0.469619202285973 0.341683402305506 0.436478175294423 0.317492157779228 

 

In order to give a geometric interpretation of the matrix 

accuracy relations, The covariance ellipses of robust 

steady-state Kalman estimators are given in Figure 3. From 

Figure 3, we see that the ellipses of ( )P N  

( )2, 1,0,1,2N = − − are all enclosed in these of the 

conservative upper bound ( )P N , respectively, which verify 

the robustness (101). Figure 3 also shows that the ellipse of the 

smoother with two lag is enclosed in that of the smoother with 

one lag, they are both enclosed in that of the filter, and the 

ellipse of filter is enclosed in that of the one-step predictor, 

and they are all enclosed in that of the two-step predictor, 

which verifies the accuracy relations (102) and (103). 

 

Figure 1. The robust and actual accuracy relations of the robust time-varying Kalman estimators for case 1. 

 

Figure 2. The robust and actual accuracy relations of the robust time-varying Kalman estimators for case 2. 



126 Wenjuan Qi and Zunbing Sheng:  Robust Time-Varying Kalman State Estimators with Uncertain Noise Variances  

 

 

Figure 3. The covariance ellipses of the actual and conservative steady-state estimation error variances. 

The MSE curves of the robust steady-state Kalman estimators are shown in Figure 4, where the straights lines denote the traces 

of the theoretical actual error variances, respectively, the curves denote the values of the ( )( )MSE N t ,  2, 1, 0,1, 2N = − − . From 

Figure 4, we see that when ρ and t are sufficiently large, the values of ( )( )MSE N t are close to the corresponding theoretical 

actual values ( )tr P N . which verifies the accuracy relations (119) and (124). 

 

Figure 4. The MSE curves for robust Kalman estimators for case 1. 
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9. Conclusions 

For the linear discrete time-varying stochastic system with 

uncertain noise variances, the minimax robust time-varying 

Kalman estimators (filter, predictor and smoother) have been 

presented. The two robust Kalman smoothers have been 

presented respectively by the augmented state approach and 

non-augmented state approach. Each estimator has the 

robustness in the sense that their all actual admissible 

estimation error variances yielded by the uncertainties of noise 

variances are guaranteed to have a minimal upper bound. 

Their robustness was proved by the Lyapunov equation 

method. Their robust accuracy relations have been proved 

based on the recursive projection formula. The corresponding 

robust steady-state Kalman estimators have been also 

presented for uncertain time-invariant system. The 

convergence in a realization between the time-varying and 

steady-state Kalman estimators was proved by the DESA 

method and the DVESA method.  

The above results construct a robust Kalman filtering theory 

for systems with noise variance uncertainties, which have 

important theoretical and application meanings. The robust 

Kalman filters with uncertain model parameters were 

extended and developed to the robust Kalman estimators 

(filter, predictor, smoother) with uncertain noise variances. 

The adaptive Kalman filters with unknown deterministic noise 

variances [9-11] were extended to the robust Kalman 

estimators with unknown uncertain noise variances. They may 

be applied to solve the weighted fusion robust Kalman 

filtering problems for multisensor uncertain systems [16]. 

They may also be applied to solve the robust Kalman filtering 

problems for systems with the model parameters uncertainties 

by introducing a virtual noise with uncertain noise variances 

to compensate model errors [1]. The extension of this work to 

the systems with both the uncertain model parameters and 

noise variances is in investigation.  
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