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Abstract: The paper proposes a likelihood ratio fusion of face, voice and signature multimodal biometrics verification 

application systems. Figueiredo-Jain (FJ) estimation algorithm of finite Gaussian mixture modal (GMM) is employed. 

Automated biometric systems for human identification measure a “signature” of the human body, compare the resulting 

characteristic to a database, and render an application dependent decision. These biometric systems for personal authentication 

and identification are based upon physiological or behavioral features which are typically distinctive, Multi-biometric systems, 

which consolidate information from multiple biometric sources, are gaining popularity because they are able to overcome 

limitations such as non-universality, noisy sensor data, large intra-user variations and susceptibility to spoof attacks that are 

commonly encountered in mono modal biometric systems. Simulation show that finite mixture modal (GMM) is quite effective 

in modelling the genuine and impostor score densities, fusion based the resulting density estimates achieves a significant 

performance on eNTERFACE 2005 multi-modal database based on face, signature and voice modalities. 

Keywords: Gaussian Mixture Modal, Figueiredo-Jain, Biometrics Face Recognition,  

Speaker and Signature Verification Systems, Score Fusion, Likelihood Ratio 

 

1. Introduction 

The word biometrics comes from the ancient Greek words: 

bios living and metros measure, meaning life measurement. 

In this context, the science of biometrics is concerned with 

the accurate measurement of unique biological characteristics 

of an individual in order to securely identify them to a 

computer or other electronic system. Biological 

characteristics measured usually include fingerprints, voice 

patterns, retinal and iris scans, face patterns, and even the 

chemical composition of an individual's DNA [1]. Biometrics 

authentication (BA) (Am I whom I claim I am?) involves 

confirming or denying a person's claimed identity based on 

his/her physiological or behavioral characteristics [2]. BA is 

becoming an important alternative to traditional 

authentication methods such as keys (“something one has”, 

i.e., by possession) or PIN numbers (“something one knows”, 

i.e., by knowledge) because it is essentially “who one is”, i.e., 

by biometric information. Therefore, it is not susceptible to 

misplacement or forgetfulness [3]. These biometric systems 

for personal authentication and identification are based upon 

physiological or behavioral features which are typically 

distinctive, although time varying, such as fingerprints, hand 

geometry, face, voice, lip movement, gait, and iris patterns. 

Multi-biometric systems, which consolidate information from 

multiple biometric sources, are gaining popularity because 

they are able to overcome limitations such as non-

universality, noisy sensor data, large intra-user variations and 

susceptibility to spoof attacks that are commonly 

encountered in mono-biometric systems. 

Some works based on multi-modal biometric identity 

verification systems has been reported in literature. S. K. 

Sahoo et al. [4] present a bimodal biometric system using 

speech and face features and tested its performance under 

degraded condition based a Sum rule scores fusion in which 

the Speaker verification (SV) system is built using Mel-

Frequency Cepstral Coefficients (MFCC) followed by delta 

and delta-delta for feature extraction and Gaussian Mixture 
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Model (GMM) for modeling and the face verification (FV) 

system is built using the combination of Principal 

Component Analysis (PCA) and Linear Discriminant 

Analysis (LDA). Danpinder Kaur et al. [5] Propose new 

technique fusion at the feature extraction level named msum 

by combining sum method & mean method to enhance 

security and accuracy. In this work, database was gathered 

from 14 users. Each user contributes 4 samples of signature 

& speech also and Forgeries are also added to test system. 14 

forgeries are used for testing purpose. The SIFT features are 

extracted for offline signature which results as a feature 

vector of 128 numbers & MFCC features are extracted for 

speech which results as a feature vector of 195 numbers. The 

experimental results demonstrated that the proposed 

multimodal biometric system achieves a recognition accuracy 

of 98.2% and with false rejection rate (FRR) of = 0.9% & 

false acceptance rate (FAR) of = 0.9%. Sheetal Chaudhary et 

al. [6] Describes a new multimodal biometric system by 

combining iris, face and voice at match score level using 

simple sum rule in which the match scores are normalized by 

min-max normalization and The Experimental evaluations 

are performed on a public dataset which demonstrating the 

accuracy of the proposed system. The effectiveness of 

proposed system regarding FAR (False Accept Rate) and 

GAR (Genuine Accept Rate) is demonstrated with the help of 

MUBI (Multimodal Biometrics Integration) software. Girija 

M. K et al. [7] Develop a Multimodal Biometric System 

using speech, signature and handwriting features, with the 

objective of improving performance and robustness in which 

Mel Frequency Cepstral Coefficients (MFCCs) of speaker is 

determined by extracting and analyzing speaker – specific 

features from the speech signal and Features like Horizontal 

Projection Profile (HPP), Vertical Projection Profile (VPP) 

and Discrete Cosine Transform (DCT) are determined for 

Signature Recognition, and Handwriting biometric features 

are used. Mendu Anusha et al. [8] Presents a multimodal 

biometric system by integrating iris, face and fingerprint to 

identify a person using Daugman’s algorithm for iris 

recognition, WLD and Eigen faces for face recognition and 

minute feature and decision tree algorithm for fingerprint 

recognition. The Experimental estimations are performed on 

a public dataset indicate the accuracy of the proposed system 

and The effectiveness of proposed system with respect to 

False Accept Rate and Genuine Accept Rate is demonstrated 

with the help of Multimodal Biometrics Integration software. 

P. S. Sanjekar et al. [9] Presents an overview of multimodal 

biometrics, includes the block diagram of general multimodal 

biometrics, modules of multimodal biometric system, 

different levels of fusion in multimodal biometrics with 

related work also covered. Mandeep Kaur et al. [10] 

discusses about Multimodal Biometric System such as 

signature and speech modalities which are used to overcome 

some of the problems of uni-modal systems like noise in 

sensed data, intra-class variations, distinctiveness, and spoof 

attacks. 

A multi-modal biometric verification system based on 

dynamic facial, signature and vocal modalities is described in 

this paper. Both face images, signature and speech biometrics 

are chosen due to their complementary characteristics, 

physiology, and behavior. In multimodal systems, 

complementary input modalities provide the system with 

non-redundant information whereas redundant input 

modalities allow increasing both the accuracy of the fused 

information by reducing overall uncertainty and the 

reliability of the system in case of noisy information from a 

single modality. Information in one modality may be used to 

disambiguate information in the other ones. The 

enhancement of precision and reliability is the potential result 

of integrating modalities and/or measurements sensed by 

multiple sensors [11]. 

2. Authentication Traits 

2.1. Face Extraction and Recognition 

Face recognition, authentication and identification are 

often confused. Face recognition is a general topic that 

includes both face identification and face authentication (also 

called verification). On one hand, face authentication is 

concerned with validating a claimed identity based on the 

image of a face, and either accepting or rejecting the identity 

claim (one-to-one matching). On the other hand, the goal of 

face identification is to identify a person based on the image 

of a face. This face image has to be compared with all the 

registered persons (one-to-many matching). Thus, the key 

issue in face recognition is to extract the meaningful features 

that characterize a human face. Hence there are two major 

tasks for that: Face detection and face verification.  

2.1.1. Face Detection 

Face detection is concerned with finding whether or not 

there are any faces in a given image (usually in gray scale) 

and, if present, return the image location and content of each 

face. This is the first step of any fully automatic system that 

analyzes the information contained in faces (e.g., identity, 

gender, expression, age, race and pose). While earlier work 

dealt mainly with upright frontal faces, several systems have 

been developed that are able to detect faces fairly accurately 

with in-plane or out-of-plane rotations in real time. For 

biometric systems that use faces as non-intrusive input 

modules, it is imperative to locate faces in a scene before any 

recognition algorithm can be applied. An intelligent vision 

based user interface should be able to tell the attention focus 

of the user (i.e., where the user is looking at) in order to 

respond accordingly. To detect facial features accurately for 

applications such as digital cosmetics, faces need to be 

located and registered first to facilitate further processing. It 

is evident that face detection plays an important and critical 

role for the success of any face processing systems. 

On the results presented on this paper only size 

normalization of the extracted faces was used. All face 

images were resized to 130x150 pixels, applying a bi-cubic 

interpolation. After this stage, it is also developed a position 

correction algorithm based on detecting the eyes into the face 

and applying a rotation and resize to align the eyes of all 
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pictures in the same coordinates. The face detection and 

segmentation tasks presented in this paper was performed 

based on ‘Face analysis in Polar Frequency Domain’ 

proposed by Yossi Z. et al. [12]. First it extract the Fourier-

Bessel (FB) coefficients from the images. Next, it compute 

the Cartesian distance between all the Fourier-Bessel 

transformation (FBT) representations and re-define each 

object by its distance to all other objects. Images were 

transformed by a FBT up to the 30
th

 Bessel order and 6
th

 root 

with angular resolution of 3˚, thus obtaining to 372 

coefficients. These coefficients correspond to a frequency 

range of up to 30 and 3 cycles/image of angular and radial 

frequency, respectively. Figure 1. Shows the face and eyes 

detections for different users from the database, and figure 2. 

Shows the face normalization for the same users. 

 

Figure 1. Face & Eyes Detections for different users. 

 

Figure 2. Face Normalization for the above users. 

Polar Frequency Analysis: The FB series is useful to 

describe the radial and angular components in images [12]. 

FBT analysis starts by converting the coordinates of a region 

of interest from Cartesian (x, y) to polar (r, θ). The f (r, θ) 

function is represented by the two-dimensional FB series, 

defined as: 

���, �� � ∑ ∑ 	
,��

�
,�	�� cos�����
�� �	∑ ∑ �
,��
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,�	�� sin�����
����������                                  (1) 

where Jn is the Bessel function of order n, f (R, θ) = 0 and 0 ≤ r ≤ R. αn,i is the i
th

 root of the Jn function, i.e. the zero crossing 

value satisfying Jn (αn,i) = 0 is the radial distance to the edge of the image. The orthogonal coefficients An,i and Bn,i are given by: 
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if n > 0. 

An alternative method to polar frequency analysis is to 

represent images by polar Fourier transform descriptors. The 

polar Fourier transform is a well-known mathematical 

operation where, after converting the image coordinates from 

Cartesian to polar, as described above; a conventional 

Fourier transformation is applied. These descriptors are 

directly related to radial and angular components, but are not 

identical to the coefficients extracted by the FBT. 

2.1.2. Face Verification 

Feature Extraction: The so-called “eigenfaces” method 

[13] is one of the most popular methods for face recognition. 

It is based on the Principal Components Analysis (PCA) of 

the face images in a training set. The main idea is that since 

all human faces share certain common characteristics, pixels 

in a set of face images will be highly correlated. The K-L 

(Karhunen-Loeve) transform can be used to project face 

images to a different vector space that is of reduced 

dimensionality where features will be uncorrelated. In the 

new space nearest neighbor classifiers can be used for 

classification. Euclidean distances d in the projection space 

are mapped into the [0, 1] interval of the real line using the 

mapping function: f = d / (1+d). It is easily seen that f is also 

a metric with distance values in [0, 1]. Thus, the 

decomposition of a face image into an eigenface space 

provides a set of features. The maximum number of features 

is restricted to the number of images used to compute the KL 

transform, although usually only the more relevant features 

are selected, removing the ones associated with the smallest 

eigenvalues. Two different approaches, database training 

stage and the operational stage [13]. The concept verification 

system is illustrated in figure 4. 

The training stage: Face spaces are eigenvectors of the 

covariance matrix corresponding to the original face images, 

and since they are face-like in appearance, they are so are 

called Eigenfaces. 

Consider the training set of face images be 6�, 6+, … , 68; the 

average face of the set is defined as: 

6 � 	 �9∑ 6:9:��                                     (4) 

where M is the total number of images. 

Each face differs from the average by the vector ∅
 �
	6
 < 6. A covariance matrix is constructed where: 

= �	∑ ∅:∅:> � 		>9:��                            (5) 

where 	 � 	 ?∅�	∅+ …	∅9@. 
Then, the eigenvectors AB  and the eigenvalues CB  with a 

symmetric matrix C are calculated. AB Determines the linear 

combination of M difference images with  to form the 

Eigenfaces: 

DE �	∑ AEB∅B 	F � 1, … ,H9B��                        (6) 

From these Eigenfaces, I�J 	H� Eigenfaces are selected 

corresponding to the I highest eigenvalues. 

At the training stage, a set of normalized face images, {i}, 

that best describe the distribution of the raining facial images 

in a lower dimensional subspace (Eigenface) is computed by 

the following operation: 

KB 	� 	 DB
6
 <	6�                             (7) 

Where �	 � 	1, … ,H and L	 � 	1, … , I. 

After that, the training facial images are projected onto the 

eigenspace, MN , to generate representations of the facial 

images in Eigenface: 

M� �	 �K
�, K
+, … , K
B�                     (8) 

where �	 � 	1, 2, … ,H. 

 

Figure 3. simplified version of the face space illustrating the four results of 

the projection of an image onto the face space. In this case there are two 

eigenfaces, u1 and u2 [13]. 

The operational stage: This approach is based on the same 

principles as standard PCA, explained in the training stage. 

The difference is that an eigenface space is extracted for each 

user. Thus, when a claimant wants to verify its identity, its 

vectorized face image is projected exclusively into the 

claimed user eigenface space and the corresponding 

likelihood is computed. The advantage of this approach is 

that it allows a more accurate model of the user’s most 

relevant information, where the first eigenfaces are directly 

the most representative user’s face information. Another 

interesting point of this method is its scalability in terms of 

the number of users. Adding a new user or new pictures of an 

already registered user only requires to compute or 

recompute the specific eigenface space, but not the whole 

dataset base as in the standard approach. For verification 

systems, the computation of the claimant’s likelihood to be 

an specific user is independent on the number of users in the 

dataset. On the contrary, for identification systems, the 

number of operations increases in a proportional way with 

the number of users, because as many projections as different 

users are required. In the verification system described in this 

article, the independent user eigenface approach has been 

chosen. Each user’s eigenface space was computed which 16 

frames extracted from the database still faces. 
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Figure 4. Face Verification Concept System. 

2.2. Voice Analysis and Feature Extraction 

Gaussian Mixture Models (GMMs), is the main tool used in 

text-independent speaker verification, in which can be trained 

using Figueiredo-Jain (FJ) algorithm [14] [15]. In this work the 

speech modality, is authenticated with a multi-lingual text-

independent speaker verification system. The speech trait is 

comprised of two main components as shown in figure 5: 

speech feature extraction and a Gaussian Mixture Model 

(GMM) classifier. The speech signal is analyzed on a frame by 

frame basis, with a typical frame length of 20 ms and a frame 

advance of 10 ms [16]. For each frame, a dimensional feature 

vector is extracted, the discrete Fourier spectrum is obtained 

via a fast Fourier transform from which magnitude squared 

spectrum is computed and put it through a bank of filters. The 

critical band warping is done following an approximation to 

the Mel-frequency scale which is linear up to 1000 Hz and 

logarithmic above 1000 Hz. The Mel-scale cepstral 

coefficients are computed from the outputs of the filter bank 

[17]. The state of the art speech feature extraction schemes 

(Mel frequecy cepstral coefficients (MFCC) is based on 

auditory processing on the spectrum of speech signal and 

cepstral representation of the resulting features [18]. One of the 

powerful properties of cepstrum is the fact that any 

periodicities, or repeated patterns, in a spectrum will be 

mapped to one or two specific components in the cepstrum. If 

a spectrum contains several harmonic series, they will be 

separated in a way similar to the way the spectrum separates 

repetitive time patterns in the waveform. The description of the 

different steps to exhibit features characteristics of an audio 

sample with MFCC is showed in figure 6. 

 

Figure 5. Acoustic Speech Analysis. 

 

Figure 6. MFCC calculation Block diagram [17]. 

The distribution of feature vectors for each person is 

modeled by a GMM. The parameters of the Gaussian mixture 

probability density function are estimated with Figueiredo-

Jain (FJ) algorithm [14]. Given a claim for person C’s 

identity and a set of feature vectors Q � RST�U���VW  supporting 

the claim, the average log likelihood of the claimant being 

the true claimant is calculated using: 

X�Q|CZ� � !
[\ ∑ logV\��� 	_�ST�|CZ�                     (9) 

where 

_�ST|C� � ∑ :̀
Va:�� b
ST	; cdeeeT; f:�                 (10) 

and C � g :̀	, cdeeeT	, f:h:��
Va

                        (11) 
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Here CZ  is the model for person C. i9  is the number of 

mixtures, :̀  is the weight for mixture j (with constraint 

∑ :̀ � 1Va:��  ), and b�ST	; 	cT	, f� is a multi-variate Gaussian 

function with mean cT  and diagonal covariance matrix f. 

Given a set RCjUj��k  of B background person models for 

person C, the average log likelihood of the claimant being an 

impostor is found using: 

X
QlCZ� � 	 log m�k 	∑ exp X�Q|Cj�kj�� q              (12) 

The set of background person models is found using the 

method described in [19]. An opinion on the claim is found 

using: 32 

r � 	X�Q|CZ� < X
QlCZ�                          (13) 

The opinion reflects the likelihood that a given claimant is 

the true claimant (i.e., a low opinion suggests that the 

claimant is an impostor, while a high opinion suggests that 

the claimant is the true claimant). 

2.3. Signature Verification Systems 

Handwritten signature is one of the first accepted civilian 

and forensic biometric identification technique in our 

society [20] [21] [22]. Human verification is normally very 

accurate in identifying genuine signatures. A signature 

verification system must be able to detect forgeries and at 

the same time reduce rejection of genuine signatures. The 

signature verification problem can be classified into 

categories: offline and online. Offline signature verification 

does not use dynamic information that is used extensively 

in online signature verification systems. This paper 

investigates the problem of offline signature verification. 

The problem of offline signature verification has been faced 

by taking into account three different types of forgeries: 

random forgeries, produced without knowing either the 

name of the signer or the shape of his signature; simple 

forgeries, produced knowing the name of the signer but 

without having an example of his signature; and skilled 

forgeries, produced by people who, looking at an original 

instance of the signature, attempt to imitate it as closely as 

possible. 

 

Figure 7. Wacom Graphire3 digitizing Tablet PC. 

Feature Extraction: The coordinate trajectories �xn,	yn� and 

pressure signal _
  are the components of the unprocessed 

feature vectors D
 � ?S
	, s
	, _
@>  extracted from the 

signature signal [20] [21] [22], where n =1,...,Ns and Ns is the 

duration of the signature in time samples. Signature 

trajectories are then pre-processed by subtracting the centre 

of mass followed by rotation alignment based on the average 

path tangent angle. An extended set of discrete-time 

functions are derived from the pre-processed trajectories 

consisting of sample estimations of various dynamic 

properties. As s result, the parameterised signature O consists 

in the sequence of feature vectors 

r
 � ?S
	, s
	, _
	, �
	, A
 , St
	, st 
@	> , n =1,...,Ns, where the 

upper dot notation represents an approximation to the first 

order time derivative and �	-�)	A stand respectively for path 

tangent angle, path velocity magnitude. 

A� � uSt�+ �	st�+ and �� � -�vw-��st� , St��           (14) 

and 

St� �	S� <	S�x�	-�)	st� �	s� <	s�x�             (15) 

A whitening linear transformation is finally applied to each 

discrete-time function so as to obtain zero mean and unit 

standard deviation function values. Seven dimensional 

feature vectors are used for GMM processing described in 

the following section. Figure 9 shows x-, y-, p- and velocity 

signals of an example signature. 

 

Figure 8. Azimuth and inclination angles of the pen respect to the plane of the graphic card GD-0405U from Wacom Graphire3 digitizing Tablet PC. 
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Figure 9. Signals (x-, y- position, pen pressure and velocity) of one signature fragment. 

 

Figure 10. Score Fusion Based Multimodal Biometric Verification System. 
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3. Multimodal Biometric Fusion Decision 

The process of biometric user authentication can be 

outlined by the following steps [23]: a) acquisition of raw 

data, b) extraction of features from these raw data, c) 

computing a score for the similarity or dissimilarity between 

these features and a previously given set of reference features 

and d) classification with respect to the score, using a 

threshold. The results of the decision processing steps are 

true or false (or accept/reject) for verification purposes or the 

user identity for identification scenarios. 

The fusion of different signals can be performed 1) at the 

raw data or the feature level, 2) at the score level or 3) at the 

decision level. These different approaches have advantages 

and disadvantages. For raw data or feature level fusion, the 

basis data have to be compatible for all modalities and a 

common matching algorithm (processing step c) must be 

used. If these conditions are met, the separate feature vectors 

of the modalities easily could be concatenated into a single 

new vector. This level of fusion has the advantage that only 

one algorithm for further processing steps is necessary 

instead of one for each modality. Another advantage of 

fusing at this early stage of processing is that no information 

is lost by previous processing steps. The main disadvantage 

is the demand of compatibility of the different raw data of 

features. The fusion at score level is performed by computing 

a similarity or dissimilarity (distance) score for each single 

modality. For joining of these different scores, normalization 

should be done. The straightforward and most rigid approach 

for fusion is the decision level. Here, each biometric 

modality results in its own decision; in case of a verification 

scenario this is a set of trues and falses. From this set a kind 

of voting (majority decision) or a logical AND or OR 

decision can be computed. This level of fusion is the least 

powerful, due to the absence of much information. On the 

other hand, the advantage of this fusion strategy is the 

easiness and the guaranteed availability of all single modality 

decision results. In practice, score level fusion is the best-

researched approach, which appears to result in better 

improvements of recognition accuracy as compared to the 

other strategies. 

Adaptive Bayesian Method Based Score Fusion 

Let Q � ?Q�	, 	Q+	, … , Qy@  denote the match scores of K 

different biometric matchers, where Xk is the random variable 

representing the match score of the k
th

 matcher, L	 =	1, 2, …	, I. Let �gen(S) and � imp(S) be the conditional joint 

densities of the K match scores given the genuine and 

impostor classes, respectively, where S	 = 	 [S 1 , S 2 , …	, SK@. 
Suppose we need to assign the observed match score vector X 

to genuine or impostor class. Let Ѱ be a statistical test for 

testing H0: X corresponds to an impostor against H1: X 

corresponds to a genuine user. Let Ѱ (x) = i imply that we 

decide in favor of Hi, i = 0, 1. The probability of rejecting H0 

when H0 is true is known as the false accept rate (size or 

level of the test). The probability of correctly rejecting H0 

when H1 is true is known as the genuine accept rate. The 

Neyman-Pearson theorem [24] [25] states that: 

(1). For testing H0 against H1, there exists a test Ѱ and a 

constant ŋ such that: 

{(Ѱ(Q) = 1||�) =	∝                           (16) 

and 

Ѱ(S) = ~1,�ℎ��	���#(�)�$��(�)	�	ŋ0, �ℎ��	���#(�)�$��(�)	�	ŋ
                      (17) 

(2). If a test satisfies equations (16) and (17) for some ŋ, 

then it is the most powerful test for testing H0 against H1 at 

level ∝. 

According to the Neyman-Pearson theorem, given the false 

accept rate (FAR) ∝	, the optimal test for deciding whether a 

score vector X corresponds to a genuine user or an impostor 

is the likelihood ratio test given by equation (17). For a fixed 

FAR, it can select a threshold ŋ such that the likelihood ratio 

test maximizes the genuine accept rate (GAR). Based on the 

Neyman-Pearson theorem, we are guaranteed that there does 

not exist any other decision rule with a higher GAR. 

However, this optimality of the likelihood ratio test is 

guaranteed only when the underlying densities are known. In 

practice, it estimate the densities fgen(x) and fimp(x) from 

the training set of genuine and impostor match scores, 

respectively and the performance of likelihood ratio test will 

depend on the accuracy of these estimates [23] [26]. 

(1). Estimation of Match Score Densities 

Gaussian mixture model (GMM) has been successfully 

used to estimate arbitrary densities and it is used for 

estimating the genuine and impostor score densities [14] [27]. 

Let �y(S; 	c, ⅀)  be the K-variate Gaussian density with 

mean vector µ and covariance matrix ⅀, i.e.,  �y(S; 	c, ⅀) 	= 	 (2�)xy/+|⅀|x�/+	�S_
−!�(S −	c)>⅀x�(S − 	c)�.  The estimates of fgen(x) and fimp(x) are 

obtained as a mixture of Gaussians as follows. 

����
(S) = 	∑ {��
,:�y
S;	c��
,: 	, ⅀��
,:�9��#:��        (18) 

���8�(S) = 	∑ {�8�,:�y
S;	c�8�,: 	, ⅀�8�,:�9$��:��       (19) 

Where Mgen (Mimp) is the number of mixture components 

used to model the density of the genuine (impostor) scores, _��
,: 	(_�8�,:)  is the weight assigned to the j
th

 mixture 

component in ���8�(S)	4���8�(S)5 , ∑ {��
,:9��#:�� = ∑ {�8�,:9$��:�� =1. Selecting the appropriate number of components is one of 

the most challenging issues in mixture density estimation; 

while a mixture with too many components may result in 

over-fitting, a mixture with too few components may not 

approximate the true density well. The GMM fitting 

algorithm automatically estimates the number of components 

and the component parameters using an EM, FJ algorithms 

and the minimum message length criterion [14] [27]. 

Maximum Likelihood Parameter Estimation: Given a set 

of observation data in a matrix X and a set of observation 

parameters �  the ML parameter estimation aims at 
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maximizing the likelihood ���� or log likelihood of the 

observation data Q � 	 RQ�, … , Q
U 
�� = 	-��	max* �(�)                         (20) 

Assuming that it has independent, identically distributed 

data, it can write the above equations as: 

�(�) = _(Q|�� � _�Q�, … , Q
|�� � ∏ _�Q�|��
���    (21) 

The maximum for this function can be find by taking the 

derivative and set it equal to zero, assuming an analytical 

function.  

�	
�* ���� � 0                                     (22) 

The incomplete-data log-likelihood of the data for the 

mixture model is given by: 

�(�) = Fr�(Q|�� � ∑ Fr��S�|��V���                (23) 

Which is difficult to optimize because it contains the log of 

the sum. If it considers X as incomplete, however, and posits 

the existence of unobserved data items � � Rs�U���V  whose 

values inform us which component density generated each 

data item, the likelihood expression is significantly simplified. 

That is, it assume that s� ∈ R1	. . IU for each i, and s� 	= 	L if 

the i-
th

 sample was generated by the k-
th

 mixture component. 

If it knows the values of Y, it obtains the complete-data log-

likelihood, given by: 

�(�, �) = log _(Q, �|��                         (24) 

� ∑ log _(S� , s�|��V���                           (25) 

� ∑ log
_(s�|��_�S�|s� , �)�V���                   (26) 

=	∑ 
log	 _�$ + log �
S�lc�$ , ∑�$��V���               (27) 

which, given a particular form of the component densities, 

can be optimized using a variety of techniques [28]. 

EM Algorithm: The expectation-maximization (EM) 

algorithm [23] [27] [29] [30] is a procedure for maximum-

likelihood (ML) estimation in the cases where a closed form 

expression for the optimal parameters is hard to obtain. This 

iterative algorithm guarantees the monotonic increase in the 

likelihood L when the algorithm is run on the same training 

database.  

The probability density of the Gaussian mixture of k 

components in Ʀ� can be described as follows: 

�(S) = ∑ ��V��� ∅(S|���	∀S ∈ 	Ʀ� 	              (28) 

where ∅(S|���  is a Gaussian probability density with the 

parameters �� �	 �`�, ∑�), `�  is the mean vector and ∑�  is 
the covariance matrix which is assumed positive definite 

given by: 

∅(S|��� � ∅
Sl`�	, ∑ �� = �
(+�)#�|∑$|

!
�
	�x	!���x8$��∑ ��x8$� !$

		  (29) 

and �� 	 ∈ 	 ?0, 1@	(6 = 1,2, … , L)  are the mixing proportions 

under the constraint ∑ ��B��� = 1.  If it encapsulate all the 

parameters into one vector: ¡B = (��, �+, … , �B , ��, �+, … , �B), 
then , according to Eq. (27), the density of Gaussian mixture 

can be rewritten as: 

�(S|¡B� � ∑ ��∅(S|���B��� � ∑ ��∅(S|`� , ∑�)B��� .     (30) 

For the Gaussian mixture modeling, there are many 

learning algorithms. But the EM algorithm may be the most 

well-known one. By alternatively implementing the E-step to 

estimate the probability distribution of the unobservable 

random variable and the M-step to increase the log-likelihood 

function, the EM algorithm can finally lead to a local 

maximum of the log-likelihood function of the model. For 

the Gaussian mixture model, given a sample data set ¢	 = 	 {S�, S+,·	·	·	, SVU  as a special incomplete data set, the 

log-likelihood function can be expressed as follows: 

log _(¢|¡B� � log∏ ∅(S¤|¡B�V¤�� �
∑ log∑ ��∅(S¤|���,B���V¤��                         (31) 

which can be optimized iteratively via the EM algorithm as 

follows: 

 {(¥|S¤� � 	 �¦∅
�§l*¦�∑ �$∅(�§|*$�$̈©!
,                        (32) 

�:ª = �V∑ {(¥|S¤�,V¤��                                 (33) 

c:ª = �∑ «(:|�§�[§©!
∑ {�¥|S¤�S¤ ,V¤��                      (34) 

∑:ª =	 �∑ «(:|�§�[§©!
∑ {�¥|S¤�
S¤ < c:ª�
S¤ < c:ª�>V¤��    (35) 

Although the EM algorithm can have some good 

convergence properties in certain situations, it certainly has 

no ability to determine the proper number of the components 

for a sample data set because it is based on the maximization 

of the likelihood. 

(2). Figueiredo-Jain Algorithm 

The Figueiredo-Jain (FJ) [23] [25] [29] [30] algorithm tries 

to overcome three major weaknesses of the basic EM 

algorithm. The EM algorithm presented previous section 

requires the user to set the number of components and the 

number will be fixed during the estimation process. The FJ 

algorithm adjusts the number of components during 

estimation by annihilating components that are not supported 

by the data. This leads to the other EM failure point, the 

boundary of the parameter space. FJ avoids the boundary 

when it annihilates components that are becoming singular. 

FJ also allows starting with an arbitrarily large number of 

components, which tackles the initialization issue with the 

EM algorithm. The initial guesses for component means can 

be distributed into the whole space occupied by training 

samples, even setting one component for every single 

training sample. 

The classical way to select the number of mixture 

components is to adopt the “model-class/model” hierarchy, 

where some candidate models (mixture pdf's) are computed 

for each model-class (number of components), and then 
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select the “best” model. The idea behind the FJ algorithm is 

to abandon such hierarchy and to find the “best” overall 

model directly. Using the minimum message length criterion 

and applying it to mixture models leads to the objective 

function: 

¬��, Q) = ­+ 	∑ ln 4V"®�+ 5¯:	∝®±� + Z#²+ ln V�++ Z#²(­ª�)+ −lnℒ (Q, �)                                (36) 

Where N is the number of training points, V is the number 

of free parameters specifying a component, and =
³  is the 

number of components with nonzero weight in the mixture (∝	¯ > 	0). � in the case of Gaussian mixture is the same as 

in (Eq. 11) the last term ln ℒ (Q, �) is the log-likelihood of 

the training data given the distribution parameters (Eq. 27). 

The EM algorithm can be used to minimize (Eq. 36) with a 

fixed =
³	.  It leads to the M-step with component weight 

updating formula: 

∝�̄ª�	= 	 µ¶·	¸�,
∑ ¹#,®[#©! �x	\�º∑ µ¶·	¸�,
∑ ¹#,®[#©! �x	\�º»¦©!                   (37) 

This formula contains an explicit rule of annihilating 

components by setting their weights to zero. 

The above M-steps are not suitable for the basic EM 

algorithm though. When initial C is high, it can happen that 

all weights become zero because none of the components 

have enough support from the data. Therefore a component-

wise EM algorithm (CEM) is adopted. CEM updates the 

components one by one, computing the E-step (updating W) 

after each component update, where the basic EM updates all 

components “simultaneously”. When a component is 

annihilated its probability mass is immediately redistributed 

strengthening the remaining components. 

When CEM converges, it is not guaranteed that the 

minimum of ¬(�, Q) is found, because the annihilation rule 

(Eq. 35) does not take into account the decrease caused by 

decreasing =
³. After convergence the component with the 

smallest weight is removed and the CEM is run again, 

repeating until =
³ 	= 	1. Then the estimate with the smallest ¬(�, Q)	is chosen. The implementation of the FJ algorithm 

uses a modified cost function instead of ¬(�, Q). 
¬¼(�, Q) = 	­+ 	∑ ln ∝¯	̄ :∝®±� +	Z#²(­ª�)+ 	ln i −	 ln ℒ (Q, �)   (38) 

4. Experiments and Results 

The experiments were performed using still faces, 

signatures and audio database extracted from video, which is 

encoded in raw UYVY. AVI 640 x 480, 15.00 fps with 

uncompressed 16bit PCM audio; mono, 32000 Hz little 

endian. Uncompressed PNG files are extracted from the 

video files for feeding the face detection algorithms. The 

capturing devices for recording the video and audio data 

were: Allied Vision Technologies AVT marlin MF-046C 10 

bit ADC, 1/2” (8mm) Progressive scan SONY IT CCD; and 

Shure SM58 microphone. Frequency response 50 Hz to 

15000 Hz. Unidirectional (Cardiod) dynamic vocal 

microphones. Thirty subjects were used for the experiments 

in which twenty-six are males and four are females. For each 

subject, 30 signatures (with dat header) are used. Each line of 

a (dat files) consists of four comma separated integer values 

for the sampled x- and y-position of the pen tip, the pen 

pressure and the timestamp (in ms); the lines with values of -

1 for x, y and pressure represent a pen-up/pen-down event; 

The device used for recording the handwriting data was a 

Wacom Graphire3 digitizing tablet. Size of sensing surface is 

127.6mm x 92.8mm. With spatial resolution of 2032 lpi 

(lines per inch), able to measure 512 degrees of pressure. The 

signature data is acquired with a non-fixed sampling rate of 

about 100Hz. The audio is extracted as 16 bit PCM WAV file 

(with wav header), sampled at 16000 Hz, mono little endian. 

For the audio six multi-lingual (.wav files) of one minute 

each recording were used for each subject. The database 

obtained from eNTERFACE 2005 [31]. Thirty subjects were 

used for the experiments in which twenty-five are males and 

five are females. For face experts, ninety-six face images 

from a subject were randomly selected to be trained and 

projected into Eigen space, and the other twenty-four 

samples were used for the subsequent validation and testing. 

Similarly, four samples were used in speech experts for the 

modeling (training); two samples were used for the 

subsequent validation and testing. For signature experts, 

twenty four signatures from a subject were randomly selected 

for training, and the other six samples were used for the 

subsequent validation and testing. Three sessions of the face 

database, signature and speech database were used separately. 

Session one was used for training the speech and face experts. 

Each expert used ten mixture client models. To find the 

performance, Sessions two and three were used for obtaining 

expert opinions of known impostor and true claims. 

Performance Criteria: The basic error measure of a 

verification system is false rejection rate (FRR) and false 

acceptance rate (FAR) as defined in the following equations: 

False Rejection Rate (FRRi): is an average of number of 

falsely rejected transactions. If n is a transaction and x (n) is 

the verification result where 1 is falsely rejected and 0 is 

accepted and N is the total number of transactions then the 

personal False Rejection Rate for user i is  

1

1
( )

N

i

n

FRR x n
N =

= ∑                            (39) 

False Acceptance rate (FARi) is an average of number of 

falsely accepted transactions. If n is a transaction and x(n) is 

the verification result where 1 is a falsely accepted 

transaction and 0 is genuinely accepted transaction and N is 

the total number of transactions then the personal False 

Acceptance Rate for user i is 

1

1
( )

N

i

n

FAR x n
N =

= ∑                            (40) 

Both FRRi and FARi are usually calculated as averages 
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over an entire population in a test. If P is the size of 

populations then these averages are 

1
P

i

i

FRR FRR
P

= ∑                             (41) 

1
P

i

i

FAR FAR
P

= ∑                             (42) 

Equal Error Rate (EER), is an intersection where FAR and 

FRR are equal at an optimal threshold value. This threshold 

value shows where the system performs at its best. 

As a common starting point, classifier parameters were 

selected to obtain performance as close as possible to EER on 

clean test data (following the standard practice in the face 

and speaker verification area of using EER as a measure of 

expected performance). A good decision is to choose the 

decision threshold such as the false accept equal to the false 

reject rate. In this paper it uses the Detection Error Tradeoff 

(DET) curve to visualize and compare the performance of the 

system (see Figure 11). 
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Figure 11. Detection error tradeoff curves. 

5. Conclusions 

The paper has presented a human authentication method 

combined dynamic face, signature and speech information in 

order to improve the problem of single biometric 

authentication, since single biometric authentication has the 

fundamental problems of high FAR and FRR. It has 

presented a framework for fusion of match scores in multi-

modal biometric system based on adaptive Bayesian method. 

The likelihood ratio based fusion rule with GMM-based 

Figueiredo-Jain (FJ) density estimation achieves a significant 

recognition rates. As a result presented a combined 

authentication method can provide a stable authentication 

rate and it overcomes the limitation of a single mode system. 

Based on the experimental results, it has shown that EER can 

be reduced down significantly between the face, signature 

mode and a combined face-voice-signature mode.  
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