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Abstract: Now it is still unclear how frameshift mutations arise at cyclobutane pyrimidine dimers. The author develops 

polymerase – tautomeric model of ultraviolet mutagenesis. The model is described that is based on the formation of rare 

tautomeric bases in cis-syn cyclobutane thymine dimers. A mechanism was proposed for targeted deletions caused by cis-syn 

cyclobutane thymine dimers. Targeted deletions are frameshift mutations when one or several nucleotides are dropped out in a 

DNA site opposite to a lesion capable of stopping DNA synthesis. Ultraviolet irradiation may result in changes of tautomer 

states of DNA bases. Thymine molecule may form 5 rare tautomer forms. They are stable if these bases are part of cyclobutane 

dimers. Structural analysis indicates that opposite one type of cis-syn cyclobutane thymine dimers containing a single 

tautomeric base (TT2*, with the ‘*’ indicating a rare tautomeric base and the subscript referring to the particular conformation) 

it is impossible to insert any canonical DNA bases with the template bases with hydrogen bonds formation. Therefore it is 

proposed that under synthesis DNA containing cis-syn cyclobutane thymine dimers TT2* specialize or modified DNA 

polymerases will leave one nucleotide gaps opposite these cis-syn cyclobutane thymine dimers. Daughter DNA strand opposite 

cis-syn cyclobutane thymine dimers TT2* may fall out. If in opposite DNA strand the loop is formed, daughter strand becomes 

shorter. Some DNA nucleotides are lost. Targeted deletion is formed. According to the polymerase-tautomeric model of 

ultraviolet mutagenesis cis-syn cyclobutane thymine dimers wherein a thymine is in the canonical tautomeric forms do not 

result in mutations. Cis-syn cyclobutane thymine dimers wherein a thymine is in the rare tautomeric forms T1*, T4*, or T5* 

were shown to cause only targeted base substitution mutations. Cis-syn cyclobutane thymine dimers wherein a thymine is in 

the rare tautomeric form T2* may result in targeted frameshift mutations (targeted insertions and targeted deletions). 

Keywords: UV-mutagenesis, Rare Tautomeric Forms, Targeted Frameshift Mutations, Targeted Deletion,  
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1. Introduction 

UV radiation produces photoproducts in DNA. As 

indicated above, both cyclobutane pyrimidine dimers and (6-

4) adducts are formed [1-6]. The most common lesions are 

cis-syn cyclobutane pyrimidine dimers [4], in which the 

bases preserve their original orientation relative to the sugar-

phosphate backbone [7]. Cyclobutane pyrimidine dimers and 

(6-4) adducts cause substutution mutations [8-19], 

frameshifts [11, 20, 21], and complex mutations [22]. Only a 

few photodimers result in mutations, while more than 90% of 

these lesions do not [9]. Frameshift mutations are the 

structural DNA changes wherein one DNA strand becomes 

shorter or longer than the other as a result of a deletion or 

insertion of a number of nucleotides that is not divisible by 

three [23]. The point mutation rate of phage ΦX174 was 

determined [24]. One nucleotide deletions appear most often 

[25]. Frameshift mutations may be targeted and untargeted 

types [26]. Mononucleotide runs are hot spots for frameshift 

mutations in mismatch repair (MMR)-deficient cells. 

Frequencies of frameshift mutations increase as a function of 

the number of reiterated base pairs at DNA sites [27]. Both 

the length of a mononucleotide microsatellite and its 

sequence context influence mutation rate in defective DNA in 
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mismatch repair (MMR)-deficient cells [28]. Ultraviolet 

radiation C (UVC) or reactive oxygen species-induced CC to 

TT tandem mutations is markedly enhanced in MMR-

deficient cells. CC to TT tandem mutations in MMR-

deficient cells form more readily in a homocytosine run than 

in a sequence limited to two cytosines [29]. The deletion 

frequency increases with repeat length, decreases with the 

distance between repeats [30]. The Y-family DNA 

polymerase Dpo4 make single-base deletion errors at high 

frequencies in repetitive sequences, especially those that 

contain two or more identical pyrimidines with a 5′ flanking 

guanosine [31]. 

The postreplicative mismatch repair (MMR) system is 

important for removing mutational intermediates that are 

generated during DNA replication, especially those that arise 

as a result of DNA polymerase slippage in simple repeats 

[32]. Both replication fidelity and MMR are affected by the 

microsatellite's nucleotide composition [33]. PCNA and RPA 

suppress large deletion errors by preventing the primer 

terminus at a repeat from fraying and/or from relocating and 

annealing to a downstream repeat [34]. DNA polymerase IV 

uses a template slippage mechanism to create single base 

deletions on homopolymeric runs [35]. DNA polymerase IV, 

which creates single-base deletions, prefers to extend slipped 

DNA substrates with the skipped base at the −4 position [36]. 

Overexpression of enzymes of the base excision repair 

pathway is known to increase the frequency of frameshift 

mutations [37]. Human polymerase kappa uses a classical 

Streisinger template-slippage mechanism to generate −1 

deletions in repetitive sequences, as do the bacterial and 

archaeal homologues [38, 39]. Frameshift-inducing mutagens 

can selectively induce mutations in mismatch repair-deficient 

cells versus mismatch repair-proficient cells. Environmental 

exposures may, therefore, favor development of cancers with 

microsatellite instability in tissues like the gut [40]. Cancer-

associated mutations in cancer genes constitute a diverse set 

of mutations associated with the disease. 

The Streisinger model [41] is now the best-grounded 

model of frameshift mutations [42-44] suggesting gaps and 

DNA strand slippage during synthesis as the causes of 

mutations. It is shown that deletions formation due to the 

appearance of template bases looped-out as a bulge [44]. The 

second model [45, 46] states that certain ( 1)-frameshifts
 

are initiated by a nucleotide misincorporation. The model [46] 

has been confirmed [38, 48, 49]. Functional studies and 

information on the structures of DNA polymerases allow 

refinement of Streisinger's original hypothesis and offer 

possible explanations for why misalignment error rates 

during DNA synthesis can vary by 10,000-fold, depending on 

the DNA polymerase and the nucleotide composition, 

symmetry, and location of the synthesis error [47]. Two 

distinct mechanisms contribute to slipped misalignments: 

simple replication misalignment events are sensitive to DNA 

polymerase III exonuclease, whereas SCE-associated events 

are sensitive to exonuclease I [43]. It is proposed two 

mechanisms for palindrome-stimulated spontaneous deletion 

[50]. It is presented evidence for three mechanisms of RecA-

independent sequence rearrangements: simple replication 

slippage, sister-chromosome exchange-associated slippage, 

and single-strand annealing [50]. However, the models [27, 

41, 45, 46] fails to explain how cis-syn cyclobutane 

pyrimidine dimers result in frameshift mutations and why 

these lesions cause nucleotide substitutions in some cases and 

frameshifts in other ones. 

I have attempted to construct a polymerase-tautomeric 

model for UV-induced mutagenesis [52-73], based on idea by 

Watson and Crick [74] that changes in tautomeric state are 

possible for DNA bases. The results of studies on the 

structure of the active centers polymerases show that the 

bases in rare tautomeric forms may exist in the active sites of 

polymerases [75-80]. A mechanism for changes in the 

tautomeric state of base pairs has been proposed [52, 54, 55, 

57, 61, 63-65]. It was assumed that the tautomeric state of the 

constituent bases may change during the formation of 

cyclobutane pyrimidine dimers [57, 61, 63, 65]. A 

mechanism for changes in the tautomeric state of base pairs 

has been proposed for the case when DNA is UV-irradiated 

and cyclobutane pyrimidine dimers are formed [61, 63]. Five 

new rare tautomeric conformations of A:T [61, 63] and G:T 

[56, 62] base pairs are proposed that are capable of 

influencing the character of base pairing. The rare tautomeric 

forms of bases are stable at cis-syn cyclobutane pyrimidine 

dimers formation and in DNA synthesis [63, 65]. The part of 

cis-syn cyclobutane pyrimidine dimers with bases in certain rare 

tautomeric forms may result in targeted substitution mutations 

[58, 64, 66]. Three mechanisms for untargeted substitution 

mutations formation also have been developed [60, 62, 67, 

69]. A model was developed for the formation of hot and cold 

spots of UV-induced mutagenesis [68]. A mechanisms was 

proposed for targeted insertions [70, 71], targeted complex 

insertions [73] and targeted deletions (provisional article [72]) 

caused by cis-syn cyclobutane thymine dimers. Cis-syn 

cyclobutane thymine dimers with bases in certain rare 

tautomeric forms may result in targeted frameshift mutations. 

A structural analysis showed that none of the canonical 

nucleotides can be incorporated opposite to these cis-syn 

cyclobutane thymine dimers [70-72]. In this paper a 

mechanism was proposed for targeted deletions caused by 

cis-syn cyclobutane thymine dimers. 

2. Error-prone or SOS DNA Synthesis on 

a Template Containing cis-syn 

Thymine Dimers 

If not removed by the repair mechanisms, cyclobutane 

pyrimidine dimers may allow targeted mutations to arise 

during error-prone or SOS synthesis. Incorrect bases can be 

inserted when DNA containing cyclobutane pyrimidine 

dimers acts as the template for error-prone or SOS-

replication, repair, or transcription [81-84]. The mutations 

that result from these incorrect bases are often targeted; that 

is, they occur at the same position as the cyclobutane 

pyrimidine dimers [9, 10, 13]. Mutations arise when 
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modified [85] or specialized [86-97] DNA polymerases are 

involved in DNA synthesis. 

Modified or specialized DNA polymerases incorporate 

canonical bases capable of forming hydrogen bonds with 

dimerized bases in template DNA [64]. Error-prone DNA 

synthesis proceeds the same way as error-free synthesis. 

When a canonical nucleotide cannot be added opposite to a 

cyclobutane pyrimidine dimer so that the opposite bases are 

hydrogen bonded, specialized or modified DNA polymerases 

leave a one-nucleotide gap. For instance, this is the case 

when an abasic site occurs in the template, leading to one-

nucleotide deletion [25]. 

 

Fig. 1. Rare tautomeric states of thymine and adenine. (a) Watson-Crick pair 

A-T and (b-h) rare tautomeric states possible for thymine and adenine upon 

UV irradiation of DNA. 

Frameshift mutations most commonly arise in DNA sites 

with a homogenous nucleotide composition, such as 

monotonous runs of G-C or A-T pairs. Five rare tautomeric 

forms are possible for thymine (Fig. 1) [63]. The forms are 

stable when the respective bases are involved in cyclobutane 

thymine dimers [63, 64]. This is because the DNA strand 

bends once pyrimidine dimers arise, and the hydrogen bonds 

between the bases are broken between the bases that neighbor 

the cyclobutane pyrimidine dimers [4, 98-101]. Consider a 

DNA site with a homogenous nucleotide composition 

wherein one strand contains cis-syn cyclobutane dimers TT2* 

(Fig. 1). One base of the dimer is a canonical thymine (T), 

and the other is the rare tautomeric form T2* (Fig. 2a). The 

question is how deletions of one or more nucleotides can 

form in this case. Let us the site is replicated by error-free 

DNA polymerases. In result a post replicate gap may appear 

opposite cyclobutane dimers (Fig. 2b). Let us the post 

replicate gap is replicated by specialized or modified DNA 

polymerases in result error-prone or SOS synthesis. 

 

Fig. 2. Generation of a targeted deletion of several nucleotides. a) A DNA 

site contains the cis-syn cyclobutane thymine dimers TT2*; b) a post 

replicative gap arises opposite to cis-syn cyclobutane dimers TT2*; c) post 

replicative gap is filled using modified or specialized DNA polymerases. 

One-nucleotide gaps arise opposite to the cis-syn cyclobutane thymine 

dimers TT2*; d) site of the DNA strand is lost; e) a loop forms; f) the gap is 

filled. An insertion of several nucleotides formed, but smaller than the fallen 

DNA site. A targeted deletion of several nucleotides is formed. 

A structural analysis is performed for the incorporation of 

DNA nucleotides opposite to T2* (Fig. 3b) to identify the 

canonical nucleotides that can be inserted opposite to T2* to 

allow hydrogen bonding of the two bases. Canonical thymine 

cannot be inserted opposite to T2* by DNA polymerase 

because of repulsion between the hydrogen H3 of the 

canonical thymine and H3 of T2* (Fig. 3c). Adenine cannot 

be inserted because of repulsion between H′6 of adenine and 

H′6А of T2* (Fig. 3d). Cytosine incorporation is prevented by 

repulsion between H4′ of cytosine and H′6А of T2* (Fig. 3e), 

and guanine incorporation is prevented by repulsion between 

H′1 of guanine and H3 of T2* (Fig. 3f). That is, none of the 

canonical bases can be incorporated opposite to T2*. 
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Fig. 3. Possible base pairs formed between thymine in rare tautomeric 

conformations T2* and bases in canonical tautomeric conformations. (a) A:T 

canonical pair; (b) A2*:T2* pair, wherein the bases are in the rare 

tautomeric state; (c) T2* and thymine; (d) T2* and adenine; (e) T2* and 

cytosine; (f) T2* and guanine. 

A one-nucleotide gap arises opposite to a cis-syn 

cyclobutane dimer TT2* (Fig. 2b) as a result of translesion 

synthesis driven by modified E. coli DNA polymerase III or 

mammalian DNA polymerase δ or ε or specialized 

(mammalian Pol η or Pol ζ or E. coli DNA polymerase IV or 

V) DNA polymerases. As was demonstrated experimentally, 

such a gap arises during DNA synthesis when the template 

contains an abasic site, leading to a one-nucleotide deletion 

[25]. The site in nascent DNA strand may be lost (Fig. 2c) 

because a bend forms in the site containing cyclobutane 

pyrimidine dimers and the hydrogen bonds between the bases 

are broken [4, 98-101]. A DNA site containing the cis-syn 

cyclobutane dimers TT2*, may form a loop as shown in 

Figure 2e. The resulting smaller gap is usually filled in by 

constitutive DNA polymerases (Fig. 2f), leading to the 

precipitation of several bases (deletion formation). 

One nucleotide deletions appear most often. In this case, 

one nucleotide falls. This deletion may cause a one cis-syn 

cyclobutane dimer TT2* (Fig. 4). A one-nucleotide gap arises 

opposite to a cis-syn cyclobutane dimer TT2* (Fig. 4b) as a 

result of translesion synthesis. DNA strand containing cis-syn 

cyclobutane dimer TT2* may form a small loop (Fig. 4c). In 

this case, the DNA site containing the gap is shifted by one 

nucleotide and DNA strand is connected to a new place (Fig. 

4c). This is possible because the frameshift mutations are 

formed on homogeneous site of the DNA, in this case, 

consisting only of thymine molecules. 

 

Fig. 4. Generation of a one-nucleotide targeted deletion. (a) A DNA site 

contains the cis-syn cyclobutane thymine dimer TT2*; (b) one-nucleotide 

gaps arise opposite to the cis-syn cyclobutane thymine dimer TT2*; (c) DNA 

strand containing cis-syn cyclobutane dimer TT2* forms a small loop. The 

DNA site containing the gap is shifted by one nucleotide. A one-nucleotide 

targeted deletion is formed. 

Thus, cis-syn cyclobutane thymine dimers wherein one or 

both of the bases occur in the rare tautomeric states that 

prevent their hydrogen bonding with canonical DNA bases 

are a possible source of frameshift mutations and, in 

particular, deletions. The above mechanisms of deletions 

formation agree with the models [27, 41, 45, 46]. 

3. Conclusion 

To further develop the polymerase-tautomeric model of 

UV-induced mutagenesis, a mechanism was proposed for 

targeted deletions (frameshift mutations) caused by cis-syn 

cyclobutane thymine dimers. A structural analysis showed 

that none of the canonical nucleotides can be incorporated 

opposite to a cis-syn cyclobutane thymine dimer TT2* with 

formation of hydrogen bonds between the T2* bases of the 

template DNA and the inserted canonical bases. The analysis 

is based on the fact that the canonical bases capable of 

hydrogen bonding with template DNA bases are incorporated 

opposite to cyclobutane dimers by specialized or modified 

DNA polymerases during DNA synthesis [63]. Double-

stranded DNA synthesis was considered for the case where 

one of the strands contains cis-syn cyclobutane thymine 

dimers wherein one or both of the bases occur in the rare 

tautomeric state T2*. When modified or specialized DNA 

polymerases drive the synthesis, a one-nucleotide gap can 

arise opposite to a cis-syn cyclobutane thymine dimer 

containing T2*. The DNA strand is bent and H-bonds between 

the bases are broken [4, 98-101]. Therefore, the DNA site 

opposite of the cis-syn cyclobutane dimers TT2* be lost. The 

DNA site containing the cis-syn cyclobutane dimers TT2*, 

may form a loop. A daughter strand becomes shorter. As a 

result, several DNA nucleotides fall and a deletion is formed. 

One cis-syn cyclobutane dimer TT2* may result in one-

nucleotide deletion. A one-nucleotide gap can arise opposite 

to a cis-syn cyclobutane thymine dimer TT2*. The DNA site 
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containing one cis-syn cyclobutane dimer TT2*, may form a 

small loop. A daughter strand shift on one nucleotide and 

one-nucleotide deletion is formed. 

According to the polymerase-tautomeric model of 

ultraviolet mutagenesis cis-syn cyclobutane thymine dimers 

wherein a thymine is in the canonical tautomeric forms do 

not result in mutations [63]. Cis-syn cyclobutane thymine 

dimers wherein a thymine is in the rare tautomeric form T2* 

may result in targeted frameshift mutations (targeted 

insertions and targeted deletions) [69-71]. Cis-syn 

cyclobutane thymine dimers wherein a thymine is in the rare 

tautomeric forms T1*, T4*, or T5* were shown to cause only 

targeted base substitution mutations [63]. I propose the 

mechanisms of targeted insertions formation during error-

prone or SOS synthesis of DNA containing cis-syn 

cyclobutane thymine [69] and cytosine [70] dimers. 

Therefore, the cis-syn cyclobutane thymine dimers that 

contain the rare tautomeric form T2* were demonstrated to 

cause targeted frameshift mutations. Thus, different targeted 

mutations, including both nucleotide substitutions and 

frameshifts, can be explained in the context of the 

polymerase-tautomeric model of UV-induced mutagenesis. In 

addition, the model is able to explain nature and mechanisms 

formation of targeted complex ultraviolet mutations [72], 

mechanisms of hot and cold spots formation [67] and 

mechanisms of untargeted base substitution mutations 

formation [68]. 
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