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Abstract: The article gives a succinct historical review of the evolution of physical concepts in photonics and light-matter 

coupling during the 20th century with special emphasis on noteworthy contributions made by a prominent Ukrainian 

theoretician Kirill Tolpygo, whose centenary will be celebrated next year. We dwell in detail on the history of elaboration of 

such key notions as various types of excitons, polaritons, spatial dispertion in crystals and others. Their correct understanding 

provides an indispensable basis for further progress in crystal optics. 
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1. Introduction 

Next year marks the centenary of a prominent Ukrainian 

theoretician, a Doctor of Theoretical and Mathematical 

Physics, a corresponding member of the Ukrainian Academy 

of Sciences Kirill Borisovich Tolpygo. 

 

Fig. 1. Kirill Borisovich Tolpygo (03/05/1916 – 13/05/1994). 

In 1949—1956 K.B. Tolpygo has pioneered a consistent 

development of adiabatic approximation in the dynamic 

theory of crystal lattices. He proposed a description, which 

permitted to account for deformation of electronic shells of 

ions and the concomitant effect of delay. The corresponding 

approach is known as Tolpygo’s model or shell model. K.B. 

Tolpygo was the first to examine optical vibrations with due 

account for retardation effect. In doing so he obtained the 

mixed states of photons and phonons, which consequently 

were studied experimentally and have come to be known as 

polaritons. This has led to introduction of long-range 

Coulomb forces into the dynamics of homopolar and 

molecular crystals. Tolpygo’s theory permitted to investigate 

an interaction between electrons and phonons of all braches 

and wave lengths and was successfully applied to polaritons, 

F-centers, and excitons in alkali halide crystals. Later this 

served as a basis for construction of a microscopic theory of 

local states of small-radius electrons.  

It is due to point to Tolpygo’s contribution to the many-

electron theory of valent crystals. He proposed an efficient 

method to account for many-electron correlation within the 

band theory and justified a quasi-molecular model for valent 

crystals. He also developed a novel interpretation of their 

optical absorption spectra based on the concept of Frenkel 

metastable exciton. K. B. Tolpygo has constructed a theory of 

defect formation under the light absorption from within the 

resonance band and gave a microscopic description of 

absorption of light waves incident on a semi-infinite crystal. 

Let us also mention his microscopic theory of Cherenkov 

radiation resulting from polariton generation by a fast 

electron field. 

Of considerable interest are the works of K.B. Tolpygo 

devoted to kinetics and phenomenology of semiconductors, 

which covered the theory of thermionic emission, 

photoelectromotive force, p-n transitions, surface phenomena 



2 V. V. Rumyantsev and K. V. Gumennyk:  Towards a History of Concepts of Light-Matter Coupling  

 

etc. In addition to solid-state physics Tolpygo’s research 

interests extended into the field of biophysics.  

Making no pretence at exhaustiveness we essay below a 

survey of the currently topical field of photonics and light-

matter coupling, whose commencement and early 

development is to a large degree credited to K.B. Tolpygo. 

2. Excitons and Polaritons 

The microscopic theory of optical phenomena in crystals is 

closely related to the theory of excitons, which provides an 

appropriate tool for elucidation of the specifics of interaction 

between electromagnetic fields and crystals and for 

construction of the physical picture of energy transfer in 

crystalline media. It is well established that in a crystal, 

where the translation symmetry allows for excitation of any 

of its elementary cells (or any of the comprising structural 

units), the energy transfer of electronic excitations occurs due 

to the motion of quasi-particles called excitons. The concept 

of “exciton” was originally introduced into physics by the 

pioneering works of Ya.I. Frenkel [1, 2]. Among the first to 

consider excitonic states was also R. Peierls [3]. These works 

gave a theoretical explanation for the experimentally 

observed photoelectrically negative light absorption. 

Utilizing Heitler-London-Heisenberg method (HLH) in his 

study of electronic states [4] Ya.I. Frenkel demonstrated that 

the absence of photoconductivity under the light absorption 

by an electronic subsystem in an ideal crystal stems from 

excitations of crystalline structural units moving in waves 

(due to translation invariance) along a crystal. Such excited 

states were given the name of “Frenkel excitons”. 

Another excited no-current state of crystal electrons was 

considered by G. Wannier [5] and N. Mott [6]. It consists of 

an electron (in conductivity band) and a hole (in valence 

band) bound by coulombic forces. The center of inertia of 

such a hydrogen-like formation moves freely along a crystal. 

Wannier-Mott exciton motion can be described by the 

effective mass method [7]. Considering an excited state of a 

molecule as an electron-hole pair, the Frenkel exciton can be 

termed a small-radius exciton, while that of Wannier-Mott 

should be recognized as a big-radius one (with radius much 

bigger than the lattice constant). Excitations of the first type 

are mostly observed in molecular and alkali-halide crystals, 

whereas the second type is characteristic to semiconductors 

with narrow band gaps and large dielectric permittivity (there 

are exceptions to this rule though; see e.g. [8], where the 

properties of Frenkel excitons are discussed for CuO2 

semiconductors).  

A fairly exhaustive coverage of exciton theory and a 

detailed bibliography on the subject can be found in [9-15]. 

Here we shall mention some of the works of principal 

importance. 

An experimental evidence for the existence of Wannier-

Mott excitons was obtained by E.F. Gross and co-authors 

[16-18] by observing hydrogen-like spectra near the band-

gap absorption edge. According to a well-known Rydberg 

formula the pattern of optical absorption lines in CuO2 stands 

in correspondence with excitonic levels (see e.g. [19]). In [20] 

authors reported on exciton absorption in GaAs. Ref. [21] 

brings an evidence for the motion of exciton in CdS 

crystalline lattice; Ref. [22] shows that CdS crystal 

anisotropy is manifested in anisotropy of excitonic states. 

Calculation of energy spectrum of excitons in alkali halide 

crystals was performed by T.A. Kudykina and K.B. Tolpygo 

[23], the corresponding calculation for CdS was given by S.A. 

Moskalenko and M.I. Shmiglyuk [24]. In the latter reference 

the authors point to the necessity of taking into account the 

splitting of excitonic terms resulting from the presence of 

identical ions in an elementary cell.  

Frenkel excitons were studied in inert gas crystals [25-28]. 

Important investigations have also been carried out by A.S. 

Davydov and co-authors in a series of papers devoted to 

molecular excitons (see bibliography in [29]), where they for 

the first time considered the splitting of exciton states 

resulting from the presence of more than one molecule in an 

elementary cell. It was named Davydov splitting in contrast 

to Bethe splitting of degenerate atomic energy levels caused 

by intracrystalline field. Worthy of mentioning is also the 

paper of W. Heller and A. Marcus [30], which for the first 

time reports on splitting of energy levels of transverse and 

longitudinal excitons. A discontinuous character of exciton 

energy dependence on the wave vector k  for 0k =  was 

established by S.I. Pekar in [31], where he took a proper 

account of long-range electric interactions between structural 

units in crystals. For specific models of excitons this result 

was verified in [32, 33]. 

S.I. Pekar generalized the concept of exciton [31] by 

calling “excitonic” an excited state in a non-conducting 

crystal characterized by a single continuous quantum number 

(quasi-impulse) with the rest of quantum numbers being 

discrete. Apart from the above discussed Frenkel and 

Wannier-Mott electronic excitons this general definition 

applies to optical phonons, molecular vibrons (electron-

oscillation excitations), spin waves etc.  

The notion of exciton emerged from interpretation of light 

absorption bands in non-metallic crystals. According to 

theoretical models [11, 34] the pronounced resonance 

maxima of excitonic absorption spectra reflect a single-

particle character of light absorption, under which a photon 

in crystal transforms into a quasi-particle – an exciton. For 

small dissipation in the electronic subsystem and significant 

interaction between the said subsystem and the quanta of 

electromagnetic field the separate descriptions of the two 

subsystems lose their validity. In this situation an interaction 

between light and a crystal is described by Hamiltonian 

ˆ ˆ ˆ ˆ
e p epH H H H= + + ,                              (1) 

where ˆ
eH  and ˆ

pH  are, correspondingly, Hamiltonians of 

free excitons (dissipation processes, which affect optical 

properties in a crystal are neglected) and transverse photons 

(longitudinal Coulomb field is included in the term ˆ
eH , since 

accounting for coulombic interaction should automatically 
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yield excitonic states). Interaction Hamiltonian for excitons 

and photons has the form [34]: 

( ) ( )
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where kia+
 and ki

a  are creation and annihilation operators of 

a photon with wave vector k  and polarization index i , k
B ν

+
, 

k
B ν  are bosonic creation and annihilation operators of an 

exciton in the ν -th band with wave vector k  and energy 

( )kω ; here 1=ℏ . The explicit forms for the vertex part 

( )kiTν of interaction operator ˆ
epH  and the value 

2

ifν  of the 

contribution of the given ν -th transition into the square of 

plasma frequency in a crystal are given in [34]. 

Since Hamiltonian Ĥ  is a bilinear combination of bosonic 

amplitudes, it can be reduced (through a canonic 

transformation) to a diagonal form, which yields the creation 

and annihilation operators of a new elementary excitation – a 

polariton [11]. An approach based on the concept of resonant 

transmutation of photons (in the infrared spectrum region) 

and excitons is called polaritonic (see e.g. [34]). 

The problem of electromagnetic field oscillations 

“coupled” to crystal elementary excitations in the infrared 

spectrum region (where the most significant role is played by 

the optical branches of lattice oscillations) was for the first 

time solved on the basis of semi-classical approach by K.B. 

Tolpygo [35] and independently by M. Born and K. Huang 

[36, 37]. Various solutions of this problem based on 

polaritonic approach were given by U. Fano [38], J. Hopfield 

[39], V.M. Agranovich [40] and A.A. Demidenko [41] (see 

also [42-45]). It will be recalled that the term “polariton” was 

introduced by J. Hopfield to denote the quantum of 

polarization oscillations of crystal structural units, which 

does not interact with a light wave. He proposed a crystal 

model, where atoms are replaced by uncoupled charged 

harmonic oscillators. In [39] J. Hopfield considered a 

combination of “polariton” and a vacuum photon, the so 

called crystal photon. It was for the latter that the term 

“polariton” was subsequently reserved.  

There is an additional concept of exciton polariton 

introduced by S.I. Pekar to describe the mixed exciton-

electromagnetic waves in crystals (see e.g. [46, 47]). The 

theory of exciton polaritons developed by S.I. Pekar and his 

co-authors proved extremely fruitful for solution of the 

problems of modern crystal optics with due account for 

interaction delay between crystal structural units as well as 

for spatial dispersion, long-range coulombic interactions and 

strong back action of crystal particles on electromagnetic 

waves.  

When considering propagation of light in a crystal the 

effect of electromagnetic field on electrons and atomic nuclei 

can be regarded as a small quantity. The back action, 

however, of crystal charged particles on electromagnetic 

wave cannot be neglected. The energy of exciton-photon 

interaction is small as compared to the energy of electron-

nuclear subsystem, but isn’t such when compared to the field 

energy in a crystal, especially in the excitonic absorption 

region.  

In theories based on semiclassical approach this 

circumstance implies that polarization current in Maxwell 

equations cannot be regarded as a small quantity. However 

the same assumption is true for electromagnetic perturbation 

in Schrödinger’s equations. Simultaneous solution of motion 

equations for the field and the crystal structural units yields a 

dispersion law, which characterizes a mixed “electronic-

mechanical” wave [46] and shows (see [37, 39, 48, 49]) that 

exciton energy is to a large extend comprised by mechanical 

energy of crystal nuclei and electromagnetic energy of the 

accompanying wave. The delayed character of particle 

interaction is accounted for in Maxwell equations. Passage to 

the limit c → ∞  yields the results of a standard exciton 

theory based on the Schrödinger equation, which takes into 

account only coulombic interaction between crystal structural 

units and neglects the delay. 

As is known [50], the delayed interaction between charged 

particles (in crystals and elsewhere) results from the 

exchange of virtual transversal photons. Neglecting the delay 

leads to a situation, where the lowest elementary excitations 

in crystals are excitons (in the sense defined in [48]) and 

transversal photons, whereas the genuine excitonic states are 

exciton polaritons.  

The above conclusions are illustrated by Figs. 2, 3 (see [10, 

37]). The dispersion law of uncoupled oscillatory systems 

(transversal photons and “mechanical” excitons) is depicted 

by dashed curves; solid curves correspond to coupled normal 

oscillations.  

 

Fig. 2. Dependence of the frequency ω  of normal waves (polaritons) 

propagating in an isotropic crystal on wave vector k . a) corresponds to 

light in a vacuum ( ckω = ), b) – to optical waves in a non-dispersive crystal, 

c) and d) – to coupled normal oscillations (polaritonic curves), e) and f) – to 

“mechanical” excitons (longitudinal and transversal, correspondingly) with 

delay neglected. 
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Fig. 3. Energy fraction Y  of “mechanical” excitons in the transversal 

normal oscillations of the “light in a crystal” system [37] ( X ck ω⊥= ). 

3. The Theory of Spatial Dispersion of 

Light in Crystals 

As has been justly observed by S.I. Pekar, when studying 

optical phenomena in crystals one should distinguish 

between “polaritonic” effects (which imply a strong 

interaction between crystal structural units and 

electromagnetic field) and spatial dispersion, i.e. the 

dependence of ε̂  on ω  and k  along with its various 

manifestations such as additional light waves. Polaritonic 

effect has been in the focus of attention since the appearance 

of classical models of M. Born (1915, see e.g. [51]). At the 

same time the first significant manifestations of spatial 

dispersion in crystals were not revealed until 1957 [48].  

Spatial dispersion is characterized by the quantity a λ , 

where a  is the lattice constant and λ  is the typical scale of 

field variation (light wave length). In the optical frequency 

range (
3~ 10a λ −

, i.e. 1a λ << ) the spatial dispersion can 

be regarded as a small quantity except for certain cases. This 

circumstance accounts to a certain degree for a relatively late 

discovery of significant spatial dispersion effects. Not later 

than in the 19th century it has become clear though that in 

order to explain the natural activity (weak spatial dispersion) 

one should account for the dependence of dielectric 

permittivity ε̂  on both the frequency ω  and the wave vector 

k . The term “spatial dispersion”, which essentially states the 

dependence ( )ˆ kε  was introduced by Hertzenshtein [53] in 

1952. 

Phenomenological description of electromagnetic wave 

propagation in a uniform medium is reduced to solution of 

the system of homogeneous equations with respect to Fourier 

components of the electric field strength ,kEω : 

( )
2

2 ,k

2
, k 0

ij i j ij j
k k k E

c

ωωδ ε ω 
− − = 

 
,                (3) 

where tensor ( )ˆ , kε ω  is a known function of ω  and k . The 

consistency condition for this system 

( )
2

2

2
det , k 0

ij i j ij
k k k

c

ωδ ε ω− − =                    (4) 

yields the dispersion law ( )kω ω=  of electromagnetic 

waves in a medium. Setting k sn
c

ω= , where n  is the 

refractive index of light with frequency ω  and propagation 

direction s  one obtains from (4) the Fresnel equation for 

( ),sn n ω= . 

In the region of weak spatial dispersion tensor ( )ˆ ,kε ω  

and the inverse tensor ( )1ˆ , kε ω−
 can be expanded into Taylor 

series: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 1

, k ...

, k ...

ij ij ijl l ijlm l m

ij ij ijl l ijlm i j

i k k k

i k k k

ε ω ε ω γ ω α ω

ε ω ε ω δ ω β ω− −

= + + +

= + + +
        (5) 

Expansions (5) are equivalent throughout the spectrum 

except for the regions of broken smoothness of functions 

( ), kijε ω , ( )1 , kijε ω−
 (in the vicinity of their poles). In case 

one of components ( ), kijε ω  drastically grows the first of 

expansions (5) becomes insufficient since its other terms 

become much smaller by comparison. ( )n ω  grows together 

with ( ), kijε ω and hence the role of spatial dispersion 

increases. In this situation spatial dispersion is taken into 

account by the second of expansions (5). Similar 

considerations apply to components ( )1 , kijε ω−
 in the vicinity 

of their poles. In (5) γ̂ , δ̂  are the tensors of optical activity 

(which do not appear in the case of non-gyrotropic medium), 

α̂  and β̂  are fourth rank tensors, which define an additional 

crystal gyrotropy. Traditional crystal optics not only assumes 

the existence of equivalent expansions (5) (the choice 

between whom is made for the reasons of convenience) but 

also states the analyticity of their dependence on k . This 

permits to fully utilize the symmetry of crystals in order to 

select non-zero components of tensors ε̂ , 1ε̂ −  (and, 

correspondingly, of α̂ , β̂ , γ̂ , δ̂ ) as well as to establish 

their interdependence and ultimately to find the orientational 

dependence of optical effects (associated with expansion 

terms following the zeroth one). 

In a broad spectrum region the effect of spatial dispersion 

gives no more than a minor correction to the already known 

optical characteristics of a medium. Even in traditional 

crystal optics however there are certain phenomena 

associated with spatial dispersion, such as gyrotropy (natural 

optical activity, NOA). Apart from NOA spatial dispersion 

plays a crucial role in propagation of longitudinal waves, 

which arise in plasma [55] but can also occur (subject to 

much bigger dissipation) in crystals. The dispersion law for 

longitudinal electromagnetic waves in an isotropic medium 
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follows from the condition ( )| | , k 0ε ω = , where | |ε  is the 

coefficient entering the longitudinal part of tensor ( ), kε ω  in 

an isotropic non-gyrotropic medium: 

( ) ( ) ( )| |2 2
, k , k , k

i j i j

ij ij

k k k k

k k
ε ω δ ε ω ε ω⊥

 
= − + 
 

.     (6) 

Below we shall consider in more detail the specifics of 

spatial dispersion in cubic crystals with an inversion center. 

Tentatively it can be asserted that in this case the terms of 

order a λ  in expansions (5) vanish, and hence the dispersion 

is characterized by the parameter ( )2
a λ . An observation on 

the necessity of higher approximations in the theory of 

double refraction in cubic crystals dates as far back as 

Lorentz’s works on electronic theory of light dispersion. 

According to Hellwege [56] the physical meaning of 

approximation, which yields anisotropy of the order ( )2
a λ  

consists in a proper account not only for dipole interaction 

with the matter, but also for quadruple transitions in crystals. 

Anisotropy in cubic crystals caused by spatial dispersion was 

pointed out by K.B. Tolpygo [57], S.I. Pekar [48], V.L. 

Ginzburg [54] and others. Experimental observation of 

optical anisotropy in the region of quadruple absorption line 

in cubic Cu2O crystals was performed by E.F. Gross and A.A. 

Kaplianski in 1960 [58]. 

4. Crystal Optics in the Vicinity of 

Excitonic Transition Frequencies 

Parameter 
0

a
a nλ

λ
=  (where 0

λ  is the light wavelength 

in a vacuum) grows drastically in the vicinity of absorption 

(resonance) lines due to the growth of refraction index n , 

which leads to an increased role of spatial dispersion effects. 

A fundamentally new class of such effects was discovered by 

S.I. Pekar in 1957 [48], when he considered light waves in 

crystals with frequencies close to excitonic transitions. He 

demonstrated the existence of several waves with identical 

frequencies, polarizations and directions but different 

refraction indices – the so called additional light waves. This 

phenomenon should be distinguished from the double 

refraction; it is known to occur even in isotropically 

polarizable (cubic) crystals. 

In his early works [48, 49, 59] S.I. Pekar used the 

following technique to find the dispersion law of exciton 

polaritons. In the context of Schrödinger’s problem of 

particle motion the crystal Hamiltonian was supplemented by 

the energy of vortical constituent of the field and its 

interaction with the particles. The latter constituted a small 

external time-variant classical perturbation. The vortical part 

of the field was self-consistently found from the Maxwell 

equations whose right-hand sides contained charges and 

currents determined from Schrödinger’s problem. The self-

consistent solution of such a problem yielded the dispersion 

law ( )kω ω=  of small oscillations in the conservative 

“crystal–electromagnetic field” system as well as the exciton 

polariton energy ( )k ku ω= ℏ . 

Later S.I. Pekar gave another solution of this problem [46] 

based on techniques of the “conventional classical crystal 

optics”. The macroscopic electromagnetic field (with wave 

length much bigger than the lattice constant) attending an 

exciton polariton was found from the Maxwell equation and 

the retardation of long-range interactions was taken into 

account forthwith. We recall that the energy of such light 

waves includes mechanical energy of particles (electrons and 

nuclei) comprising a crystal. The dispersion law obtained in 

[46] turned out to be identical to the previously found one. 

Such an approach therefore did not require the solution of an 

auxiliary Schrödinger’s problem. It did however assume the 

knowledge of dielectric function ( ), kε ω  which contained 

information on the motion of srystal structural units and was 

determined by the dispersion law of mechanical excitons 

( )kexu . For cubic crystals (with dissipation neglected) in the 

vicinity of 0k =  holds the relation: 

( )
( )

0 2
2 2

2

, k
0

2

i

i

ex

i

ex

F

u k

M

ε ω ε

ω

= +
 

+ −  
 

ℏ

ℏ

,               (7) 

where 
i

exM  is the effective mass of the i -th branch exciton, 

0
ε  is the contribution to dielectric permittivity of the rest of 

excited states in a crystal. 

V.L. Ginzburg took an account of spatial dispersion (and 

obtained a “new wave”) [54] by retaining an additional term 

dependent on k  in expansions (5). In [60] S.I. Pekar treated 

spatial dispersion by assuming both numerator and 

denominator in (7) dependent on k  (the former being 

decomposable into a series ( ) 2

1 2k ...i i iF F F k= + +  and the 

latter containing a term proportional to 2k , which accounted 

for the motion of excitons). In all events [54, 48] the 

allowance for spatial dispersion leads to a higher degree of 

dispersion equation (similar to (4)) with respect to n  and 

hence to a higher number of roots. It is necessary therefore to 

carefully distinguish between those of additional roots, which 

correspond to genuine additional light and those 

corresponding to fictitious ones. This issue is throroughly 

discussed in the monograph by S.I. Pekar [60]. It is shown 

there that for a weak spatial dispersion 

2

0

a
n

λ
 
 
 

all solutions 

of dispersion equation correspond to genuine light waves. 

It is important to note that if the function ε  is 

decomposable in powers of 
0

a
nδ

λ
=  [61]: 

( ) ( ) ( ) 2

0 1 2, ...ε ω δ ε ε ω δ ε ω δ= + + + ,      (8) 

then far from excitonic resonances ε  is a smooth function of 

δ , i.e. 
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2 1

0 0

~ ~ 1
ε ε
ε ε                                     (9) 

(normal spatial dispersion), whereas in the vicinity of the i –

th excitonic transition 
( )

0

0
ex

i

u
ω ω→ =

ℏ
 holds 

2 2 1

0 1 0

1
ε ε ε
ε ε ε

∪ ∪ >>                              (10) 

(anomalous dispersion). 

Anomalous (in certain spectral regions) dependence of ε  

on small parameter δ  results in a qualitatively new finite 

effects such as Pekar’s additional light waves (ALW) [60]. 

The occurrence of ALW at a normal incidence of light flux 

on a crystal leads to formation (in contrast with Lambert-

Bouguer law) of the interference pattern, since both the main 

and the additional waves have the same polarization [62, 63]. 

Apart from experimental studies of interference reflection 

from CdSe thin plates [62, 63], the ALW were observed in 

CdS [64-68], and earlier in Cu2O [69]. 

Pekar’s prediction of ALW [48] has created an unabating 

interest for experimental and theoretical investigations of 

spatial dispersion of dielectric permittivity and optical 

phenomena in the vicinity of excitonic resonances. Numerous 

works devoted to this subject have been published in 1970-

1980 [70-77].  

According to the modern understanding a crystal is 

constituted by a multitude of charged particles – electrons 

and atomic nuclei (for big kinetic energies one should also 

account for production and annihilation of electron-positron 

pairs). Due to electromagnetic interactions (which are mostly 

responsible for physical and chemical properties of crystals) 

particles execute a complex motion, resulting in a certain 

ordered structure of crystalline medium. In its general 

formulation the problem of dynamics of a “crystal-

electromagnetic field” system is reduced to a self-consistent 

solution of equations, defining the evolution of crystal 

structural units under the action of field in combination with 

field equations. The necessary calculations are usually 

performed with the use of a certain approximation, which is 

chosen individually for each particular case. This choice 

depends on crystal model as well as on the nature of 

excitations involved. For instance, in the optics of ionic 

crystals in the infrared spectrum region the major role is 

played by optical branches of lattice oscillations [35-37], 

while in the higher frequency region this role belongs to 

electronic-type excitations [10, 15]. 

In order to obtain the dispersion law of the “light in a 

crystal” system the latter is usually subdivided into a 

“crystal” itself and “electromagnetic field” with interaction 

Lagrangian written in the linear approximation as 
1

j A e
с

ϕ⋅ −  

(where ϕ  and A  are the scalar and vector potentials of the 

field, respectively). Genuine excited states of such a system 

(exciton polaritons) are determined via diagonalization of the 

full Hamiltonian (see e.g. [34]). Hamiltonian of the “crystal” 

contains either short range forces acting between electrons of 

different atoms (such excitations are called “mechanical 

excitons”) or instantaneous coulombic interaction between 

electrons (coulombic excitons) while interaction term 

contains only the transverse field component. An alternative 

(phenomenological) approach in crystal optics involves the 

choice of specific form of dielectric response ε̂  (individual 

for each particular crystal model) and then the dispersion law 

is obtained from an equation similar to (4).  

K.B. Tolpygo, while not denying the results obtained by 

traditional methods, pointed in [76] to the difficulties of 

constructing the crystal optics in the vicinity of exciton 

formation frequency. The traditional approach has the 

following shortcomings. 1. Noting that the most popular 

choice for ε̂  is Eq. (7) the authors of [77] demonstrate that it 

leads to violation of the causality principle (the response 

comes ahead of the light signal at short distances off the 

perturbation source), which results from the “coercive” 

inclusion in (7) of the dispersion law of mechanical excitons 

(corresponding to an instantaneous interaction between the 

structural units of a crystal). 2. According to [76, 77] the 

concept of crystal, where the only acting forces are either 

short-range forces or instantaneous coulombic interactions is 

glaringly artificial. An arbitrary subdivision of the field into 

longitudinal and transverse components is not relativistic 

invariant, which makes coulombic excitons look different in 

various reference systems. Also in the region of significant 

spatial dispersion the perturbation cannot be reduced to a 

transverse field, since in the said region the field necessarily 

possesses a certain longitudinal component. 3. Treatment of 

electromagnetic field in a crystal as an “external 

perturbation” acting on a given medium is contradictory. The 

genuine external field is an incident wave coming out of 

vacuum whose propagation velocity is c  (not c n ). As for 

the transverse field (
1

A
c

− ) it includes all the fields created 

by virtually excited atoms. In a crystal each structural unit is 

subject both to external and ambient fields, which requires a 

careful exclusion of “self-actions” and an accurate finding of 

the perturbation acting on structural units. Considering an 

excited state of the entire crystal one risks accounting for 

certain interactions more than one time. 

Hence for the frequently used crystal model consisting of 

weakly interacting structural units it is more suitable to use 

the approach described in [75, 76], where the light 

propagation in a crystal is treated by considering molecules 

and the field surrounded by vacuum. This eliminates 

contradictions, which arise when we treat a crystal on one 

hand as an object under the action of the field and on the 

other hand as a medium where the said field propagates. This 

also removes the shortcomings stemming from the necessity 

to relate one of the field components (e.g. a longitudinal one) 

to interatomic interactions (in order to be able to construct 

quantum states of the crystal) while considering the other as 

“light”. Light propagation in a crystal can then be interpreted 

as a retarded excitation transfer of its molecules. 
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5. Conclusion 

Results in crystal optics obtained during the past fifty 

years provide a solid foundation for the progress of modern 

photonics. Concepts developed in the physics of crystalline 

solids can potentially be applied to photonic supercrystals. 

While the theory of impurity bands and excitons in 

semiconductor crystals has been constructed in 1970-1980, 

an analogous theory for photonic crystals is yet to be 

completed. Recent experiments and theoretical investigations 

reveal an intense interest for polaritonic structures and 

systems of coupled microresonators [78,79], whose 

applications include fabrication of clockworks of 

unprecedented accuracy [80] as well as of the sources of 

coherent irradiation. There has been a significant advance in 

the photonics of imperfect structures. A number of our recent 

works have been devoted to optical activity of imperfect 

photonic crystals [81] and to dispersion of exciton-like 

electromagnetic excitations in non-ideal lattices of coupled 

microresonators [82-84]. Such investigations provide the 

necessary theoretical background for manufacturing of 

composite structures with controllable propagation of 

electromagnetic waves. 
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