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Abstract: To establish the effect of climate variability on annual discharge in Upper Njoro Catchment, hybrid models were 
developed by coupling Soil and Water Assessment Tool and Artificial Neural Networks. Daily surface runoff, lateral flow, and 
groundwater flow were first simulated with SWAT for the period (1978-1987) using climate variables from Egerton University 
weather station and LULC of 1978. The daily hydrologic variables simulated without calibration and validation of SWAT and 
observed discharge data were then used for ANN training, which led to the creation of discharge generation hybrid models for 
the dry, wet and wetter seasons. SWAT_ANN models generated discharges were compared with observed data and the 
performance rating were achieved at R2 (0.94, 0.91, 0.92) and NSE (0.89, 0.87, 0.87) for DJFM, AMJJ, and ASON seasons 
respectively. SUFI-2 algorithm in SWAT-CUP was run separately to compare the performance of SWAT with that of 
SWAT_ANN. SWAT-CUP sensitivity analysis revealed satisfactory values of both the p-factor (0.61) and the r-factor (0.69). 
Calibration and validation of monthly streamflow were realized at R2 (0.86 and 0.78) and NSE (0.83 and 0.74). The results 
showed that coupling SWAT and ANN improved flow prediction. Further, the potential of the SWAT_ANN modeling 
approach to separate the influence of climate variability on river regime from the effect of LULC was evaluated by comparing 
trends in the differences between observed and SWAT_ANN simulated monthly streamflow with trends of the quantified 
LULC changes. The findings provided sufficient evidence that the SWAT_ANN modeling approach was reliable and could 
also be applied to detect changes in LULC. 
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1. Introduction 

Although water scarcity has been identified as one of the 
major challenges the world is facing in the 21st century, the 
management and planning of water resources is becoming 
more problematic due to the uncertainties of climate 
variability and land use/land cover (LULC) changes [6]. 
According to Schipper [42], climate variability and LULC 
changes continue to alter hydrological regimes by changing 
precipitation partitioning patterns into extreme increased or 
declined overland flow, actual evapotranspiration, surface 
runoff, subsurface flow, and groundwater outflow and 
recharge, thus annual river discharge dramatic fluctuations. 
The changes in the hydrological regime are challenging 
because climate variability and land-use change operate at 

different temporal and spatial scales. Moreover, the effect of 
land-use change and climate change might compensate or 
strengthens each other. Besides, they both might occur in 
parallel and there is uncertainty to correctly attribute 
observed changes in discharge to climate change or land-use 
change [5, 37]. 

Like many other places in the world, the River Njoro 
Catchment of Kenya is also experiencing the challenges of 
climate variability and LULC changes. There is a steady 
recognition that surface and groundwater sources are 
declining. River Njoro, which originates from Mau Forest 
Complex into Lake Nakuru is experiencing drastic changes in 
discharge and sometimes doesn’t flow throughout the year. 
Previous research by Kundu [27] and Mwetu [31] link the 
cause of streamflow decline to LULC changes in the 
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upstream. However, there is scanty quantifiable information 
on the influence of climate variability on spatial and temporal 
distribution of streamflow. Also, there is no technique for 
attribution of changes in discharge to climate and land-use 
changes. Therefore, modeling climate variability influence on 
river regime is important in Upper Njoro Catchment, because 
it provides useful and relevant insights into the impact of 
climate variability on streamflow, which may perhaps 
enlighten decision making in catchment rehabilitation, 
mitigation approaches, strategic planning, monitoring, and 
management of water resources. Also, establishing the 
influence of climate variability is imperative since it aids the 
detection of changes in land use and land cover in a 
catchment. 

Hydrological modeling is key to the optimization and 
operation of water resources [29]. Several statistical, 
empirical, and conceptual streamflow prediction models have 
been developed for decision support in water management. 
Statistical techniques, such as linear regression-based 
approaches are constrained, simplistic, and have limited 
capacity to handle non-linear relationships. Conceptual 
hydrologic models are always considered the best alternative 
because they take into account hydrologic processes through 
mathematical formulations. The assertion by Devia et al. [7] 
affirms the importance of the developed conceptual 
hydrological models, for example, Soil and Water 
Assessment Tool (SWAT), Water Evaluation and Planning 
(WEAP), and Spatial Processes in Hydrology (SPHY) and 
the key role they play in integrated water resources 
management solutions. 

Many researchers have demonstrated the ability of the 
SWAT model to replicate hydrologic loads at a variety of 
spatial scales on an annual and monthly basis [9, 28]. The 
model has been applied successfully in many river basins in 
Kenya, which include Sondu [20, 41], Tana [18], Nzoia [15], 
and Njoro [31]. However, SWAT performance depends on 
the quality of input data model parameters, sensitivity 
analysis, calibration, and validation procedures. Moreover, a 
broad range of input values and parameters, and their 
complex interactions make calibration and validation 
procedures complicated, technical, hectic, and time-
consuming [40]. 

An alternative coupling approach of SWAT with lumped 
models such as Artificial Neural Network (ANN) can be an 
alternative better predictor of streamflow [33]. Combining 
the two models helps in overcoming the shortcomings of 
each model. Besides improved performance, it leads to the 
development of a discharge generation tool which eliminates 
calibration and validation processes for SWAT. A study by 
Khashei et al. [24] in their both empirical and theoretical 
models integration findings, indicated that combining or 
coupling models effectively improve their predictive 
performance, particularly when the models in the ensemble 
are quite different. As demonstrated by Liu [36], ANN 
models are better because of their properties such as high 
fault tolerance, the capability of adaptive learning, self-
organization, real-time operation, robust performance in 
dealing with noisy input patterns, and the ability to generalize 

from the input data which make them a reliable option for 
probability predictions. ANNs have been widely applied in 
hydrological studies in the recent past [16, 12, 13, 21, 26, 38, 
44]. 

Therefore, this paper provides an approach to modeling the 
influence of climate variability on the river regime by 
coupling SWAT and ANN. It is a modeling process which 
only filters the influence of climatic condition on streamflow 
since there is no variation of LULC. This kind of modeling 
technique is an exploration of an approach introduced by Isik 
et al. [17] who combined the Soil Conservation Service (SCS) 
Curve Number (CN) to predict the impact of land-use change 
on daily discharge. The major difference is that this study 
was on simulation of daily discharge under a condition of the 
same LULC (of 1978) for different climatic scenarios. 

2. Materials and Methods 

2.1. Description of the Study Area 

Upper Njoro Catchment is located between Longitudes 35° 
50’ E and 36° 00’ E and Latitudes 0° 21’ S and 0° 34’ S 
(Figure 1). The catchment occupies zone 36S of the 
Universal Transverse Mercator (UTM) grids in the east, and 
it lies between the upper slopes of the Mau escarpment and 
Rongai-Njoro plains. Upper Njoro Catchment topography is 
mainly rolling land with slopes ranging from 3% at the plains 
to 54% in the topmost escarpment. It is drained by river 
Njoro, which descends from an altitude of about 3079 m 
above mean sea level (msl) at its source in the Eastern Mau 
Hills to about 1774 m as it drains into Lake Nakuru. Egerton 
University weather station (EU) (ID. 9035092) located near 
the river gauging station (2FC05) has relatively good 
meteorological data that was used in modeling. According to 
EU weather station, the average annual precipitation in the 
area was 1029 mm for the 40 years (1978-2017). The rainfall 
pattern is tri-modal with peaks in April, August, and 
November. Also, the mean annual wind speed, relative 
humidity, maximum, and minimum air temperatures were 5.1 
km/h, 64.61%, 23.4°C, and 13.37°C respectively. 

2.2. Hydrologic Modeling 

2.2.1. Soil and Water Assessment Tool 

Soil and Water Assessment Tool is a basin-scale 
deterministic hydrologic model designed to simulate the flow 
of water, agricultural chemical yields, crop growth, and 
sediments in a watershed. It is a semi-distributed model, 
which operates at sub-daily and daily time step [2]. In SWAT, 
for hydrologic modeling, the catchment is divided into 
multiple sub-catchments, which are further subdivided into 
hydrologic response units (HRUs). Hydrologic response units 
are lumped land within a sub-catchment which consists of 
homogeneous land cover, management, slope, and soil 
characteristics [34]. SWAT inputs are based on the 
topography of the area (digital elevation model), climatic 
factors, land use, and soil type. 
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Figure 1. Location of Upper Njoro Catchment, Kenya. 

Digital Elevation Model is an essential spatial input for 
automatic extraction of topographic parameters. Land use 
and land cover control the hydrological response and 
condition of the catchment. Soil data is very important 
because soil properties affect infiltration, surface and 
subsurface transport of water, and percolation. Climatic 
inputs used in SWAT include daily wind speed, solar 
radiation, relative humidity, precipitation, minimum and 
maximum temperature. The minimum and maximum air 
temperatures are necessary for the computation of daily water 
and soil temperatures. Precipitation being the main process 
through which water enters the land phase component of the 
hydrologic cycle, is very key in the determination of water 
balance, and therefore, its amount and distribution, in both 
space and time must be accurately simulated. Wind speed, 
solar radiation, and relative humidity use in SWAT depend 
majorly on the method selected for evapotranspiration 
estimation. For each HRU, the overall hydrologic balance is 
simulated. The hydrologic variables are simulated based on 
the soil water balance equation [2], which is given as,  

( )
1

n

t day i a i i

i

SW SW R Q E P QR

−

= + − − − −∑             (1) 

Where; 
SW=soil water content [mm] 
t=time [days] 
���� =amount of precipitation [mm] 
�� =amount of surface runoff [mm] 
�� =amount of evapotranspiration [mm] 
	� =amount of percolation [mm] 
��� =amount of return flow [mm] 

2.2.2. SWAT Model Setup and Run 

The 30 m spatial resolution Shuttle Radar Topography 
Mission-Digital Elevation Model (SRTM-DEM) was 
obtained from https://earthexplorer.asgs.gov/. Using the 
ArcMap platform, the acquired DEM was then clipped to 
reduce the extent of coverage to the study area (Upper Njoro 
Catchment) and projected to the local Universal Transverse 
Mercator (UTM) that was a selected Coordinate Reference 



129 Edwin Otieno Amisi et al.:  Modeling Climate Variability Influence on River Regime in  
Upper Njoro Catchment, Kenya 

System (CRS) (WGS 84/ UTM zone 36S) (Figure 2). It was 
used to discretized and parameterized sub-catchments and 
stream networks, as well as the derivation of the length, 
average elevation, mean slope, width, and area (Figure 2). 
The soil data obtained from FAO was clipped to the area of 
interest, rasterized, and projected to WGS84 Zone 36S 
(Figure 2). LULC map of 1978 was obtained by supervised 
classification using ArcMap on the imagery taken by Multi-
Spectral Scanner (MSS) sensor aboard Landsat (L 1-4) that 

has four channels, (two visible, and two infrared). The 

classification was done into the following categories, Forest, 
Mixed Grassland/Shrubs, and Mixed Agriculture/Pasture 
(Figure 2). Hydrologic response units’ inputs were derived 
from the combination of slope, soil, and LULC data. The 
daily observed climate variables used were from 1978 to 
1987 from the EU weather station. Hydrologic components 
of river discharge (surface runoff, lateral flow, and 
groundwater flow) were then simulated daily from 1978 to 
1987 with the parameters set at default values.  

Figure 2. Topographic, Soil, and LULC maps of Upper Njoro Catchments, Kenya.

2.3. Coupling SWAT and ANN 

To improve and obtain daily discharge simulations from 
climate influence, hybrid multivariate models based on the 
Soil and Water Assessment Tool and Artificial Neural 
Network were then developed for different seasons 
(December to March, April to July, and August to November). 
The category of the three seasons (DJFM, AMJJ, and ASON) 
were used in obtaining optimum performance of ANN during 
training. This was important to reflect the sensitivity of the 
impact of seasonal weather patterns on baseflow and 
stormflow. The first procedure in the SWAT_ANN modeling 
approach was the simulation of surface runoff (SURQ), 
lateral flow (LATQ), and groundwater flow (GWQ) 
components of discharge by the SWAT model with default 
values of the parameters. A feed-forward multi-layer 
perceptron referred to as Radial Basis Function Neural 
Network (RBFNN) (Figure 3) was adapted for this study. 
SWAT was applied as a transfer function to combine DEM, 
LULC, soil, and climatic data to produce ANN model inputs. 
The simulated SURQ, LATQ, and GWQ at day (t) from 
SWAT for the period (1978 to 1987) served as inputs to the 
RBFNN model and observed daily discharge data for the 
period (1978 to 1987) at the river gauging station (2FC05) 
from the Water Resources Authority used as the RBFNN 
target data.  

 

Figure 3. Radial Basis Function Neural Network topology. 

Each unit in the hidden neurons mathematically described 
as, 

( ) ( ) 1,2,...,x x ,i nCiiφ = − =              (2) 

Where; 

=n-dimensional vector 
��=n-dimensional vector called the center of the RBF 
|| ||=Euclidean distance, and is a univariate function, 

defined for positive input values 
Gaussian basis function was selected for this study and it is 
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defined as; 
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Radial basis function network output was then given by Eq. 4. 

( ) ( )
1

j

i
i

F x xw φ
−

=∑                           (4) 

The error backpropagation algorithm, a gradient descent 
algorithm was selected for the training because it is 
exemplary robust and accurate. Optimization was obtained 
when applied in a sequential training mode. This effectively 
permitted the set of weights to be successively modified after 
each exemplar processing as, 

( ) ( ) ( )1
ij ij ij

n n nw w w+ = + ∆                (5) 

Where, ( )
ij

nw∆ was the corresponding weight change, 

given as, 

( ) ( ) ( ) ( )1
l i

ij ij j i
x n n nyw wα ηδ

− ∆ = ∆ − +
  

        (6) 

Where; 
�=momentum coefficient 

=learning rate 
��(�)=local gradient for the node j in layer l. 

The challenge of computing synaptic weights may be 
considered as a non-linear optimization problem without 
constraints. The mean squared error (MSE) function was then 
used as a convenient objective function (Eq. 7) 

( ) ( )( )2 2

1 1

1

2

p

n jn

MSE

N m

ii
n xq F

N = =

= −∑∑           (7) 

Where; 
��=number of patterns feed into a network 
��(�) =target value for the node i 
��(
) =simulated value for t 

2.3.1. Discharge Generation Model 

During training, historical data was used for modeling by 
training (Equation 4). The difference between simulated and 
observed values led to the residues series����. The residual 
series were then modeled as cross-correlated and normally 
distributed series with means statistically equivalent to zero 
and their respective variances. The multivariate random 
component of the RBFNN was then expressed as, 

{ }
{ }

{ }
t t

ε ξ= Β                               (8) 

Since 

T

BB = Σ                                (9) 

Where { }
t

ε  the uncorrelated and normally distributed 

random signal with (0) variance and statistically equal to 1, ∑ 
was the covariance matrix of the observed residual series, 
and it was the Gramian matrix of matrix B. The last one was 
obtained by solving the matrix equation. 

The multivariate models for synthetic simulation of daily 
discharge (Q) under the influence of different climatic 
scenarios were then built by the combination of radial basis 
network output and a multivariate random component. They 
were assembled as, 

{ } ( ) { }Q F x ε= +                         (10) 

Where; 
�(
 ) =standardized and normalized synthetic values 

computed from Eq. (4) 

{ }ε =synthetic residuals calculated from Equation (8). 

All the activities and programming of the hybrid model 

development ( { } ( ) { }Q F x ε= + ) training, testing, and 

validation were carried out in MATLAB. SWAT_ANN 
Models performances were assessed by the use of the 
Coefficient of Determination (R2) and Nash-Sutcliffe 
Efficiency (NSE) as expressed in Equation. 11 and 12.  

The R2 value measures how well the simulated versus 
observed regression line approaches an ideal match and 
ranges from 0 to 1, with a value of 0 indicating no correlation 
and a value of 1 representing that the predicted dispersion 
equals the measured dispersion. The NSE ranges from −∞ to 
1 and measures how well the simulated versus observed data 
match the 1:1 line (regression line with slope equal to 1). 
Considering the daily time step modeling, the performance 
evaluation of models developed were rated according to the 
recommendation by Kalin et al. [22]. Where, 0.7 < NSE ≤ 
1.00 0.5 < NSE ≤ 0.7, 0.3 < NSE ≤ 0.5, and NSE ≤ 0.3 were 
considered to be very good, good, satisfactory and 
unsatisfactory respectively. 
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                    (12) 

Where; 
n=total number of observations 

obs

iq =observed discharge 

avg

iq =average of the observed data 

sim

iQ =simulated discharge 

avg

iQ
=average of the simulated data 
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2.3.2. SWAT-CUP 

To compare and assess the prediction accuracy of the 
SWAN_ANN modeling approach to SWAT, sensitivity 
analysis, calibration, and validation was also carried out 
using the Soil and Water Assessment Tool Calibration 
Uncertainty Procedure (SWAT-CUP). The computation of 
SWAT parameters related to streamflow was conducted by 
the domain parameter fitting algorithm (SUFI-2). As eluded 
by Khoi and Thom [25], SUFI-2 accounts for nearly all 
uncertainties sources. The Water Resources Authority's daily 
discharge data at the river gauging station (2FC05) was used 
for the calibration of SWAT. SWAT performance was 
assessed by the use of R2 and NSE. 

2.4. Evaluation of SWAT_ANN Modelling Approach 

The first evaluation was done by calculating the difference 
between the observed monthly streamflow and SWAT_ANN 
simulated streamflow under the influence of changing 
climatic scenarios with a constant condition of LULC of 
1978 for the period (1978-1999). This period (1978-1999) 
was selected because it is the only duration where available 
monthly streamflow data are relatively reliable and consistent. 
Also, monthly discharges were selected because of the 
missing data challenges in observed streamflow. The point 
where noticeable significant deviation began was then 
marked and observed trends in LULC changes were analyzed 
to ascertain the existence of changes in streamflow as a result 
of alteration in LULC. Quantification of spatial and temporal 
dynamics of LULC changes in Upper Njoro Catchment from 
1978 to 2002 using remotely sensed data was done by 
supervised classification in ArcMap. Downloaded satellite 
images were first clipped and resampled to cover Upper 
Njoro Catchment. Then, they were projected to WGS 
84/UTM zone 36s.  

The following steps were then carried out in ArcMap 
applications to achieve supervised classification for the LULC. 
Layer stacking, sub-setting, atmospheric corrections, geometric 
correction, image enhancement, a hybrid classification 
(Maximum likelihood classification), assessment of 
classification accuracy, and Post-processing of Landsat imagery. 
LULC categories for Landsat images of 1986, 1989, 1995, and 
2002 classified were Forest, Mixed Grassland/Shrubs, and 
Mixed Agriculture/Pasture. The change in coverage of the land 
between the land cover maps was calculated by simple 
subtraction of the individual LULC types. Also, for accuracy 
purposes documented land-use changes by Baldyga [4] and 
Mwetu [31] were analyzed. Baldyga [4] assessed Land cover 
change impacts in Kenya’s Upper Njoro Catchment using 
remote sensing and hydrologic Modelling within the periods 
(1986-2003). Mwetu et al. [31] approximated Spatio-temporal 
dynamics of land use in Upper Njoro Catchment from 1973 to 
2000 using remotely sensed data. 

3. Results and Discussion 

3.1. SWAT_ANN Performance 

The coupled approach of SWAT and ANN showed 

improved prediction efficiency even though the performance 
was categorized into dry and wet seasons (Figure 4). The 
highest and lowest values of R2 (0.94 and 0.91) showed that 
the model captured monthly discharge at a very good level. It 
was inferred that the SWAT_ANN approach was capable of 
explaining at least 94% of the variance of monthly discharge 
values which implied that the simulated and observed 
discharges had relatively the same Spatio-temporal pattern. 
The NSE values as shown for each season revealed a 
relatively excellent match between the predicted and 
observed monthly discharges. 

 

Figure 4. Coupled model (SWAT_ANN) performance (NSE and R2 values). 

According to Kalin et al. [22] ratings, these statistical 
indicators revealed a very good rating performance of 
SWAT_ANN for simulation of streamflow. The performance 
agreed with a previous study by Noor and Kalin [33] who 
developed a hybrid model by coupling SWAT and ANN for 
daily flow prediction in unmonitored watersheds. They 
reported that out of twenty-nine total tested watersheds, 83% 
and 62% of them had NSE values above 0.5 during the warm 
and cool seasons respectively. Moreover, Khalid [23] 
confirmed that the coupling of SWAT and ANN outputs 
improved the results of the streamflow mostly at the peak 
value. Similar performance has also been reported by Senent et 
al. [43], who carried out a prediction of instantaneous peak 
flow by coupling machine-learning techniques with the SWAT 
model in areas where sub-daily observational data were scarce. 
Their experimental and simulated data correlated with 
coefficients of 0.86 to 0.88. 

3.2. SWAT Model Performance 

The protocols applied to calibrate the SWAT model were to 
minimize the extreme variations between observed data and 
simulated discharge values by adjustments of the sensitive 
parameters within the allowable ranges (Table 1). SUFI-2 
algorithm of SWAT_CUP sensitivity analysis as shown in 
Table 1 indicated that the SCS runoff curve number for 
moisture condition II (CN2) was the most sensitive parameter 
while the maximum canopy storage parameter (CANMX.hru) 
was the least sensitive parameter. The uncertainty analysis 
results indicated satisfactory values of both the p-factor (0.61) 
and the r-factor (0.69). 

The values of the Coefficient of Determination (R2) for 
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calibration and validation of mean monthly discharges were 
0.86 and 0.79 respectively. Nash-Sutcliffe Efficiency values 
for calibration and validation were 0.83 and 0.76 for monthly 
discharge respectively. The statistical performance of the 
SWAT model revealed relatively better linear covariation and 
that simulated and observed streamflow values had fairly 
similar Spatio-temporal patterns. SWAT performance was 
acceptable as per the Moriasi et al. [30] ratings and 
recommendations. These sets of SWAT performance statistics 

for sensitivity analysis, calibration, and validation were 
consistent with the findings of the previous studies such as 
Mwetu [31]. Calibration and uncertainty analysis remained to 
be a challenge since the whole process depended on the 
response of inputs during adjustments, the number of 
iterations, the quality of observed data, and the period for 
calibration. The results from the calibration and validation of 
SWAT provided sufficient evidence that coupling SWAT and 
ANN improved prediction of the flow. 

Table 1. Parameter sensitivity analysis. 

Parameter Name Description Range 
Degree of sensitivity 

Rank 
Fitted 

Value t-stat p-value 

CN2.mgt SCS runoff curve number for moisture condition II 35-98 15.829 0.0000 1 62 

SHALLST.gw Initial depth of water in the shallow aquifer [mm] 0-5000 4.001 0.0000 2 105 

GW_SPYLD.gw Specific yield of the shallow aquifer [m3/m3] 0-0.4 3.485 0.0005 3 0.125 

RCHRG_DP.gw Deep aquifer percolation fraction [fraction] 0-1 3.255 0.0012 4 0.009 

GWQMN.gw 
Threshold depth in the shallow aquifer required for return flow 
[mm] 

0-5000 3.165 0.0016 5 48.47 

CH_N2.rte Manning’s n value for main channel -0.01-0.3 3.120 0.0019 6 0.099 

SOL_AWC.sol Soil available water storage capacity [mm H2O/mm soil] 0–1 2.95 0.0032 7 0.192 

GW_DELAY.gw Groundwater delay time [days] 0-500 2.847 0.0046 8 29 

SURLAG.bsn Surface runoff lag time [days] 0-24 2.504 0.0126 9 1.63 

ESCO.bsn Soil evaporation compensation factor 0-1 2.367 0.0183 10 0.32 

CH_K2.rte Effective hydraulic conductivity in the main channel [mm/h] -0.01-500 2.092 0.0369 11 0.082 

EPCO.hru Plant uptake compensation factor 0-1 2.067 0.0392 12 0.912 

ALPHA_BF.gw Base flow alpha factor [days] 0-1 1.941 0.0527 13 0.45 

SOL_K.sol Saturated hydraulic conductivity [mm/h] 0-2000 1.909 0.0567 14 24.73 

GW_REVAP.gw Groundwater revap. coefficient 0.02-0.2 -1.615 0.1068 15 0.07 

DEEPST.gw Initial depth of water in the deep aquifer [mm] 0-10000 1.515 0.1302 16 2172 

REVAPMN.gw 
Threshold depth of water in the shallow aquifer for ‘revap’ to 
occur [mm] 

0-1000 1.308 0.1914 17 1.63 

CANMX.hru Maximum canopy storage [mm] 0-100 0.497 0.6189 18 28 

 

3.3. SWAT_ANN Simulated Mean Annual Discharge for 

the Period (1978-2017) 

Figure 5 presents variations of mean annual discharge simulated 
under the LULC of 1978 with the climatic scenarios of the 
period (1978-2017) at Upper Njoro Catchment. The figure 
indicates a fair response of discharge peaks associated with 
extreme events of precipitation. This is consistent with the fact 
that out of all the climate variables, precipitation dominates as 
the major streamflow input in a catchment. The years with high 
amounts of precipitation also showed relatively higher events of 
streamflow peaks. The wetter climatic scenarios contribute to 
antecedent moisture conditions that have the potential for higher 
runoff and water yield generation. And this explains higher 
streamflow in 1978, 1979, 1981, 1982, 1985, 1997, 1998, 2003, 
2004, 2010, and 2012. Unlike wetter climatic conditions, drier 
climatic scenarios are characterized by warmer periods. Warmer 
air can hold more moisture, more water is also sucked into the 
atmosphere from the ground and from plants through 
evaporation and transpiration. As the warmer atmosphere pulls 
more moisture from soils and plants, drought conditions are 
exacerbated during periods of low precipitation hence low flows. 

This explains the extreme reduction of streamflow in 1980, 1984, 
1987, 1992, 1999, 2000, and 2009. From the simulation, results 
of climate variability under the baseline climatic scenario (1978-
1987) and LULC of 1978 on streamflow at Upper Njoro 
Catchment revealed that on average, streamflow reduced by 
29.41% and 8.82% in the second and third decades. And, 
increased by 11.76% in the fourth decade. Streamflow reduction 
in the 2nd and 3rd decades was attributed to the decline of surface 
runoff and water yield. Surface runoff reduction in the 2nd and 
3rd climatic scenarios implied a decreased number of wet years 
as a result of the progressive decline in precipitation. The 
decrease of average annual water yield in the second and third 
decades was attributed to a decline in surface runoff and 
recharge of groundwater due to the increase of actual 
evapotranspiration. Moreover, an increase in evapotranspiration 
was associated with positive trends in surface temperatures and 
solar radiation. Streamflow increase in the last decade was 
contributed by the relatively higher increase of water yield in the 
last decade as a result of an increased number of wet years, and 
more surface runoff, lateral flow, percolation, and groundwater 
flow. These results were consistent with the findings of the 
previous research [31, 32]. 
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Figure 5. Mean annual simulated Discharge-Precipitation relationship at Upper Njoro Catchment for the period (1978-2017). 

3.4. Assessment of SWAT_ANN Potential in Modeling 

Influence of Climate Variability 

Results of mean monthly differences between the observed 
and simulated streamflow under the influence of climate 
variability with no changes in LULC of 1978 are shown in 
Figures 6 and 7. The figures indicate that the significant point 
of deviation of simulated from observed monthly streamflow 
occurred from 1985 onwards with the declining trend. The 
negative trend implied a decline in observed monthly 
discharges, which was attributed to the influence of changes 
in LULC since the effects of climate variability had been 

filtered out. While surface runoff decreased under the effect 
of climate variability (simulated discharge) in April (1990) 
and May (1998), the same months had the highest increase of 
surface runoff. This implies that the decrease of surface 
runoff caused by climate variability was offset by the 
increase of surface runoff due to the effect of LULC in the 
catchment, which would mean that the soil moisture storage 
capacity required to trigger runoff at the start of precipitation 
was inadequate. It portrays a characteristic of the water-
stressed catchment [27]. 

 

Figure 6. Mean monthly differences between observed and simulated streamflow (1985-1992). 
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Figure 7. Mean monthly differences between observed and simulated streamflow (1993-1999). 

Therefore, the modeling approach (SWAT_ANN) of 
separating the influence of climate variability on river regime 
from the effect of human activities could only be appropriate 
and satisfactory if by 1985 noticeable changes in LULC had 
already begun. The trends in the values of Figures 6 and 7 
obtained were then compared with the trends in LULC 
changes. As shown in Figure 8, significant LULC changes 
began in 1986 to 2002. The changes included deforestation 
and the conversion of forested areas into small-scale (mixed) 
agriculture. From 1986 to 2002, forest decreased by 24%, 
Mixed Agricultural and pasture fields increased to cover 
about 27%. Baldyga et al. [4] which analyzed spatial and 
temporal land cover changes reported significant changes in 
LULC from 1986 to 2003. Similarly, the changes they cited 

included deforestation and the expansion of agricultural lands. 
A study by Mwetu [31] on the analysis of LULC changes in 
1973, 1986, and 2000 at the Upper Njoro Catchment also 
confirmed the rapid loss of forest. The study found that forest 
decreased by 22% from 1973 to 2000 and agricultural fields 
increased to cover about 10%, 16%, and 25% of the total 
Upper Njoro Catchment in 1973, 1986, and 2000 respectively. 
Riparian Zone and bare land increased to cover about 3.2% 
and 3.3% of the total Upper Njoro Catchment. Mwetu [31] 
results were an improvement of an earlier record of 58% 
obtained by Baldyga et al. [4]. The findings were consistent 
with other previous research like Kundu [27] and Wambua 
[45] which reported excessive removal of forest in the 
Eastern Mau forest after 1986. 

 

Figure 8. Upper Njoro Catchment supervised land cover classification. 

Although there are several studies on land use and land 
cover influence on catchment hydrology, the evidence from 
the various studies is still contradictory. Some of the previous 
studies hold that an increase of the annual discharge is caused 
by deforestation and a decrease of the annual discharge is 

caused by afforestation [8, 10, 14], which is not the case from 
studies such as [15, 27, 29, 39, 46]. For instance, a study by 
Kundu [27] on the application of remote sensing and GIS 
techniques to evaluate the impact of land use and land cover 
on streamflow in River Njoro Catchment found that as land-
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use changes from forest to rural built-up lands, urban lands 
and subsistence agriculture, surface runoff increases while 
surface and groundwater quantity and quality deteriorates. 
The effect is manifested in reduced natural recharge, reduced 
streamflow, and elimination of wetlands. Similarly, Mwetu 
[31] on the analysis of fluxes of annual water yield due to 
LULC change from 1973-2000 in River Njoro catchment 
found a negative trend as a response to deforestation. 

Generally, changes in LULC influence soil physical 
properties. Furthermore, mean weight diameter, infiltration 
capacity, total porosity, available water content, and saturated 
hydraulic conductivity vary significantly for various land-use 
systems [11]. A study conducted by Amisi [1] on the analysis 
of event-based soil hydrological response for different land-
use types in Upper Njoro Catchment found that deforested 
land had the lowest infiltration capacity and highest water 
repellency, forested land had the highest bulk density, mean 
saturated hydraulic conductivity, porosity, and organic matter 
content. 

The higher infiltration rates in forested land because of the 
Duff and O horizon, would imply a delayed hydrological 
response leading to the realization of frequent recharge of 
streamflow thus higher annual discharge as compared to 
other land-use systems. The areas under bare land may 
experience excess surface runoff in the form of flash floods 
because of low infiltration rates due to the formation of soil 
sealing as a result of deforestation impacts (compaction, 
pore-clogging, and slaking) [3, 35]. The inability of water to 
infiltrate the upper layers leads to reduced efficiency in 
storage and decrease in subsurface flows which in turn 
reduces recharge to streamflow hence a decline in annual 
discharge in the long run. 

With regards to the findings of the aforementioned trends 
in LULC and documented studies on LULC and its influence 
on annual discharge at Upper Njoro Catchment, coupling 
SWAT, and ANN a hybrid approach was found to be a better 
option in modeling climate variability influence on annual 
river discharge variations or river regime. The obtained 
results in this work indicated that combining SWAT and 
ANN could enrich the hydrologic modeling environment by 
excluding the calibration, validation, and sensitivity analysis 
which can be, complicated, technical, hectic, and time-
consuming for the climate change impact studies. The 
information and knowledge obtained from this kind of 
modeling technique besides aiding the parameter 
transferability, detection of LULC point of change, can also 
be suitable in the attribution of changes in streamflow to 
climate variability and land-use alteration in a sub-catchment 
which is very crucial in water resources management. 

4. Conclusion 

The study aimed at modeling climate variability influence 
on the annual river discharge variations by coupling SWAT 
and ANN models. Statistical indicators showed that the 
modeling approach of combining SWAT with ANN had 
better prediction accuracy than when SWAT was used alone. 

Monthly simulated streamflow from SWAT_ANN was 
further evaluated by comparing trends in the differences 
between observed and simulated against the quantified 
LULC changes and results in the documented land use and 
land cover changes. The results indicated that SWAT_ANN 
was capable of separating the effect of climate variability on 
the discharge from the overall influence which could be 
contributed by both changes in climate and land use. 
Therefore, the outcome of this study demonstrated that the 
modeling approach (SWAT_ANN) can be applied by the 
local water resources authorities to obtain the reasons for 
changes in monthly and annual river discharges. 
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