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Abstract 

The Food and Drug Administration’s 2011 Process Validation Guidance and International Council for Harmonization Quality 

Guidelines recommend continued process verification (CPV) as a mandatory requirement for pharmaceutical, 

biopharmaceutical, and other regulated industries. As a part of product life cycle management, after process characterization in 

stage 1 and process qualification and validation in stage-2, CPV is performed as stage-3 validation during commercial 

manufacturing. CPV ensures that the process continues to remain within a validated state. CPV requires the collection and 

analysis of data related to critical quality attributes, critical material attributes, and critical process parameters on a minimum 

basis. Data is then used to elucidate process control regarding the capability to meet predefined specifications and stability via 

statistical process control (SPC) tools. In SPC, the control charts and Nelson rules are commonly used throughout the industry to 

monitor and trend data to ensure that a process remains in control. However, basic control charts are susceptible to false alarms 

and nuisance alarms. Therefore, it is imperative to understand the assumptions behind control charts and the inherent false alarm 

rates for different Nelson rules. In this article, the authors have detailed the assumptions behind the usage of control charts, the 

rate of false alarms for different Nelson rules, the impact of skewness and kurtosis of a data distribution on the false alarm rate, 

and methods for optimizing control chart design by reducing false alarm rates and nuisance signals. 
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1. Introduction 

The Food and Drug Administration (FDA)’s 2011 Process 

Validation Guidance recommends continued process verifi-

cation (CPV) during stage-3 process monitoring for drug 

manufacturers. In CPV, Shewhart control charts are employed 

as a statistical tool for monitoring process parameters and 

attributes (critical process parameters (CPPs), Key process 

parameter (KPPs), In-process controls (IPCs), batch yields, 

step recovery yields and release specifications). In control 

charts, the calculated process average is utilized as the center 

line, and control limits are placed at distance k = ±3 short-term 

standard deviations (σR) away from the process average. The 

control chart, along with Nelson rules, serves as a tool for 

detecting out-of-control (OOC) data, defined as data that fall 

beyond the set control limits, and out-of-trend (OOT) data, 

defined as a group of data that forms a non-random pattern 

(shift in mean or increasing/decreasing pattern) [1-3]. Alt-
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hough control charts are commonly applied across the indus-

try to assess the statistical stability of a process, this approach 

introduces two types of risk: 1) false alarms, i.e., signals that 

are incorrectly identified as OOC or OOT when the data are 

actually belong to normal variability of the process itself, and 

2) nuisance alarms, i.e., signals that are too small to have any 

impact on the process or lack sufficient statistical reliability [4, 

5]. In practice, small process variations and shifts are antici-

pated in many processes; therefore, control charts should 

detect moderate to large shifts that have more practical ap-

plication rather than small or practically insignificant shift 

signals. Both high false alarm rates (FARs) and frequent 

nuisance alarms will reduce the reliability of control chart 

signals. Therefore, in this article, we provide a review on the 

current state of understanding on FARs associated with dif-

ferent Nelson rules, properties of data distributions (skewness 

and kurtosis) and their impact on control chart FAR, and 

methods for reducing FARs by optimizing the usage of Nel-

son rules and adjusting the value of k (the number of standard 

deviations from the mean) to accommodate variability and 

asymmetricity in data distribution. 

2. Functional Modules of CPV 

CPV program is driven by four functional models as iden-

tified in Figure 1. CPV standard operating procedure (SOP): 

Drug manufactures define standard operating procedure for 

CPV as a guidance document that minimum should discuss 1) 

criteria for selection parameters to be monitored and trended 2) 

Frequency of cross functional team to perform data review 

meeting to monitor and analyze the trends of parameters and 

attributes, 3) Participants in the cross functional CPV data 

review meeting, 4) Discuss different statistical methods to 

assess the process capability and stability based on type of 

data distribution, 5) Method of controlled way of document-

ing the meeting minutes of CPV data review meeting, 6) 

Guidance on frequency of CPV report generation based on 

batch run rate, and 7) Guidance on reaction and response to 

signals from CPV data monitoring system. 

CPV Plan: As per the recommendations in CPV SOP, CPV 

plan is generation for each drug substance intermediate stage, 

that list out all the parameters to be monitored and trended, 

type of data distribution and statistical method may be applied 

to assess the stability and capability. 

CPV data review meeting: As recommended in the CPV 

SOP the parameters listed in CPV plans are charted and ana-

lyzed for signals of unexpected variation from historical 

performance as a cross functional team that includes a min-

imum participation from manufacturing, quality assurance 

(QA), manufacturing science and technology (MSAT) and 

quality control (QC). During the data review the identified 

statistical process control signals for OOT or OOC are disused 

on; 1. Magnitude of signal, 2. Statistical reliability of signal 3. 

Risk and severity on product quality or/and process perfor-

mance, and the decision on how to respond to the signal. If the 

signal is identified as nascence signal or not practically sig-

nificant enough or not statistically significant enough, then no 

response or action is required. If the signal is identified to be 

real and has both practical and statistical strength but still not 

significant enough to impact product quality, then a technical 

evaluation may be warranted to understand the cause of vari-

ation, details of evaluation and results should be followed up 

in subsequent CPV meetings and findings should be docu-

mented in CPV meeting minutes. If the signal is identified to 

be real, has both practical and statistical significance, and the 

magnitude is significant enough to potentially impact the 

product quality, then an investigation under quality man-

agement system may be required. 

CPV reports: CPV reports are generated either annually or 

semiannually or quarterly basis based on batch run rate. Here 

all parameters and attributes listed in CPV pans are monitored 

and trended along with summary stability and capability 

discussions along with all the CPV data review meeting 

minutes. Recommendations from the CPV reports may in-

clude changes in the frequency of monitoring a parameter, 

retiring, or adding parameters to CPV plans. CPV plans 

should be reviewed at least annually and may be revised if 

required to ensure that the recommended changes from CPV 

reports are implemented appropriately.  

 
Figure 1. Functional modules of CPV. 

3. FARs in Control Charts 

In 1924, Walter Andrew Shewhart introduced the concept 

of data analysis using control charts, which was later adopted 

by the pharmaceutical and biopharmaceutical industries when 

regulatory agencies requested that drug manufacturers to 

perform CPV [6]. In control charts or XBar charts, the center 

line is placed at the average, and control limits are typically 

placed at k standard deviations from the average. Typically, k 

= 3 is utilized, for which there is a 0.135% probability that any 

data point belonging to a normally distributed population will 

fall outside ±3 standard deviations (σ). This approach gives an 

interval of expected future observations if the process does 

not change. If observations are within these limits, it can be 
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assumed that the validated state is maintained; if observations 

are outside these limits, the mean and/or standard deviation 

has probably changed, potentially requiring attention. σ is 

often calculated as a short-term σR, which causes the limits to 

be more sensitive to drift, as expressed in (1). 

       (  )             (1) 

The control chart is divided into six zones based on distance 

from the center line as shown in Figure 2. Each zone is one 

standard deviation (σR) wide. The 3-σR limits on both sides of 

the center line show the upper control limit and lower control 

limit. The 2-σR limits indicate the upper and lower warning 

limits, and the 1-σR limits on each side of the center line are 

the upper and lower one-sigma limits. Control charts, along 

with Nelson rules 1–8 (summarized in Table 1), are used to 

monitor process control and process stability based on the 

location of data in different zones, the frequency of occur-

rence of any patterns, and the distance from the mean [6]. To 

correctly apply the Nelson test rule signals in a control chart, it 

is imperative to understand the normal acceptable probability 

for a data point to fall within or outside of the control chart 

zones. For instance, a hypothetical mean µ=0 and standard 

deviation σ=1, the probability that normally distributed data 

will fall between -3 SD and +3 SD is given by (2). 

    [ (   )   (    )]        (2) 

 
Figure 2. Sample X control chart constructed from randomly generated data. 

In statistical process control, the FAR or rate of type I errors, 

often identified by the symbol α, indicates the likelihood that 

data will be falsely identified as an abnormal signal when the 

data correspond to the normal variability of the process. Table 

1 summarizes the different Nelson rules and their purposes, 

along with probability of a false alarm for each Nelson rule 

[7]. 

The FARs from all eight Nelson rules identified in Table 1 

sum up to 2.65%. Although it might be intriguing to use all 

eight Nelson test rules, Nelson (1984) suggested keeping the 

FAR below 1% [6]. Nelson also stated that tests 5 and 6 

should be included only when there is an economical desire to 

have an early warning, as these test rules increase the FAR by 

2%. Tests 7 and 8 are used to diagnose stratifications and both 

test 7 and 8, react only when each reported results in control 

charts are from an average of 2 or more samples (i.e. subgroup 

size ―m‖ ≥ 2). However, in the biopharmaceutical industry, 

the results reported for a batch is typically from a test per-

formed on single sample; therefore, unless multiple samples 

are tested and averaged to report a single value in the control 

chart, rules 7 and 8 do not add value for data monitoring and 

trending. Adhibhatta et al. (2017) showed that Nelson tests 1, 

2, and 3 are adequate for monitoring OOC and OOT data, with 

a combined false alarm probability of 0.94 [8]. Thus, consid-

ering the practical application of test rules for biopharmaceu-

ticals and to limit the FAR below 1.0%. It is recommended 

that only Nelson test rules 1 to 3 be utilized in a control chart 

for biopharmaceutical application.  
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Table 1. FARs for different Nelson test rules. 

Test number Purpose 
Probability of 

false alarm 

Rule 1: One data point outside the control limit Detect OOC data p = 0.00270 

Rule 2: Nine consecutive data points on one side of the centre line Detect a process shift p = 0.00391 

Rule 3: Six consecutive data points either increasing or decreasing Detect a process drift p = 0.00278 

Rule 4: Fourteen consecutive data points alternating up and down Detect a process alternating between two states p = 0.00457 

Rule 5: Two out of three data points falling outside two sigma from the 

centre line 
Detect an intermediate shift p = 0.00306 

Rule 6: Four out of five data points falling outside two sigma from the 

centre line 
Detect a small shift p = 0.00553 

Rule 7: Fifteen data points falling within one sigma from the centre line Detect a reduction in process variability p = 0.00326 

Rule 8: Eight consecutive data points falling outside one sigma from the 

centre line 
Detect mixed process behaviour p = 0.00010 

 

4. FAR in an OOC Signal from a Limited 

Sample Size 

OOC data are detected via Nelson rule 1 when a single data 

point falls outside 3 SD from the mean, with the assumptions 

that the data are normally distributed, the underlying true 

population mean (µ) and population standard deviation (σ) are 

known, and there is no error due to sampling variability. 

However, for new products, based on the batch run rate, there 

is a high likelihood of having a very limited sample size 

during the first couple of years. For small sample sizes, the 

estimation of the population mean with the sample mean (x ) 

and of the population standard deviation with the sample 

standard deviation (SD) and the establishment of control 

limits will lead to an increased FAR [9, 14]. The risk of an 

increased FAR due to a limited sample size in control limits 

has been calculated by Bischak et al. (2007) as a function of 

the number of standard deviations from the mean (k), the 

number of observations reported in control chart (n), and the 

size of the subgroup used in each observation (m). As dis-

cussed above, biopharmaceutical companies typically per-

form testing on a single sample taken from a batch; therefore, 

two subsequent lots are used to calculate the short-term 

standard deviation, and hence, m is assumed to be 2. The FAR 

for a limited number of observations or sample size (n) is 

expressed in (3). Here, (C4) is an unbiased estimator of 

standard deviation. The uncertainty that arises from using the 

sample standard deviation (SD) instead of the underlying true 

population standard deviation is compensated for by using an 

unbiased standard deviation estimator (C4) calculated as a 

function of subgroup size, as expressed in (4) [10, 13]. Here, 

Φ is the cumulative normal probability density function. 

   ( )     

(
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The probability of a false alarm caused by utilizing a lim-

ited sample size when setting the control limit at k = 3 (i.e., 3 

standard deviations from the mean) is calculated by applying 

(3) and (4), as shown in Figure 3. Figure 3 shows that the 

reduction in FAR follows an exponential decay curve; we 

observe a sharp drop below 5% for a sample size of n = 10, 

followed by a plateau after approximately n = 30 and a further 

decrease below 1% at n = 100. Therefore, we recommend 

using a run chart when the sample size is ≤10, using the cal-

culated control limits as tentative control limits for monitoring 

and updating control limits for sample sizes of 30–100, and 

using fixed long-term control limits when the sample size is 

≥100. Another alternative solution for mitigating the uncer-

tainty in the calculation of control limits for a small sample 

size (10 ≤ n < 30) is the use of prediction limits. Prediction 

limits account for the estimation uncertainty that arises from 

using the sample standard deviation (SD) by replacing the 

normal quantile with the t quantile at (n–1) degrees of free-

dom and also accommodates the uncertainty due to the sample 

mean by including the standard error of the mean, as ex-

pressed in (5). 

    ̅   (   
 
    )    √              (5) 
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Figure 3. FAR in an OOC signal from a limited sample size. 

5. FAR in an OOC Signal from a Skewed 

or Heavy-Tailed Distribution 

The application of Nelson test rules in a control chart is 

based on a normality assumption. However, if the data are 

severely skewed or if the variance in the data is excessively 

broad with a heavy-tailed distribution, this can lead to an 

increase in the FAR. The asymmetry and tail length in data 

with reference to a normal distribution are measured as 

skewness (K3) and kurtosis (K4), respectively [14]. 

5.1. Modeling FAR for an Asymmetric Data 

Distribution 

Control charts are based on the assumption that a data dis-

tribution is symmetric on either side of the center average line. 

However, in practice, the data distribution may be 

off-centered or asymmetric. Skewness (K3) is a measure of the 

degree of asymmetry observed in a data distribution. A dis-

tribution can have either right-skewed or left-skewed data or 

no skew at all. A right-skewed distribution is longer on the 

right side of its peak, and a left-skewed distribution is longer 

on the left side of its peak. Skewness in a distribution can be 

calculated from (6) [11]. A highly skewed distribution can 

lead to a high FAR in control chart signals. The probability 

distribution function of a skewed data spread can be modeled 

by a log-normal distribution [12], which is delineated by two 

parameters, namely, the shape (Sh) or mean (µ) and the scale 

parameter (Sc) or standard deviation (σ). The FAR caused by 

skewness in a data distribution with control limits placed at ± 

3 (σR) from the mean can be determined by knowing the re-

lationship between the skewness value and shape parameter 

(Sh). A correlation expression between skewness and shape 

parameter (Sh) was developed from the data reported by 

Derya et al. (2012), as shown in Figure 4A [12]. Using a scale 

parameter (Sc) = 0 and the shape parameter (Sh) calculated 

via the correlation shown in Figure 4A, the FAR for various 

degrees of skewness can be calculated via Equation (7), as 

shown in Figure 4B. Here, k is the number of standard devia-

tions from the mean; for control limits placed at 3 SDs from 

the mean, k = 3. Figure 4B shows that a skewness below 1.5 

keeps the control limit signal at an acceptable FAR of <1.0%. 

   
∑ (    ̅)

  
 

( )   
                (6) 

         (
  ( )   
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http://www.sciencepg.com/journal/sjams


Science Journal of Applied Mathematics and Statistics http://www.sciencepg.com/journal/sjams 

 

25 

 
Figure 4. (A) Correlation between skewness and log-normal shape factor. (B) FAR for an OOC signal from an asymmetric data distribution. 

5.2. Modeling FAR for a Heavy-Tailed  

Distribution 

Kurtosis is a measure of whether data are heavy-tailed or 

light-tailed relative to a normal distribution. Data distribution 

with high kurtosis tends to have heavy tails or outliers. In 

contrast, data distribution with low kurtosis tends to have light 

tails or a lack of outliers. A standard normal distribution has a 

kurtosis of zero. The kurtosis (K4) can be calculated from 

expression (8) [11, 14]. A positive kurtosis indicates a 

"heavy-tailed" distribution. A t-distribution has fatter tails 

than a normal distribution. Therefore, a t-distribution can be 

used as a model to represent kurtosis, which will allow for a 

more realistic calculation of the FAR from excess kurtosis 

[11]. The FAR caused by kurtosis can be modeled via a 

t-distribution, as expressed in (9) and as shown in Figure 5, by 

knowing the relationship between kurtosis (K4) and degrees of 

freedom (df) for the t-distribution. Here, k is the number of 

standard deviations from the mean; for control chart limits 

placed at 3 SDs from the mean, k = 3. dft.dist is the number of 

degrees of freedom for the t-distribution, and dft.dist can be 

calculated from the kurtosis (K4) in the data distribution, as 

expressed in (10) [15]. Figure 5 shows that kurtosis below 

0.65 keeps the control limit signal at an acceptable FAR of 

<1.0%. 

   
∑ (    ̅)

  
 

( )   
               (8) 

        [        (( )         )]    (9) 

           (
 

  
)            (10) 

 
Figure 5. FAR in an OOC signal due to kurtosis. 

5.3. Adjustment to k to Accommodate Skewed 

and Heavy-Tailed Distributions 

Braden et al. (2022) showed that the FAR for a severely 

skewed or heavy-tailed distribution can be reduced by re-

placing the control limits at k = 3 (σR) from the mean with 

limits based on adjusted k values (k’), as expressed in (11) and 

(12), to accommodate skewness or heavy tails in the data 

distribution. Branden also stated that Equations (11) and (12) 

are valid only when the skewness or kurtosis of the distribu-

tion meets the criteria expressed in (13) [14]. The factor ad-

justment for skewness and kurtosis is shown in Figure 6. 
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Figure 6. (Left) Adjustment of k for skewness. (Right). Adjustment of k for kurtosis. 

6. Nuisance Signal from Nelson Rule 2 

and Its Reliability 

According to Nelson rule 2, nine consecutive data points on 

one side of the center line can be used to detect a shift in the 

mean, which can result in a nuisance signal, as the magnitude 

of this shift in the mean can be potentially insignificant. 

Therefore, when a signal is identified for Nelson rule 2, it is 

imperative that the strength of the signal be assessed against 

the magnitude of the shift. Wheeler (2010) classified Nelson 

test rule 2 signals as small shift when magnitude of signal is 

less than 1.5 standard deviation from mean (Δ/σ). An inter-

mediate shift when signal is 1.5 ≥ (Δ/σ) ≤ 2.5, and as a large 

shift when the magnitude of signal (Δ/σ) > 2.5 [16]. The re-

liability of the signal for the desired shift effect can be cal-

culated from the type II error. In control charts, the (β) value 

or type II error indicates the probability of a true signal going 

undetected. The widely acceptable minimum probability for β 

is 0.20 [17], which indicates a reliability (1–β) of 100% – 20% 

= 80%. The relationship between sample size, type I error (α), 

type II error (β), and shift from mean (Δ/σ) is expressed for 

two-sided limit and one-sided limit, as shown in (14) and (15) 

[21]. 

   
(                 )

 
 

(
 

 
)
              (14) 

   
(               )

 
 

(
 

 
)
              (15) 

Here, nT is the total sample size in the analysis, where nT = 

nhis + nsis. nhis is the number of historic samples, and nSis is the 

number of data points on one side of the center line showing a 

positive signal for Nelson test rule 2: therefore, nSis = 9. df = 

nsig + nhis – 2, which represents the degrees of freedom, and 

t(1-α, df) represents the inverse of the cumulative t-distribution 

at 1 – α and df. 

Here, an acceptable value of the significance (α) value or 

type I error is often set at 0.05 [18], indicating a 5% proba-

bility of falsely identifying a signal as positive when the data 

corresponds to normal variability within the process. In this 

case, the statistical confidence (1 – α) is 100% – 5% = 95%. 

The detectability/shift from the mean (Δ/σ) is the accepta-

ble distance from the mean, expressed as a number of standard 

deviations. The FDA guidance document on ―statistical re-

view and evaluation‖ states that a (Δ/σ) value of 1.5 at 95% 

confidence (1 – α) is adequate to conclude equivalence be-

tween two groups [19-20]. 

Equations (14) and (15) for the sample size are rearranged 

to solve for reliability (1-β) as expressed in (16) and (17), 

respectively. According to Cohen (1988), minimum reliability 

(1 – β) ≥ 80% is generally accepted to statistically conclude 

that no true signal is going un-noticed [17]. Figure 7 shows the 

reliability of a signal for Nelson rule 2 for different combina-

tions of the shift from the mean (Δ/σ) and historic sample size 

(nhis). Assuming signal sample size (nsig = 9; i.e. nine data 

points on one side of the center line for the Nelson test rule 2), 

the reliability is calculated via Equation (16) for different 

values of the shift from the mean (Δ/σ) as shown in Figure 7. 

Figure 7 demonstrates that if the observed shift in the mean is 

≤1 SD, then the signal can be considered as a nuisance signal 

as the minimum reliability criteria of (1-β) ≥ 0.80 is not met 

even when the historical sample size nhis is as large as 100. 
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Figure 7. Reliability vs. sample size for different values of Δ/σ. 

7. Conclusions 

Challenges in CPV review sessions include assessing a 

control chart signal for reliability and deciding whether to 

initiate an investigation followed by action for a corrective or 

preventive action. However, control charts are susceptible to 

false alarms and nuisance alarms. Trusting incorrect signals 

from the control chart and initiating quality control actions 

can lead to a waste of resources and time. Therefore, it is 

imperative to understand false alarm probabilities in control 

charts in association with different Nelson test rules. In this 

article, we reviewed the current state of understanding on 

FARs inherent to control charts and the impact on FARs of 

data distributions that deviate from normal distribution as-

sumptions. We also discussed methods for optimizing the use 

of control charts by selecting the Nelson test rules to be ap-

plied and correcting the number of sigma factors (k) used for 

calculating control limits to accommodate skewness and 

kurtosis in a data distribution to reduce the FAR and nuisance 

signals and to improve the reliability of data trending and 

monitoring. 

Biologics manufacturing is complex and sometimes de-

mands simultaneous monitoring of two or more related vari-

ables for improved understanding of process control to ensure 

product quality [22]. In such instances, multivariate control 

chart based on the Hotelling T
2
 statistics method are fre-

quently used. Future work will need to focus on false alarm 

rates inherent in multivariable control charts.  
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