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Abstract: For an irreducible integral polynomial f of degree n, Cilleruelo’s conjecture states an asymptotic formula for the
logarithm of the least common multiple of the first M values f(1) to f(M). It’s well-known for n = 1 as a consequence of Dirichlet’s
Theorem for primes in arithmetic progression, and it was proved by Cilleruelo for quadratic polynomials. Recently the conjecture
was shown by Rudnick and Zehavi for a large family of polynomials of any degree. We want to investigate an average version
of the conjecture for Sn-polynomials with integral coefficients over a fixed extension K=Q by considering the least common
multiple of ideals of OK. The case of linear polynomials is dealt with separately by exploiting Dirichlet’s Theorem for primes in
arithmetic progression, to get an asymptotic estimate. In our case, to achieve explicit error terms, we want effective versions of
the asymptotics. We will state here both a conditional and unconditional results proved by Lagarias and Odlyzko. For degree-2
polynomials, it is possible to obtain explicit asymptotics for the least common multiple, analogously to the ones achieved for
polynomials in Z[X]. However, the latter is not a subject of the current paper.
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1. Introduction

We fix a field extension K /Q of degree d. Letn > 2 and N
be positive integers. We consider the set &2, y(K) of monic
polynomials with coefficients in the ring of algebraic integers
Ok of the form

fX)=X"4+ap, 1 X" -+ ap.

Choose an ordered integral basis (ws,...,wq) of Ok over

Z. We have, forall k =0,...,n — 1,

d
k
o = E ag )wi
i=1

for unique az(»k) € Z. We view the coefficients agk) as

independent, identically distributed random variables taking
values uniformly in {—N, ..., N}. Define the height of ay,
as ht(ay) = max; |a§k)| and the height of the polynomial f to
be

ht(f) = max ht(ay).

Forn > 2, N > 0 define

yg,N<K) ={f € ZunN(K): Gk, /x = Sn},

where K is the splitting field of f over K inside a fixed
algebraic closure Q of Q. We call these polynomials S,,-
polynomials over K, or simply .S,,-polynomials when there is
no need to specify the base field.

1.1. Main Result

If Aq,...,\s are elements of Ok, we can factorize the
ideals they generate in the Dedekind domain O as

MOk = H P

pCOK
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for all ¢, where Bé) = 0 for all but finitely many gp. The least
common multiple of A1, ..., A, is the ideal of O defined as

the Dedekind domain O, that is,

the leatest common multiple of the ideals A1 Ok, ..., A;Ok in
lem(Ag,...,A) = ﬂ pmax{[’; """ Bk = H pmax{ﬁ; """" Bok,
pCOK pCOK

Let n > 3. It is known that the polynomials in 9})2, n (K0) are generically irreducible.

Theorem 1. Let N, M > 0 such that

M(log M) < N =0 (M

for some 0 < ¢ < 1. Then

log [Nk g(lem(f(A) : A € Ok, NgjgA < M)|) = (n—1)Mlog M + O (M

asymptotically almost surely when N, M/ — +o0.

1.2. Plan of the Paper

Theorem 1 will be proved in Section 4.2. The case of
linear polynomials is dealt with separately in Section 4.1,
as a consequence of Dirichlet’s Theorem for number fields.
For degree-2 polynomials, it is possible to obtain explicit
asymptotics for the least common multiple, analogously to the
ones in [4] for polynomials in Z[X]. However, the latter is not
a subject of the current paper.

2. Counting S,,-polynomials over K

It has been proven that almost all polynomials are S,,-
polynomials in the following sense:

ZanEl
|<@n,N(K)| N —+400

For instance, in the case K = Q, Van der Waerden gave
in [11] an explicit error term O(N 7m) It has
improved in [6] using large sieve to O(N~'/2log N), and
more recently by Dietmann [5] using resolvent polynomials
to O(N~2TV2+¢) The best estimate can be found in [2], who
proved the following result, conjectured by van der Waerden.

Theorem (Bhargava). If n > 5, one has,

n

|20 N (@) = (2N)" + O(N"71),

as N — oo.

The cubic and quartic cases of van der Waerden’s conjecture
were proved by Chow and Dietmann in [3].

In his work, Bhargava used a combination of algebraic
techniques and Fourier analysis over finite fields. In the
below theorem, we generalize this result for polynomials in
92 n(K), for certain values of n and d. We also use large
sieve over number fields to prove the upper bound for all n > 3
andd > 1.

Theorem 2.Let d > 1 and n > 2. There exist
positive constants 6 and 6,, such that the number of non S,,-

log M
log log M

log M

———— + Nloglog M
1og10gM+ 08708 >’

polynomials is
| P (K)\ 25 (K| < N9 (log N),

as N — +oo. In particular,
a if n = 2, we can choose 6 = 1, 65 = 1;
b forall d > 1 and n > 3 the above estimate holds with
6 =1/2and#@, =1—~,, where v, ~ (27n) /2,
¢ if one of the following conditions is satisfied, we can
take # = 1 and 0,, = 0O:
(a) d=1,alln > 1;
(b) n=2,3,4,5;
() n>2(2d+1);

The first bullet of (¢) of Theorem 2 is van der Waerden’s
conjecture for polynomial over Q, which has already been
shown by Bhargava in [2] for n > 5, and by Chow-Dietmann
for n = 3,4 in [3]. The other bullets of (c¢) of Theorem 2
are a generalization of this result for polynomials with integral
coefficients in a number field K, for some values of d and
n. The reason why we split different values of n and d is
that in order to estimate the number of polynomials having
primitive Galois group, we need an upper bound on the number
of field extensions of fixed degree, with bounded discriminant.
Different asymptotic formulas as known according to the
degree. Finally, for (b) we apply large sieve to the set &,
(see [6] for the analogous result for d = 1). A complete proof
of this result can be found in [10].

3. Prime Splitting Densities

From now on, according to Theorem 2, we set & > 0
so that the number of non S, -polynomials in &, y(K) is
<n.x N¥=9 Specifically, for all n > 3, d > 1 we can
take £ = % — ¢ for an € > 0 arbitrary small. If moreover n is
as in (c) of Theorem 2, put £ = 1.

For every splitting type r, and every prime g of norm g,
recall that we denoted by X, -, the set of polynomials in Fy
with square-free factorization of type r. The following key fact
is what we’ll use to estimate the error term in the asymptotic
of the expectation En (7 -(x)) of 7 () and its powers.

Lemma3.1. Letk > 1, p1,..., ¢k primes and g; € X, 5 o,
foralli =1,...,k. Thenif g, < Ne/Fnforalli=1,...,k
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. 1 _
NfEP N f=gi modg; Vi=1,... k)=————+0px(N %)
(q{sol"‘qpk)

as N — +oo.

Proof. We prove the case k£ = 1. An application of the Chinese Remainder Theorem leads to the result for £ > 1.
Letg = >, ¢ X" and f = > | f;X". Now (wq,...,wq) is an integral basis of Ok over Z; by applying linear

transformations we can assume that the reduction modulo p of (w1,...,wy, ) is a basis for the IF,-vector space O /. Then
write forevery i =0,...,n —1
fo fo
= Z by)wj mod Fy_, fi = Z agl)wj mod Fy_,
j=1 j=1

where a\” b\ € 7 for all i and j.

ERRE/ , ,
One has f = g mod p if and only if f; = g; in Fy, fori = 0,...,n — 1. This means agl) = bg-l)

g- Q- bg-z) +pk:§l) for some k§ ) ¢ 7. Since the height of f is less or equal than N, forj =1,..., foandforalli =0,...,n—1
we have

mod p, that is

(#) (4)
—N —b; <k(i)<N—bj _
p 7T p
so for each of the coefficients a( ) R agfg we have
N - -N -] aN
= - == +o)
p p p
choices. Whereas for each coefficient agfg L1re- ( ) there are 2N choices. Therefore for each coefficient fi of f one has
2N 2N
(*¥ +on >) O A CLO NS
p 4p
possibilities. It turns out that
(ZN)nd

{f€ Pnn:f=g modp}| = +O(N™,

b
so by Theorem 2.

(2N _
{feP)n:f=g modp}= > 1+O( S 1) (eI + O(NUn=9)),
J€Pn N 28 %
f g mod O

As long as g < N4, we get

%) Z 1= T( + O(Nd(nfﬁ)))(w + O(Nd(nfé))>
Zn, rezl P
ngmodp
_ —deyy (L ~de
(1+O(N ))<q;§ +O(N~%))
-1, O(N~%).

a5



Pure and Applied Mathematics Journal 2024; 13(6): 84-99 87

Proposition 1. One has, for all primes  with ¢, < q" N‘df)
N/ (n+1) It f ﬁp that, f N/ (nt1)
_ _ _ C, ollows that, for x < s
a Pn(1p.(p) = 1) = Ex(Ls.(p) = 0(r) + ¢ ¢ Ex(ns.(z) = 6(r)mx (@) + Crloglog z + Op (1),
O((T qo N~ ) asz, N = +o0.
for some exp11c1t constant C,.; Hence, the normal order of w¢ (x) is 6(r)mx(z), which
b o2 (15, — (5 —§ Cr(1-25(r)) O( means that 7¢ . (z) ~ ()7 () for almost all f, as z — 400
oX(Lyr(p)) = (8(r)—d(r)? )+7+ 2 and N large enough.

Proof. Once fixed a prime g,

—_

1 1
Ex(Lin(9) = 5 > L(p) = =0 > - Z > L
|2 |2 N
n, n, e " geXn re fEPY &

f of splitting type T mod ¢ f=gmod p
On the other hand,
n
A
qp,k
|Xn,7"7@| = H ( TK )
k=1 k

where A, 1 is the number of degree-k irreducible polynomials in I, [X], which, by the Mbius inversion formula, equals

k
kZu (d)gs/* = p+0(qgk),
dlk

where o, = 1if k =2, and o, < k — 1if kK > 2. One has, for all £ > 2

A Ag w(Ag x—1) .. (Ag —re+1 1 4k ]
<k>: tokipt 2D Mok TP D Lo ogen) (%1400,

Tk Tk! T‘k! k

It turns out that

A %llqp(q@ -1)...(gp—r1+1) ifk=1
( ;Z7k> =9 e + Clr) g+ 0(g2= %) ifk=2
—dr i+ O(qp k- ey ifk > 1.
Hence
_ 1 1 27 2ro—1 219 —2 . kr k(rk—1)4a
| X 0] = r—llq@(q@—1)...(qg)—7“1—|—1)r2!2r2( 2+ C(ra)q2> "+ O(¢2>~ ))kli[?)( TE "4 0(g" ©))
=d(r)qp + er;’l +0(qp™?),
_ (r14+1)(r1+42)
where ;. = —6(r)C(r2) 57—
By Lemma 3.1, for g2 *! < N%,
n n—1 n—2 1 C
Ex(Ly(9)) = (00)g + Cray™ + Ol ™) (1 +ON=)) = 60r) + = + o(q N ),
2 Z 0

which proves (a) and (b) follows by definition.
For (¢), by linearity, we simply have to sum over all primes p with Ng /g0 < = and use the estimate

=loglogz + O(1)

to get
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as long as

7 (2)" TN~ = o(loglog z).

If moreover x < N9/("+1) then the term 7y ()"t N ~9%
is negligible.

4. The Cilleruelo’s Conjecture for
Integral Polynomials over K: Linear
Polynomials

For f € Z[X] an irreducible polynomial of degree n, the
Cilleruelo’s conjecture states

log(lem(f(1),..., f(M))) ~ (n—1)M log M

as M — +oo, where lem(f(1),...,f(M)) is the least
common multiple of f(1),..., f(M). It’s well-known for n =
1 by exploiting Dirichlet’s Theorem for primes in arithmetic

progression (see [1] for a proof), to get an asymptotic estimate
when f(X) = Xk + h, (h, k) = 1:

Yr(N) ~

k 1
N, 2
(n,k)=1
as N — +o0.
We recall the definition of ray class group and we fix some
notations. A modulus m = [] o ©™(®) on K is a function
m : {primes of K’} — Z such that

m(p) > 0 for all p,
m(p) = 0 for all but finitely many p,
m(p) = 0or 1if pis real,
m(p) = 0if p is complex.
Let Kn1 = {a € K~ ordy(a¢ — 1) >

m(p) for p|m finite, a, > O for pjmreal}. The ray class
group modulo m is

Cn=T™ /Ky 1,

where I°(™) is the free abelian group generated by the prime
ideals not in m.
Let ¢ € I°(™); the corresponding Chebyshev’s function is

T

O(z;c,m) = Z log(Ng /o) = . + o(x),
Ng o<z m
pNCinCm

as x — +o00, where hy, is the ray class number, i.e. hy, =
|Crnl-

This is equivalent to saying that the set of prime ideals 7" of
K congruent to ¢ in Cy, has Dirichlet density 1/hp:

Z 1 110g< 1 >
Nigp — hm s—1)"

peT

ass | 1.

To achieve explicit error terms, we want effective versions
of the above asymptotic. We state here both a conditional and
unconditional results proved by Lagarias and Odlyzko in 1977
[71.

Theorem 3. Assume the Generalized Riemann Hypothesis
for the Dedelkind zeta function (x(s). Then for any ideal ¢
coprime with m,

1
O(z;c,m) = T Ok m(Vz(log z)?),
m
as x — +o0.
Theorem 4.1f d > 1, then (x(s) has at most one zero
Bo = o + it in the region

o >1—(4log Dg) ™", [t| < (4log Dk)~".

If By exists, it is real and simple. There exist effectively
computable absolute constants such that

1 oo
O(z;c,m) = T + O m(ze=CVIoe® 4 g h0)
m
as x — 400, with the understanding that the 5, term is present
only if By exists.
If a € I°(™) Let S(M) be the set of ideals of K defined by

S(M) = Sqm(M) = {I C Ok : Ngjol <M, I ~amodCp}.

Proposition 2.

log | Ny g (lem(S(M)))| = M -

a Assume the Generalized Riemann Hypothesis for (x (s). Then

+ OK m(m(log M)2)7

as M — +o0, where N ¢ is the smallest norm of an integral ideal in the ray class group of c.

b Let /3y be the possible Siegel zero of (x (s). Then

log [N g lem(S(M)))| = M - - 3

m c€Chn

1

+OK,m( /MefC\/logM +MBO),
NK/QC

as M — +oo, where the last error term is present if and only if 5 exists.
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Proof. Let P(M) be the set of prime factors of lem(S(M)),
that is

P(M) ={p € Ok : pdivides at least one I C S(M)}.

We are going to characterize the primes in the set P(M).
We have that

Nijo(lem(s(M) = [ af=™,
pEP(M)

where (M) is the highest power of e dividing any element
of S(M). On the other hand, if we let T'(M) = [] ¢ p(ar) >
it turns out that

Nk (T

where the product is over the primes p whose square divides
some element of S(M). In particular, each of those g has norm
qo < M and they are at most v/ M. Therefore

NK/Q(Icm(S(M))) _ Beo(M)—1
oy~ e

log [N /g (lem(S(M)))|~log [Ny /o (T(M))| < VM log M.

Then it suffices to focus on log |Ng /o (T'(M))|.

Note that if I € S(M), then I € S(m), so it is coprime
withm. Letnow p 2 I (i.e. p € P(M)); then p = cin Cyy
for some representative ¢ € I°(™), In particular ¢—* € 15(™);
let then @ = ¢~ 'a, so that ¢ = a in C,. We can take 0 of
smallest norm among the coset representatives. Since every
class in Cy, is represented by an integral ideal, we can also

assume 0 integral ideal of smallest norm.
Now, 0p € S(M) is equivalent to Nk ,q(0p) = Nk 0 -
gp < M. Hence p = cin Cy, is in P(M) if and only if

Gp < .
© NK/@D

Denote by U (M) the set of such primes.
Finally,

log [N /o(T(M))] =

Z logquz Z log g,

pEP(M) c€Cnm peU(M)

u
>
/N

5
'l
2
E
N—

c€Chnm
M 1

-3 O(M)7
hm ceCn NK/QC

where N qc¢ is by definition the smallest norm of an integral
ideal in the ray class group of ¢. The last equality holds because
0 runs over Cy, as ¢ does. The result follows by applying either
Theorem 3 or Theorem 4 to the last step.

Let now the modulus m be a principal modulus”, that is
m = (v), where v € Ok, and let « € O be coprime with v.
Consider the set of principal ideals

S(M) ={(B) € Ok : [Nk Bl < M, (B) ~ (a) mod C(,)}.

It is well-known that (3) ~ (a) mod CY,) is equivalent to
say that there exist a,b € Ok, a,b # 0,a = b = 1 mod v so
that (5)b = (a)a. It follows that

(B) ~ (o) mod C,y if and only if 5 = na mod v for some n € O.

In particular,

IS(M)| ~ {fy(X) :n€ Ok, A€ Ok, [Nkl < M},

where f,(X) = na + vX € Og[X]. It is immediate from Proposition 2 the following corollary, which can be interpreted as a

version of Cilleruelo’s conjecture for linear polynomials over K.

Corollary 1.

log |[Ngjg(lem(fy(A) i€ O, A€ Ok, Ngjgh < M))| =M -

as M — +oo.

Example: In the ring of Eisenstein integers Z[w] = Og(.), w = €

2mi/3

1 1
h

+o(M),

V) CeCm NK/QC

, all ideals are principal. In the above notations we have

(a) ~ (8) mod v iff « = 3, where n = +w’ € Z[w]*, j = 0,1, 2. In this case we get

1 1
log [Nk g(lem(na +vA:n € {#1, 4w, +w?}, X € Ok, Ng A < M))| =M - A Z
()

as M — +oo.

+ o(M),

c€Chn NK/Q ¢
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5. Average Version for Irreducible S,,-polynomials of Higher Degree

As already mentioned, almost all f € &) \(K) are irreducible (the error term in this case is O(N ~4)). Assume now n > 3.
We start by computing an asymptotic formula for the mean value of the quantity

Us(N,M) =log|Ng/g(lem(f(A) : A € Ok, NgjoA < M))|.
Proposition 3. Let N, M > 0 such that

log M

M(logM) < N=o(M—>—

(log M) < O( loglogM>

for some 0 < ¢ < 1. Then
Ex (U (N, M) = (n— )M log M + 0 [ M—2YM_ | Nloglog M
N{(W LV, =n 0g log log M oglog )

as N, M — +oo0.
Proof Following [4], we compare the behaviour of

lem(f(A) : Ngjoh < M) = ] o4

PEPy
and
Py(M) = H INk/of (M| = H |Nicjepl M),
NicjoA<M o

where P is the set of primes such that the equation f = 0 mod g has some solutions, which is the set of p so that Froby , € G
has fixed points. We start by writing

Us(N,M)=log Ps(M)+ > Bo(M)logNksop— > ay(M)logNksgp
Ng <M Ng <M
§0 unramified

— Y ap(M)logNgsgp— Y. (ap(M) = B(M))log Ny /g
Ngjop<M Nk o9>M
0 ramified

and we’re going to study all these five terms.
log Pf(M) = ZNK/@ASM log [Nk /o f(A)]; pick A = A(M, N) such that A = o(M ) and A > logLM'

Then for A < Ng oA < M and f(X) = X" + 37 an—i—1 X"~ one has

Oy @
log [Nk /o f(M)] = nlog [Nk /qA| + log ‘NK/@ (1 e 72)‘

d
:nlOg|NK/Q>\|+IOgH’1+o’i (047;\_1 Jr)’
=1

— nlog N+ Yo (14 (222 1) )
i=1

=nlog|Ng/qA| +i0 (Uz’ (c“;:l) T o (%))

i=1

d
N N
:n10g|NK/Q)\|+E O( +~~~+)
i=1 NK/Q/\ NK/Q)‘n

N
=nlog|Ng Al + On x <A> ,
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where 01, ..., 04 are the Q-embeddings of K into C.
If 1 < Ngjgh < A, we simply use that [N g f(A)| < N?M™, s0 log [N /qf(A)| <n,a log N + log M. Therefore, since
the elements in O of norm at most M are at most M,

log Pr(M) = > log|Ngof N+ > log|Ngof(N
ALNE A<M Ni oA A
N
-y (nlogNK/@A+o<A))+ S log | Nijaf O]
AL N QA<M Ng jgAkA

NM
=nMlog M + O <M+ a1 +A(logN+logM)>

log M
—aMlogM +0 (M—2"_ 1 Nloglog M |,
log log M
as M — +oo, by choosing A = logM loglog M and N = o (Mlog’ﬁ)g/[M).
. . . 1og [N /o f (A og N+1o
Be(N) = NK%%\};M max{k > 0: *|f(\)};if *|f(N), then in particular k < gl lolg(/q(g( I3 g{g; sM  Thus

Z Be(M)log g, < Z (log N +log M)

QWSM nggj\/[

log N
log M

<M1+ om) < M
under the conditions above.
If p is a prime which doesn’t divide D ¢,/ ¢, then the number of solutions s« (f) of f mod © is equal to the number s, ( f)
of solutions mod g (see Theorem 1 of [8]). On the other hand, by dividing the interval [1, M] into consecutive intervals of length
k
qg> One has

s@k(f)[‘;‘g} < NK%;<M1 <spk(f)([2Z] +1)
FOV=0 (%)
SO

3 1:M%k7]£ﬂ+0(spk(f)).
Ny jgA<M dp
F(N)=0 (p*)

For those g, one has

EED VD SEED DD S

Ny A<M  k>1 k>1 Ny A<M
ga’“\f(k) FN=0 (p*)

=S w2l @’“ ( 3 1)
E>1 1<k<log N-+log M

log qp

:Msp(f) JrO(logN 10gM>'
g — 1 logq, logqy,

Therefore
log g
§ ay(M)logq, = M § _@1 o(f)+O(M).

qo<M qo<M dp

&2 unramified 0 unramified
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Using Proposition 1 we can estimate on average qu<msp(f) forz > 0,2 < N%/(n+1),

0 unramified

P2 2 ) iZZZl

fégo ~ qo<x n n N qo<z Qmod g
§2 unramified 2 unram. f(Ot) =0 (5{))
X 2!
a o€eSy fe@n N o<, ©unram.
Tga=o Froby =0o

Y To)ky /()

a o€Sn N‘ fe?

=> Z (Li(:)‘ 7 (z) + O(log logas))

= mx () + O(log log ),
where 74 (), i, /i 18 the Chebotarev Density Theorem function on the conjugacy class % (o) of 0. Note that

T4 (o), Ky /K — Tfr (%) <p i logloga

on average, if € (o) = €, for some r. Write

so(f) =1+0,(f),
where —1 < o,(f) <n—1and

Z Z 0o(f) <n,k loglogz,

fe-@o N an<r

¢ unramified

if x < Nd&/(n+1)

Now,
log q log q log q,, log q
Dol =30 == 3 =2t Y 2o+ 0,
gomr 19 wem o gom T o e
€ unramified © ramified € unramified
Since
log g,
Z 8dp _ log M + O(1),
gom o
and

lo
Z 289 < loglog [Nk /9@ K, k| < loglog N
qe<M ¥

O ramified

(see [9], Lemma 3.2), one gets

1 1
Z qupls@(f) = log M + Z qupap(f)+0(loglogN).
gom 19 a<m I

§2 unramified §2 unramified
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Let0 <6 < 5577y +1) and N > M (log M)*(+1) 5o that
, M1/2(n+1)(10g M)5 4t /(1)
M= e <N .
Write

Y Bl = Y Blas 3 Bl

q q q
<M ¥ qe<Mm’ ¥ M'<go<M ¥
§2 unramified §2 unramified 0 unramified

For the first term, by partial integration we obtain

—_

logq log M’ M’ 1 —logt
70 Z Z Po.(f) < ———loglog M’ + ; loglogt(T)dt <1,

M’
P, fegbg N Q<M
§2 unramified

since [, "log log t 1=log?) 1080 gt < fM ks

To treat the second term, note that it 1s

<(n-1 Y %S(”—l) 3 %7

M'<qo,<M dp M—y<q,<M dp

dt < 1.

fory > M — M’. If moreover we pick M ~ 2y, then

lo
Z gqp<<logM log(M —y) < 1,
M—y<go<m 19

as M — +o0.
Hence we have the following estimate on average:

Z Z an(M 1ogqp—MlogMJrO(MloglogNJrM):MlogMJrO(MloglogN),

f€ 320 N o< <M
€2 unramified

for N > M(log M)>(+1) 0 < § <
We divide the sum into two terms:

> ag(M)loggy, = Y loggqu|{\ € Ok : Ngjgh < M, f(A) =0mod p}| + »_ logg, > oo

D

qo<M qo<M qo<M N joA<M k>2
0 ramified 0 ramified 0 ramified f(}\)EO (pk)
=I+1IL

To estimate I, note that

HA € Ok : NgjgA < M, f(A) =0mod p}| = {q%}sp(f) < q%sp(f)7
o ©

SO

lo lo
I« Z ﬂsp(f) <n M Z 08l M loglog N.
o<t 19 o< 19
0 ramified 0 ramified

The mean value of 1I is

Z < Nnd > logg, > > >ooL

fe@ qp<M Ni /@AM o<k ot frond fEP,
FN=0 (0%)
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Similarly as we computed in Lemma 3.1, note that for any A € Ok,

2. 1= > >

fe?) n 9EF & [X] FEPD
FN=0 (0%) g(A\)=0 f=gmouagph

(n—2)

Since there are qk possibilities for g as in the above sum, one has

Y= (25) + O(NU=9)

fezn N
FN=0 (%)
log N
aslong as k <« Tog 40 . Hence
M log N
Z neM logqu( ) R SR THD SRR L)
fE.@ qp<M k>2 qo<M g log Ntlog M

log qp

To conclude M2 low N
og
Z Z ay(M)log g, < MloglogNJrng (1g7M 1).

fe)o qp<M

0 ramified

For A, i € Of such that Ng oA < Nk gp let

7 = SO

G(u,\) = Y

Once fixed u, G(u, ) is a polynomial in \ of degree n — 1.
We are now dealing with the primes  of norm ¢, > M, for which

a, (M)

> > 1(f(N) = 0mod p*)

N A<M k>1

ooy ik > n L.

k>1 Ng A<M 1<k log Ntlog M
- og qp
F)=0 (p*)

For p of norm ¢, > M we then have
(M) = Bo(M) < 1.
Note also that if p|f(A), then |g,| < [N of(N)] < NTM™, so a,(M) = 0 for g, > NM™. Also, a,(M) # B,(M)
if and only if there exist 1, A\ € O, Ng/gA < Nggu < M such that p[f(u) and p|f(X), equivalently p[f(\) and p|( —
NG, A): but  f (1 — ) since [N/ — A)| < M — 1< gy, 50 p|G (1, ).

Thefore
Z (O‘QO(M) - ,BK)(M)) log g, < Z Z log g,
qo>M 1<Ng/gA<Npc/u<M M<q, < NdM™
ol f(0)
p|G(r,A)
- Z Z log g, + Z Z log g,
1<NkQA<Ngop<MM<q,<N4M™ 1<Ng/gA<Ng, <M M<q, < NI M
G(p,A)=0 plf(X) G(p,A)#0 el f(N)

p|G(k,N)
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< > > logg,+ > > logg

1<Ng /QA<Nkgu<M M<q,<NIM™ 1<Ng QA<Ng /<M M<q,<NIM™
ol f(N) G(p,\)#0 ol f(N)
oG (1, A)
< (log N +1log M) max {p:qp> M, gl f(1)} + > > loggy.
w/opsM 1< Ny A< N jqu<MM<q, < N4M™
G (N0 olF(N)
0lG(1,\)

For Nicjgu < M, [Ny o f (1) < N*M™, so the primes o with g, > M dividing f () are at most < log(V* ™) L,k 1.

log M
Thus
Z (ap (M) — Bp(M))log gy < Z Z log g, + log M,
ap>M 1<Ng/gA<Nrjp<MM<q,< N4 Mn
G (p,A)#0 ol f(N)
PlG(1,X)
or on average
1
St 3 (@p(M) = By(M)) logg,
| n,N| qo>M
©
< Z Z log g, |{f : f(A\) = 0mod p}| + log M
1SNk QA<NEk Qp<M M <qo,KNIM™
G(p:X)#0 PIG (1N

- > S tosan( +0(a)) +1os

1<NggA<Ni/gu<MM<q, < N4 M
G(1,\)#0 PIG(1,N)

< Z Z 108;2(]@ + Nldf Z Z log g, +log M

1<Ng/gA<Np <M M<q, < NEM™ %o 1<Ng/gA<Ny/qu<MM<q, < NM™
G(p,A)#0 ©|G(k,A) G(ps\)#0 P|G(1,A)

=1+ 11+ log M.

For 11, observe that since |G(u, )| < N4Mm"~1, the number of primes o of norm ¢, > M dividing G(u, ) is at most

log(N¢M™~1)

< Tog M < 1,50

M2

For I, we separate the contribution of small and large prime. Pick M < By vy < N a7\ for small primes we have

> DR D DI D DR

2
1<NggA<Ngou<MM<qeo<Bum,N % M<qo<Bwm,N ®  1<NggA<Ng ous<M
G(p,A)#0 ©lG(p,N) G(p,\)=0 ()

lo
<M > gzq@ < M,

M<qu<Bnm,N £

since ZI<NK/QA<NK/QH<M1 < (n — 1)M. For large primes,

G(1,A)=0 (p)
log q log N + log M)
> Yy e el > Hetae > Buw, i V)]
1<Ng,gA<Ng, ou<MBy N <qo<KN4Mn £ M,N 1<Ng,gA<Ng, qu<M
G(p,A)#0 ©|G(1,N) G(p,A)#0
M? log M
< log M %8

B%/[,N 10gB]w7N7
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by observing that [{p : ¢, > Bar,n, 9|G(1, A} < 10%21;;%:1) < loéolgsf\\f]v since |G(p, \)| < N¥M™~1. We obtained

M2
S (ap(M) = By(M))log g, < M + e log M +log M
7N| feP) y ao>M

—_

|

3o

by choosing for instance By, v = M log M.
Finally,

1 Z log [Nk qg(lem(f(A) : NgjoA < M)) = (n — 1)M log M

0
| P ] fea
log M M?
O M——— + Nloglog M + M loglog M + — log M
+ < loglogM+ oglog M + og log +Nd5 og )
— (= 1)MIog M +0 (M2 | Nioglog i
-\ o8 log log M 08708 ’
when M (log M) < N =o (M 10§i§4w1)’ 0 < ¢ < 1 small enough.
Next step is to estimate the variance of W (N, M).
Proposition 4. Let N, M > 0 such that
log M
M(logM)* < N=o(M———
(log M) < 0( loglogM)
for some 0 < ¢ < 1. Then
M?(log M)?
2
Ue(N, M ———= " + NM log M log log M
(VN M) < =0 et T og M loglog M,

as N, M — +o0.
In particular, 0% (¥ ¢(N, M)) = o(En (¥ (N, M))) in the above range of N, M, so W ¢(N, M) ~ En (¥ ;(N, M)) almost
surely, which shows Theorem 1.

Proof. One has 0%, (V¢(N,M)) =En(¥;(N, M)?)—En (¥ (N, M))?. The square of the mean value can easily be estimated
by means of Proposition 3:

M?(log M)?

2 202 2
En (Vg (N,M))? = (n—1)2M?(log M) +o( g o 1

+NMlogM10glogM> .

It remains to study the average bahviour of W (N, M)2. We will be consistent with the notations of the previous proposition.
Write
Ui(N,M)=X+ -+ X5,

where the terms X; are defined at the beginning of the proof of Proposition 3, with the same order. Therefore

Up(N,M)=X{ 4+ X2 =42 Y XX,

i#j=1,....5
1. The first term is
M?(log M)?

. _ M log M
if N =o (loglogM)’

2. With the same argument of Proposition 3 we can see that

X5 < M*.
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3. Write | )
0gq
xg=m2( Y B () + O(M10g M),
e~
do>
£ unr

where s, (f) is the number of solutions of f mod p. We need an estimate on average of dorda < wSe(f)sq(f). If M is

©,q unr
small enough compared to [V, we can use Proposition 1 to get

ex( X X2 2 =X Xe( X X1

Qp,qq <M «@ @ a,B o,T qq <Munr  qq<Munr
p,qur  f(a)=0 (p) f(B ) 0 (a) Ug:g Froby ,=c Froby =0
8=

=1 (M)? + O(rg (M) loglog M).

‘We then have

Ex ZM%( Daa(f)) < mic(M) loglog M.
o,

By partial summation,

IE:N( Z ;;g_qplsp(f)) = Z (k)g%))ZJrEN(( Z logqup(ﬁ)?)

qp<M qo<M dp qo<M dp
§ unr £ unr  unr
lo 2
= (log M)? + O((loglog N)?) —HEN(( Z gq@(&,(f)) )
gom 19
© unr

Fix f, and let M’ < M. The contribution of the ’small primes” is given by

( Z logq@gp(f)f:( Z oolf logM / ZUp 1Ogtdt)

qo <M’ dp qo <M’ qe<t
§0 unr  unr
(log M")? 2 M 1—logt log M’
= M2 EN(( Z U@(f)) >+< ZUp(f)Tdf) + O | loglog M’ G .
qu]\/fl 2 ‘R)St
£ unr

/ qz<t0'p logtdt) </2M' (q%tap(f)>2dt-/2M/ (117120(%)26#'
§ unr

On average we thus have

1 loe M’ M’ n
EN(( > qu“%(f)) )<<10glogM’ o8 +/ — loglog tdt
qo<M’ e M’ 5 logt

£ unr
< M’Q.
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For the primes of norm M’ < g, < M, simply use that

lo
Yy B«
M’ <q,<M dp

since it is the tail of a convergent series as M — +o0.

Pick now M’ = lolgolgo ;WM < N9€/2n+1 1t follows that

2
En(X2) = M?*(log M) + O <M2(loglogN)2—|—M210gM—i-M2 (log]%) ) .

loglog M
4.,
X;= Y ag(M)ag(M)loggy,loggq = > +1* + 21 - II.
Gp:qq <M
©,q ramified

In particular
En(I?) < M?loglog N,

and so
En(I-1I) < Mloglog N - Ey(II)
M2
< M loglog N (M + N logM)
< M?loglog N.
Finally,
2
En (I1%) :EN(( Z log g, Z Z 1) )
qo<M NK/@XSM k>2
© ram FN)=0(p*)
1
oD YIS SRNED SIS S
Gp:qq <M A, A2 2<k<log N+log M f
Nijprhi<M F(A1)=0 (p*)
F(X2)=0 (a%)
1 \*
<ar Y togatonan Y ()
Qprdq <M > \Tpdq
< M?,
which yields to

En(X3?) < M?loglog N.
5. By using the exact same technique as in the previous result with the auxiliary function G(u, \), one gets
En(X3) < M2

6. Now for the cross products, we easily obtain estimates by using the ones we have for X7, ..., X5. The only product giving
a contribution is

M?(log M)?

En(—2X1X3) = —2nM?(log M)* + O | M*loglog N log M +
loglog M

+NMlongoglogM) .
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All the other terms are negligible:

X
N(X1 X

2) < M?log M,
1) < M?1og Mloglog N,

~N(X1X5) < M?log M,
En(X2X3) < M?log M,

N(X2 X5
N(X3Xy

< M?log M,
< M?loglog N,

En(X3X5) < M?,
En(X4X5) < M?loglog N.

By putting everything together, we see that the terms of
size M?(log M)? erase in 0% (¥ (N, M)), which gives the
desired upper bound.

6. Conclusion

Recently Cilleruelo’s conjecture was shown for a large
family of integer polynomials of any degree by Rudnick and
Zehavi in [9]. In particular, when restricted to the case K = Q,

our main theorem also encompasses non-included cases in the
above-mentioned result.
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