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Abstract: For an irreducible integral polynomial f of degree n, Cilleruelo’s conjecture states an asymptotic formula for the
logarithm of the least common multiple of the first M values f(1) to f(M). It’s well-known for n = 1 as a consequence of Dirichlet’s
Theorem for primes in arithmetic progression, and it was proved by Cilleruelo for quadratic polynomials. Recently the conjecture
was shown by Rudnick and Zehavi for a large family of polynomials of any degree. We want to investigate an average version
of the conjecture for Sn-polynomials with integral coefficients over a fixed extension K=Q by considering the least common
multiple of ideals of OK. The case of linear polynomials is dealt with separately by exploiting Dirichlet’s Theorem for primes in
arithmetic progression, to get an asymptotic estimate. In our case, to achieve explicit error terms, we want effective versions of
the asymptotics. We will state here both a conditional and unconditional results proved by Lagarias and Odlyzko. For degree-2
polynomials, it is possible to obtain explicit asymptotics for the least common multiple, analogously to the ones achieved for
polynomials in Z[X]. However, the latter is not a subject of the current paper.

Keywords: Analytic Number Theory, Cilleruelo’s Conjecture, Least Common Multiple of Polynomials, Number Fields,
Probability Theory

1. Introduction

We fix a field extension K/Q of degree d. Let n ≥ 2 and N
be positive integers. We consider the set Pn,N (K) of monic
polynomials with coefficients in the ring of algebraic integers
OK of the form

f(X) = Xn + αn−1X
n−1 + · · ·+ α0.

Choose an ordered integral basis (ω1, . . . , ωd) of OK over
Z. We have, for all k = 0, . . . , n− 1,

αk =

d∑
i=1

a
(k)
i ωi

for unique a
(k)
i ∈ Z. We view the coefficients a

(k)
i as

independent, identically distributed random variables taking
values uniformly in {−N, . . . , N}. Define the height of αk
as ht(αk) = maxi |a(k)i | and the height of the polynomial f to
be

ht(f) = max
k

ht(αk).

For n ≥ 2, N > 0 define

P0
n,N (K) = {f ∈Pn,N (K) : GKf/K

∼= Sn},

where Kf is the splitting field of f over K inside a fixed
algebraic closure Q of Q. We call these polynomials Sn-
polynomials over K, or simply Sn-polynomials when there is
no need to specify the base field.

1.1. Main Result

If λ1, . . . , λs are elements of OK , we can factorize the
ideals they generate in the Dedekind domain OK as

λiOK =
∏

℘⊆OK

℘β
i
℘
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for all i, where βi℘ = 0 for all but finitely many ℘. The least
common multiple of λ1, . . . , λs is the ideal of OK defined as
the leatest common multiple of the ideals λ1OK , . . . , λsOK in

the Dedekind domain OK , that is,

lcm(λ1, . . . , λs) =
⋂

℘⊆OK

℘max{β1
℘,...,β

s
℘} =

∏
℘⊆OK

℘max{β1
℘,...,β

s
℘}.

Let n ≥ 3. It is known that the polynomials in P0
n,N (K) are generically irreducible.

Theorem 1. Let N,M > 0 such that

M(logM)` � N = o

(
M

logM

log logM

)
for some 0 < ` < 1. Then

log |NK/Q(lcm(f(λ) : λ ∈ OK , NK/Qλ ≤M)|) = (n− 1)M logM +O

(
M

logM

log logM
+N log logM

)
,

asymptotically almost surely when N,M → +∞.

1.2. Plan of the Paper

Theorem 1 will be proved in Section 4.2. The case of
linear polynomials is dealt with separately in Section 4.1,
as a consequence of Dirichlet’s Theorem for number fields.
For degree-2 polynomials, it is possible to obtain explicit
asymptotics for the least common multiple, analogously to the
ones in [4] for polynomials in Z[X]. However, the latter is not
a subject of the current paper.

2. Counting Sn-polynomials over K

It has been proven that almost all polynomials are Sn-
polynomials in the following sense:

|P0
n,N (K)|

|Pn,N (K)|
−→

N→+∞
1.

For instance, in the case K = Q, Van der Waerden gave
in [11] an explicit error term O(Nn− 1

6(n−2) log log N ). It has
improved in [6] using large sieve to O(N−1/2 logN), and
more recently by Dietmann [5] using resolvent polynomials
to O(N−2+

√
2+ε). The best estimate can be found in [2], who

proved the following result, conjectured by van der Waerden.
Theorem (Bhargava). If n ≥ 5, one has,

|P0
n,N (Q)| = (2N)n +O(Nn−1),

as N →∞.
The cubic and quartic cases of van der Waerden’s conjecture

were proved by Chow and Dietmann in [3].
In his work, Bhargava used a combination of algebraic

techniques and Fourier analysis over finite fields. In the
below theorem, we generalize this result for polynomials in
P0
n,N (K), for certain values of n and d. We also use large

sieve over number fields to prove the upper bound for all n ≥ 3
and d ≥ 1.

Theorem 2. Let d ≥ 1 and n ≥ 2. There exist
positive constants θ and θn such that the number of non Sn-

polynomials is

|Pn,N (K) \P0
n,N (K)| �n,K Nd(n−θ)(logN)θn ,

as N → +∞. In particular,
a if n = 2, we can choose θ = 1, θ2 = 1;
b for all d ≥ 1 and n ≥ 3 the above estimate holds with
θ = 1/2 and θn = 1− γn, where γn ∼ (2πn)−1/2;

c if one of the following conditions is satisfied, we can
take θ = 1 and θn = 0:

(a) d = 1, all n ≥ 1;
(b) n = 2, 3, 4, 5;
(c) n ≥ 2(2d+ 1);

The first bullet of (c) of Theorem 2 is van der Waerden’s
conjecture for polynomial over Q, which has already been
shown by Bhargava in [2] for n ≥ 5, and by Chow-Dietmann
for n = 3, 4 in [3]. The other bullets of (c) of Theorem 2
are a generalization of this result for polynomials with integral
coefficients in a number field K, for some values of d and
n. The reason why we split different values of n and d is
that in order to estimate the number of polynomials having
primitive Galois group, we need an upper bound on the number
of field extensions of fixed degree, with bounded discriminant.
Different asymptotic formulas as known according to the
degree. Finally, for (b) we apply large sieve to the set Pn,N

(see [6] for the analogous result for d = 1). A complete proof
of this result can be found in [10].

3. Prime Splitting Densities
From now on, according to Theorem 2, we set ξ > 0

so that the number of non Sn-polynomials in Pn,N (K) is
�n,K Nd(n−ξ). Specifically, for all n ≥ 3, d ≥ 1 we can
take ξ = 1

2 − ε for an ε > 0 arbitrary small. If moreover n is
as in (c) of Theorem 2, put ξ = 1.

For every splitting type r, and every prime ℘ of norm q℘,
recall that we denoted by Xn,r,℘ the set of polynomials in Fq℘
with square-free factorization of type r. The following key fact
is what we’ll use to estimate the error term in the asymptotic
of the expectation EN (πf,r(x)) of πf,r(x) and its powers.

Lemma 3.1. Let k ≥ 1, ℘1, . . . , ℘k primes and gi ∈ Xn,r,℘i

for all i = 1, . . . , k. Then if q℘i
< Ndξ/kn for all i = 1, . . . , k
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PN (f ∈P0
n,N : f ≡ gi mod ℘i ∀i = 1, . . . , k) =

1

(q℘1 . . . q℘k
)n

+On,K(N−dξ)

as N → +∞.

Proof. We prove the case k = 1. An application of the Chinese Remainder Theorem leads to the result for k > 1.
Let g =

∑n
i=1 giX

i and f =
∑n
i=1 fiX

i. Now (ω1, . . . , ωd) is an integral basis of OK over Z; by applying linear
transformations we can assume that the reduction modulo ℘ of (ω1, . . . , ωf℘) is a basis for the Fp-vector space OK/℘. Then
write for every i = 0, . . . , n− 1

gi =

f℘∑
j=1

b
(i)
j ωj mod Fq℘ , fi =

f℘∑
j=1

a
(i)
j ωj mod Fq℘ ,

where a(i)j , b
(i)
j ∈ Z for all i and j.

One has f ≡ g mod ℘ if and only if fi = gi in Fq℘ for i = 0, . . . , n − 1. This means a(i)j ≡ b
(i)
j mod p, that is

a
(i)
j = b

(i)
j +pk

(i)
j for some k(i)j ∈ Z. Since the height of f is less or equal than N , for j = 1, . . . , f℘ and for all i = 0, . . . , n−1

we have

−N − b(i)j
p

≤ k(i)j ≤
N − b(i)j

p
;

so for each of the coefficients a(i)1 , . . . , a
(i)
f℘

we have[
N − b(i)j

p

]
−

[
−N − b(i)j

p

]
=

2N

p
+O(1)

choices. Whereas for each coefficient a(i)f℘+1, . . . , a
(i)
d there are 2N choices. Therefore for each coefficient fi of f one has(2N

p
+O(1)

)f℘
· (2N)d−f℘ =

(2N)d

q℘
+O(Nd−1)

possibilities. It turns out that

|{f ∈Pn,N : f ≡ g mod ℘}| = (2N)nd

qn℘
+O(Ndn−1),

so by Theorem 2.

|{f ∈P0
n,N : f ≡ g mod ℘}| =

∑
f∈Pn,N

f≡g mod℘

1 +O
( ∑
f /∈P0

n,N

1
)

=
(2N)nd

qn℘
+O(Nd(n−ξ)).

As long as qn℘ < Ndξ, we get

1

|P0
n,N |

∑
f∈P0

n,N

f≡g mod℘

1 =
1

(2N)nd
(1 +O(Nd(n−ξ)))

( (2N)nd

qn℘
+O(Nd(n−ξ))

)

= (1 +O(N−dξ))
( 1

qn℘
+O(N−dξ)

)
=

1

qn℘
+O(N−dξ).
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Proposition 1. One has, for all primes ℘ with q℘ <
Ndξ/(n+1),

a PN (1f,r(℘) = 1) = EN (1f,r(℘)) = δ(r) + Cr

q℘
+

O
(

1
q2℘

+ qn℘N
−dξ
)

,
for some explicit constant Cr;

b σ2
N (1f,r(℘)) = (δ(r)−δ(r)2)+ Cr(1−2δ(r))

q℘
+O

(
1
q2℘

+

qn℘N
−dξ
)

.

It follows that, for x < Ndξ/(n+1),
c EN (πf,r(x)) = δ(r)πK(x) + Cr log log x+On,K(1),

as x,N → +∞.
Hence, the normal order of πf,r(x) is δ(r)πK(x), which

means that πf,r(x) ∼ δ(r)πK(x) for almost all f , as x→ +∞
and N large enough.

Proof. Once fixed a prime ℘,

EN (1f,r(℘)) =
1

|P0
n,N |

∑
f∈P0

n,N

1f,r(℘) =
1

|P0
n,N |

∑
f∈P0

n,N

f of splitting type r mod℘

1 =
1

|P0
n,N |

∑
g∈Xn,r,℘

∑
f∈P0

n,N

f≡g mod℘

1.

On the other hand,

|Xn,r,℘| =
n∏
k=1

(
Aq℘,k
rk

)
,

where Aq℘,k is the number of degree-k irreducible polynomials in Fq℘ [X], which, by the Möbius inversion formula, equals

1

k

∑
d|k

µ(d)qk/d℘ =
qk℘
k

+O(qαk
℘ ),

where αk = 1 if k = 2, and αk < k − 1 if k > 2. One has, for all k ≥ 2

(
Aq℘,k
rk

)
=
Aq℘,k(Aq℘,k − 1) . . . (Aq℘,k − rk + 1)

rk!
=

1

rk!

(qk℘
k

+O(qαk
℘ )
)
. . .
(qk℘
k
− rk + 1 +O(qαk

℘ )
)
.

It turns out that (
Aq℘,k
rk

)
=


1
r1!
q℘(q℘ − 1) . . . (q℘ − r1 + 1) if k = 1
1

r2!2r2
q2r2℘ + C(r2)q2r2−1℘ +O(q2r2−2℘ ) if k = 2

1
rk!k

rk
qkrk℘ +O(q

k(rk−1)+αk
℘ ) if k > 1.

Hence

|Xn,r,℘| =
1

r1!
q℘(q℘ − 1) . . . (q℘ − r1 + 1)

1

r2!2r2
(q2r2℘ + C(r2)q2r2−1℘ +O(q2r2−2℘ ))

n∏
k=3

(
1

rk!krk
qkrk℘ +O(qk(rk−1)+αk

℘ ))

= δ(r)qn℘ + Crq
n−1
℘ +O(qn−2℘ ),

where Cr = −δ(r)C(r2) (r1+1)(r1+2)
2r1!

.

By Lemma 3.1, for qn+1
℘ < Ndξ,

EN (1f,r(℘)) = (δ(r)qn℘ + Crq
n−1
℘ +O(qn−2℘ ))

( 1

qn℘
+O(N−dξ)

)
= δ(r) +

Cr
q℘

+O
( 1

q2℘
+ qn℘N

−dξ
)
,

which proves (a) and (b) follows by definition.
For (c), by linearity, we simply have to sum over all primes ℘ with NK/Q℘ ≤ x and use the estimate∑

NK/Q℘≤x

1

NK/Q℘
= log log x+O(1)

to get

EN (πf,r(x)) = δ(r)πK(x) + Cr log log x+O(1 + πK(x)n+1N−dξ)
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as long as

πK(x)n+1N−dξ = o(log log x).

If moreover x < Ndξ/(n+1), then the term πK(x)n+1N−dξ

is negligible.

4. The Cilleruelo’s Conjecture for
Integral Polynomials over K: Linear
Polynomials

For f ∈ Z[X] an irreducible polynomial of degree n, the
Cilleruelo’s conjecture states

log(lcm(f(1), . . . , f(M))) ∼ (n− 1)M logM

as M → +∞, where lcm(f(1), . . . , f(M)) is the least
common multiple of f(1), . . . , f(M). It’s well-known for n =
1 by exploiting Dirichlet’s Theorem for primes in arithmetic
progression (see [1] for a proof), to get an asymptotic estimate
when f(X) = Xk + h, (h, k) = 1:

ψf (N) ∼ N k

ϕ(k)

∑
1≤n≤k
(n,k)=1

1

n
,

as N → +∞.
We recall the definition of ray class group and we fix some

notations. A modulus m =
∏
℘ ℘

m(℘) on K is a function
m : {primes of K} → Z such that

m(℘) ≥ 0 for all ℘,
m(℘) = 0 for all but finitely many ℘,
m(℘) = 0 or 1 if ℘ is real,
m(℘) = 0 if ℘ is complex.

Let Km,1 = {a ∈ K× : ord℘(a − 1) ≥
m(℘) for ℘|m finite, a℘ > 0 for ℘|m real}. The ray class
group modulo m is

Cm = IS(m)/Km,1,

where IS(m) is the free abelian group generated by the prime
ideals not in m.

Let c ∈ IS(m); the corresponding Chebyshev’s function is

θ(x; c,m) =
∑

NK/Q℘≤x
℘∼c inCm

log(NK/Q℘) =
x

hm
+ o(x),

as x → +∞, where hm is the ray class number, i.e. hm =
|Cm|.

This is equivalent to saying that the set of prime ideals T of
K congruent to c in Cm has Dirichlet density 1/hm:∑

℘∈T

1

NK/Q℘
∼ 1

hm
log

(
1

s− 1

)
,

as s ↓ 1.
To achieve explicit error terms, we want effective versions

of the above asymptotic. We state here both a conditional and
unconditional results proved by Lagarias and Odlyzko in 1977
[7].

Theorem 3. Assume the Generalized Riemann Hypothesis
for the Dedelkind zeta function ζK(s). Then for any ideal c
coprime with m,

θ(x; c,m) =
1

hm
x+OK,m(

√
x(log x)2),

as x→ +∞.
Theorem 4. If d > 1, then ζK(s) has at most one zero

β0 = σ + it in the region

σ ≥ 1− (4 logDK)−1, |t| ≤ (4 logDK)−1.

If β0 exists, it is real and simple. There exist effectively
computable absolute constants such that

θ(x; c,m) =
1

hm
x+OK,m(xe−C

√
log x + xβ0)

as x→ +∞, with the understanding that the β0 term is present
only if β0 exists.

If a ∈ IS(m). Let S(M) be the set of ideals of K defined by

S(M) = Sa,m(M) = {I ⊆ OK : NK/QI ≤M, I ∼ a mod Cm}.

Proposition 2. a Assume the Generalized Riemann Hypothesis for ζK(s). Then

log |NK/Q(lcm(S(M)))| = M · 1

hm

∑
c∈Cm

1

NK/Qc
+OK,m(

√
M(logM)2),

as M → +∞, where NK/Qc is the smallest norm of an integral ideal in the ray class group of c.
b Let β0 be the possible Siegel zero of ζK(s). Then

log |NK/Q(lcm(S(M)))| = M · 1

hm

∑
c∈Cm

1

NK/Qc
+OK,m(

√
Me−C

√
logM +Mβ0),

as M → +∞, where the last error term is present if and only if β0 exists.
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Proof. Let P (M) be the set of prime factors of lcm(S(M)),
that is

P (M) = {℘ ∈ OK : ℘ divides at least one I ⊆ S(M)}.

We are going to characterize the primes in the set P (M).
We have that

NK/Q(lcm(S(M))) =
∏

℘∈P (M)

qβ℘(M)
℘ ,

where β℘(M) is the highest power of ℘ dividing any element
of S(M). On the other hand, if we let T (M) =

∏
℘∈P (M) q℘,

it turns out that

NK/Q(lcm(S(M)))

NK/Q(T (M))
=
∏
℘

qβ℘(M)−1
℘ ,

where the product is over the primes ℘ whose square divides
some element of S(M). In particular, each of those ℘ has norm
q℘ ≤M and they are at most

√
M . Therefore

log |NK/Q(lcm(S(M)))|−log |NK/Q(T (M))| �
√
M logM.

Then it suffices to focus on log |NK/Q(T (M))|.
Note that if I ∈ S(M), then I ∈ S(m), so it is coprime

with m. Let now ℘ ⊇ I (i.e. ℘ ∈ P (M)); then ℘ ≡ c in Cm

for some representative c ∈ IS(m). In particular c−1 ∈ IS(m);
let then d = c−1a, so that cd ≡ a in Cm. We can take d of
smallest norm among the coset representatives. Since every
class in Cm is represented by an integral ideal, we can also

assume d integral ideal of smallest norm.
Now, d℘ ∈ S(M) is equivalent to NK/Q(d℘) = NK/Qd ·

q℘ ≤M . Hence ℘ ≡ c in Cm is in P (M) if and only if

q℘ ≤
M

NK/Qd
.

Denote by U(M) the set of such primes.
Finally,

log |NK/Q(T (M))| =
∑

℘∈P (M)

log q℘ =
∑
c∈Cm

∑
℘∈U(M)

log q℘

=
∑
c∈Cm

θ
(

M
NK/Qd

; c;m
)

=
M

hm

∑
c∈Cm

1

NK/Qc
+ o(M),

where NK/Qc is by definition the smallest norm of an integral
ideal in the ray class group of c. The last equality holds because
d runs over Cm as c does. The result follows by applying either
Theorem 3 or Theorem 4 to the last step.

Let now the modulus m be a ”principal modulus”, that is
m = (ν), where ν ∈ OK , and let α ∈ OK be coprime with ν.

Consider the set of principal ideals

S(M) = {(β) ∈ OK : |NK/Qβ| ≤M, (β) ∼ (α) mod C(ν)}.

It is well-known that (β) ∼ (α) mod C(ν) is equivalent to
say that there exist a, b ∈ OK , a, b 6= 0, a ≡ b ≡ 1 mod ν so
that (β)b = (α)a. It follows that

(β) ∼ (α) mod C(ν) if and only if β ≡ ηα mod ν for some η ∈ O×K .

In particular,

|S(M)| ∼ {fη(λ) : η ∈ O×K , λ ∈ OK , |NK/Qλ| ≤M},

where fη(X) = ηα + νX ∈ OK [X]. It is immediate from Proposition 2 the following corollary, which can be interpreted as a
version of Cilleruelo’s conjecture for linear polynomials over K.

Corollary 1.

log |NK/Q(lcm(fη(λ) : η ∈ O×K , λ ∈ OK , NK/Qλ�M))| = M · 1

h(ν)

∑
c∈Cm

1

NK/Qc
+ o(M),

as M → +∞.

Example: In the ring of Eisenstein integers Z[ω] = OQ(ω), w = e2πi/3, all ideals are principal. In the above notations we have
(α) ∼ (β) mod ν iff α = ηβ, where η = ±ωj ∈ Z[ω]×, j = 0, 1, 2. In this case we get

log |NK/Q(lcm(ηα+ νλ : η ∈ {±1,±ω,±ω2}, λ ∈ OK , NK/Qλ ≤M))| = M · 1

h(ν)

∑
c∈Cm

1

NK/Qc
+ o(M),

as M → +∞.
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5. Average Version for Irreducible Sn-polynomials of Higher Degree
As already mentioned, almost all f ∈P0

n,N (K) are irreducible (the error term in this case is O(N−d)). Assume now n ≥ 3.
We start by computing an asymptotic formula for the mean value of the quantity

Ψf (N,M) = log |NK/Q(lcm(f(λ) : λ ∈ OK , NK/Qλ ≤M))|.

Proposition 3. Let N,M > 0 such that

M(logM)` � N = o

(
M

logM

log logM

)
for some 0 < ` < 1. Then

EN (Ψf (N,M)) = (n− 1)M logM +O

(
M

logM

log logM
+N log logM

)
,

as N,M → +∞.
Proof Following [4], we compare the behaviour of

lcm(f(λ) : NK/Qλ ≤M) =
∏
℘∈Pf

℘β℘(M)

and

Pf (M) :=
∏

NK/Qλ≤M

|NK/Qf(λ)| =
∏
℘

|NK/Q℘|α℘(M),

wherePf is the set of primes such that the equation f ≡ 0 mod ℘ has some solutions, which is the set of ℘ so that Frobf,℘ ∈ Gf
has fixed points. We start by writing

Ψf (N,M) = logPf (M) +
∑

NK/Q℘≤M

β℘(M) logNK/Q℘−
∑

NK/Q℘≤M
℘ unramified

α℘(M) logNK/Q℘

−
∑

NK/Q℘≤M
℘ ramified

α℘(M) logNK/Q℘−
∑

NK/Q℘>M

(α℘(M)− β℘(M)) logNK/Q℘

and we’re going to study all these five terms.
logPf (M) =

∑
NK/Qλ≤M log |NK/Qf(λ)|; pick A = A(M,N) such that A = o(M) and A� N

logM .

Then for A� NK/Qλ ≤M and f(X) = Xn +
∑n−1
i=0 αn−i−1X

n−i−1, one has

log |NK/Qf(λ)| = n log |NK/Qλ|+ log
∣∣∣NK/Q (1 +

αn−1
λ

+ · · ·+ α0

λn

)∣∣∣
= n log |NK/Qλ|+ log

d∏
i=1

∣∣∣1 + σi

(αn−1
λ

+ . . .
)∣∣∣

= n log |NK/Qλ|+
d∑
i=1

log
(∣∣∣1 + σi

(αn−1
λ

+ . . .
)∣∣∣)

= n log |NK/Qλ|+
d∑
i=1

O
(
σi

(αn−1
λ

)
+ · · ·+ σi

(α0

λn

))
= n log |NK/Qλ|+

d∑
i=1

O

(
N

NK/Qλ
+ · · ·+ N

NK/Qλn

)
= n log |NK/Qλ|+On,K

(
N

A

)
,
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where σ1, . . . , σd are the Q-embeddings of K into C.
If 1 ≤ NK/Qλ� A, we simply use that |NK/Qf(λ)| � NdMn, so log |NK/Qf(λ)| �n,d logN + logM . Therefore, since

the elements in OK of norm at most M are at most M ,

logPf (M) =
∑

A�NK/Qλ≤M

log |NK/Qf(λ)|+
∑

NK/Qλ�A

log |NK/Qf(λ)|

=
∑

A�NK/Qλ≤M

(
n logNK/Qλ+O

(
N

A

))
+

∑
NK/Qλ�A

log |NK/Qf(λ)|

= nM logM +O

(
M +

NM

A
+A(logN + logM)

)
= nM logM +O

(
M

logM

log logM
+N log logM

)
,

as M → +∞, by choosing A = N
logM log logM and N = o

(
M logM

log logM

)
.

β℘(N) = max
NK/Qλ≤M

max{k ≥ 0 : ℘k|f(λ)}; if ℘k|f(λ), then in particular k ≤ log |NK/Qf(λ)|
log q℘

� logN+logM
log q℘

. Thus

∑
q℘≤M

β℘(M) log q℘ �
∑
q℘≤M

(logN + logM)

�M
(

1 +
logN

logM

)
�M

under the conditions above.
If ℘ is a prime which doesn’t divide DKf/K , then the number of solutions s℘k(f) of f mod ℘k is equal to the number s℘(f)

of solutions mod ℘ (see Theorem 1 of [8]). On the other hand, by dividing the interval [1,M ] into consecutive intervals of length
qk℘, one has

s℘k(f)
[M
qk℘

]
≤

∑
NK/Qλ≤M
f(λ)≡0 (℘k)

1 ≤ s℘k(f)
([M
qk℘

]
+ 1
)
,

so ∑
NK/Qλ≤M
f(λ)≡0 (℘k)

1 = M
s℘k(f)

qk℘
+O(s℘k(f)).

For those ℘, one has

α℘(M) =
∑

NK/Qλ≤M

∑
k≥1

℘k|f(λ)

1 =
∑
k≥1

∑
NK/Qλ≤M
f(λ)≡0 (℘k)

1

=
∑
k≥1

M
s℘k(f)

qk℘
+O

( ∑
1≤k≤ log N+log M

log q℘

1
)

= M
s℘(f)

q℘ − 1
+O

( logN

log q℘
+

logM

log q℘

)
.

Therefore ∑
q℘≤M
℘ unramified

α℘(M) log q℘ = M
∑
q℘≤M
℘ unramified

log q℘
q℘ − 1

s℘(f) +O(M).
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Using Proposition 1 we can estimate on average
∑
q℘≤x

℘ unramified

s℘(f) for x > 0, x < Ndξ/(n+1):

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤x
℘ unramified

s℘(f) =
1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤x
℘ unram.

∑
α mod℘

f(α)≡0 (℘)

1

=
∑
α

∑
σ∈Sn

σα=α

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤x, ℘ unram.

Frobf,℘=σ

1

=
∑
α

∑
σ∈Sn

σα=α

1

|P0
n,N |

∑
f∈P0

n,N

πC (σ),Kf/K(x)

=
∑
α

∑
σ∈Sn

σα=α

EN (πC (σ),Kf/K(x))

=
∑
α

∑
σ∈Sn

σα=α

( |C (σ)|
n!

πK(x) +O(log log x)
)

= πK(x) +O(log log x),

where πC (σ),Kf/K is the Chebotarev Density Theorem function on the conjugacy class C (σ) of σ. Note that

πC (σ),Kf/K − πf,r(x)�n,K log log x

on average, if C (σ) = Cr for some r. Write

s℘(f) = 1 + σ℘(f),

where −1 ≤ σ℘(f) ≤ n− 1 and

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤x
℘ unramified

σ℘(f)�n,K log log x,

if x < Ndξ/(n+1).
Now,

∑
q℘≤M
℘ unramified

log q℘
q℘ − 1

s℘(f) =
∑
q℘≤M

log q℘
q℘

−
∑
q℘≤M
℘ ramified

log q℘
q℘

+
∑
q℘≤M
℘ unramified

log q℘
q℘

σ℘(f) +O(1).

Since ∑
q℘≤M

log q℘
q℘

= logM +O(1),

and ∑
q℘≤M
℘ ramified

log q℘
q℘

� log log |NK/QDKf/K | � log logN

(see [9], Lemma 3.2), one gets∑
q℘≤M
℘ unramified

log q℘
q℘ − 1

s℘(f) = logM +
∑
q℘≤M
℘ unramified

log q℘
q℘

σ℘(f) +O(log logN).
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Let 0 < δ < 1
2(n+1) and N > M(logM)2δ(n+1), so that

M ′ :=
M1/2(n+1)(logM)δ

(logN)1/(n+1)
< Ndξ/(n+1).

Write ∑
q℘≤M
℘ unramified

log q℘
q℘

σ℘(f) =
∑

q℘≤M ′
℘ unramified

log q℘
q℘

σ℘(f) +
∑

M ′<q℘≤M
℘ unramified

log q℘
q℘

σ℘(f).

For the first term, by partial integration we obtain

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤M ′
℘ unramified

log q℘
q℘

σ℘(f)� logM ′

M ′
log logM ′ +

∫ M ′

2

log log t
(1− log t)

t2
dt� 1,

since
∫M ′
2

log log t (1−log t)t2 dt�
∫M ′
2

t1/2

t2 dt� 1.
To treat the second term, note that it is

≤ (n− 1)
∑

M ′<q℘≤M

log q℘
q℘

≤ (n− 1)
∑

M−y<q℘≤M

log q℘
q℘

,

for y ≥M −M ′. If moreover we pick M ∼ 2y, then∑
M−y<q℘≤M

log q℘
q℘

� logM − log(M − y)� 1,

as M → +∞.
Hence we have the following estimate on average:

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤M
℘ unramified

α℘(M) log q℘ = M logM +O
(
M log logN +M

)
= M logM +O(M log logN),

for N > M(logM)2δ(n+1), 0 < δ < 1
2(n+1) .

We divide the sum into two terms:∑
q℘≤M
℘ ramified

α℘(M) log q℘ =
∑
q℘≤M
℘ ramified

log q℘|{λ ∈ OK : NK/Qλ ≤M, f(λ) ≡ 0 mod ℘}|+
∑
q℘≤M
℘ ramified

log q℘
∑

NK/Qλ≤M

∑
k≥2

f(λ)≡0 (℘k)

1

= I + II.

To estimate I, note that

|{λ ∈ OK : NK/Qλ ≤M, f(λ) ≡ 0 mod ℘}| =
[M
q℘

]
s℘(f)� M

q℘
s℘(f),

so

I�
∑
q℘≤M
℘ ramified

log q℘
q℘

s℘(f)�n M
∑
q℘≤M
℘ ramified

log q℘
q℘

�M log logN.

The mean value of II is

1

|P0
n,N |

∑
f∈P0

n,N

II� 1

Nnd

∑
q℘≤M

log q℘
∑

NK/Qλ≤M

∑
2≤k� log N+log M

log q℘

∑
f∈P0

n,N

f(λ)≡0 (℘k)

1.
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Similarly as we computed in Lemma 3.1, note that for any λ ∈ OK ,

∑
f∈P0

n,N

f(λ)≡0 (℘k)

1 =
∑

g∈F
qk℘

[X]

g(λ)=0

∑
f∈P0

n,N

f≡g mod℘k

1.

Since there are qk(n−2)℘ possibilities for g as in the above sum, one has

∑
f∈P0

n,N

f(λ)≡0 (℘k)

1 =
(2N)nd

q2k℘
+O(Nd(n−ξ))

as long as k � logN
log q℘

. Hence

1

|P0
n,N |

∑
f∈P0

n,N

II�M
∑
q℘≤M

log q℘
∑
k≥2

( 1

q2℘

)k
+

M

Ndξ

∑
q℘≤M

log q℘
∑

k� log N+log M
log q℘

1�M +
M2

Ndξ

( logN

logM
+ 1
)
.

To conclude
1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘≤M
℘ ramified

α℘(M) log q℘ �M log logN +
M2

Ndξ

( logN

logM
+ 1
)
.

For λ, µ ∈ OK such that NK/Qλ < NK/Qµ let

G(µ, λ) =
f(µ)− f(λ)

µ− λ
.

Once fixed µ, G(µ, λ) is a polynomial in λ of degree n− 1.
We are now dealing with the primes ℘ of norm q℘ > M , for which

α℘(M) =
∑

NK/Qλ≤M

∑
k≥1

1(f(λ) ≡ 0 mod ℘k)

=
∑
k≥1

∑
NK/Qλ≤M
f(λ)≡0 (℘k)

1�
∑

1≤k� log N+log M
log q℘

�n,K 1.

For ℘ of norm q℘ > M we then have
α℘(M)− β℘(M)�n,K 1.

Note also that if ℘|f(λ), then |q℘| ≤ |NK/Qf(λ)| � NdMn, so α℘(M) = 0 for q℘ � NdMn. Also, α℘(M) 6= β℘(M)
if and only if there exist µ, λ ∈ OK , NK/Qλ < NK/Qµ ≤ M such that ℘|f(µ) and ℘|f(λ), equivalently ℘|f(λ) and ℘|(µ −
λ)G(µ, λ); but ℘ - (µ− λ), since |NK/Q(µ− λ)| ≤M − 1 < q℘, so ℘|G(µ, λ).

Thefore

∑
q℘>M

(α℘(M)− β℘(M)) log q℘ �
∑

1≤NK/Qλ<NK/Qµ≤M

∑
M<q℘�NdMn

℘|f(`)
℘|G(µ,λ)

log q℘

=
∑

1≤NK/Qλ<NK/Qµ≤M
G(µ,λ)=0

∑
M<q℘�NdMn

℘|f(λ)

log q℘ +
∑

1≤NK/Qλ<NK/Qµ≤M
G(µ,λ)6=0

∑
M<q℘�NdMn

℘|f(λ)
℘|G(µ,λ)

log q℘
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�
∑

1≤NK/Qλ<NK/Qµ≤M

∑
M<q℘�NdMn

℘|f(λ)

log q℘ +
∑

1≤NK/Qλ<NK/Qµ≤M
G(µ,λ) 6=0

∑
M<q℘�NdMn

℘|f(λ)
℘|G(µ,λ)

log q℘

� (logN + logM) max
NK/Qµ≤M

{℘ : q℘ > M, ℘|f(µ)}+
∑

1≤NK/Qλ<NK/Qµ≤M
G(µ,λ)6=0

∑
M<q℘�NdMn

℘|f(λ)
℘|G(µ,λ)

log q℘.

For NK/Qµ ≤ M , |NK/Qf(µ)| � NdMn, so the primes ℘ with q℘ > M dividing f(µ) are at most� log(NdMn)
logM �n,K 1.

Thus ∑
q℘>M

(α℘(M)− β℘(M)) log q℘ �
∑

1≤NK/Qλ<NK/Qµ≤M
G(µ,λ) 6=0

∑
M<q℘�NdMn

℘|f(λ)
℘|G(µ,λ)

log q℘ + logM,

or on average

1

|P0
n,N |

∑
q℘>M

(α℘(M)− β℘(M)) log q℘

�
∑

1≤NK/Qλ<NK/Qµ≤M
G(µ,λ)6=0

∑
M<q℘�NdMn

℘|G(µ,λ)

log q℘|{f : f(λ) ≡ 0 mod ℘}|+ logM

=
∑

1≤NK/Qλ<NK/Qµ≤M
G(µ,λ)6=0

∑
M<q℘�NdMn

℘|G(µ,λ)

log q℘

( 1

q2℘
+O

( 1

Ndξ

))
+ logM

�
∑

1≤NK/Qλ<NK/Qµ≤M
G(µ,λ)6=0

∑
M<q℘�NdMn

℘|G(µ,λ)

log q℘
q2℘

+
1

Ndξ

∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)6=0

∑
M<q℘�NdMn

℘|G(µ,λ)

log q℘ + logM

= I + II + logM.

For II, observe that since |G(µ, λ)| � NdMn−1, the number of primes ℘ of norm q℘ > M dividing G(µ, λ) is at most

� log(NdMn−1)
logM � 1, so

II� M2

Ndξ
logM.

For I, we separate the contribution of small and large prime. Pick M < BM,N � NdMn; for small primes we have

∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)6=0

∑
M<q℘≤BM,N

℘|G(µ,λ)

log p

q2℘
=

∑
M<q℘≤BM,N

log q℘
q2℘

∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)≡0 (℘)

1

�M
∑

M<q℘≤BM,N

log q℘
q2℘

�M,

since
∑

1≤NK/Qλ<NK/Qµ≤M
G(µ,λ)≡0 (℘)

1 ≤ (n− 1)M . For large primes,

∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ)6=0

∑
BM,N<q℘�NdMn

℘|G(µ,λ)

log q℘
q2℘

� (logN + logM)

B2
M,N

∑
1≤NK/Qλ<NK/Qµ≤M

G(µ,λ) 6=0

|{℘ : q℘ > BM,N , ℘|G(µ, λ)}|

� M2

B2
M,N

logM
logM

logBM,N
,
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by observing that |{℘ : q℘ > BM,N , ℘|G(µ, λ)}| � log(NdMn−1)
logBM,N

� logM
logBM,N

since |G(µ, λ)| � NdMn−1. We obtained

1

|P0
n,N |

∑
f∈P0

n,N

∑
q℘>M

(α℘(M)− β℘(M)) log q℘ �M +
M2

Ndξ
logM + logM

by choosing for instance BM,N = M logM .
Finally,

1

|P0
n,N |

∑
f∈P0

n,N

log |NK/Q(lcm(f(λ) : NK/Qλ ≤M)) = (n− 1)M logM

+O

(
M

logM

log logM
+N log logM +M log logM +

M2

Ndξ
logM

)
= (n− 1)M logM +O

(
M

logM

log logM
+N log logM

)
,

when M(logM)` � N = o
(
M logM

log logM

)
, 0 < ` < 1 small enough.

Next step is to estimate the variance of Ψf (N,M).
Proposition 4. Let N,M > 0 such that

M(logM)` � N = o

(
M

logM

log logM

)
for some 0 < ` < 1. Then

σ2
N (Ψf (N,M))� M2(logM)2

log logM
+NM logM log logM,

as N,M → +∞.
In particular, σ2

N (Ψf (N,M)) = o(EN (Ψf (N,M))) in the above range of N,M , so Ψf (N,M) ∼ EN (Ψf (N,M)) almost
surely, which shows Theorem 1.

Proof. One has σ2
N (Ψf (N,M)) = EN (Ψf (N,M)2)−EN (Ψf (N,M))2. The square of the mean value can easily be estimated

by means of Proposition 3:

EN (Ψf (N,M))2 = (n− 1)2M2(logM)2 +O

(
M2(logM)2

log logM
+NM logM log logM

)
.

It remains to study the average bahviour of Ψf (N,M)2. We will be consistent with the notations of the previous proposition.
Write

Ψf (N,M) = X1 + · · ·+X5,

where the terms Xi are defined at the beginning of the proof of Proposition 3, with the same order. Therefore

Ψf (N,M) = X2
1 + · · ·+X2

5 = ±2
∑

i 6=j=1,...,5

XiXj .

1. The first term is

X2
1 = (logPf (M))2 = n2M2(logM)2 +O

(
M2(logM)2

log logM
+NM logM log logM

)
if N = o

(
M logM
log logM

)
.

2. With the same argument of Proposition 3 we can see that

X2
2 �M2.
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3. Write
X2

3 = M2
( ∑
q℘≤M
℘ unr

log q℘
q℘ − 1

s℘(f)
)2

+O(M2 logM),

where s℘(f) is the number of solutions of f mod ℘. We need an estimate on average of
∑
q℘,qq≤M
℘,q unr

s℘(f)sq(f). If M is

small enough compared to N , we can use Proposition 1 to get

EN
( ∑
q℘,qq≤M
℘,q unr

∑
α,℘

f(α)≡0 (℘)

∑
β,q

f(β)≡0 (q)

1
)

=
∑
α,β

∑
σ,τ
σα=α
τβ=β

EN
( ∑
qq≤M unr

Frobf,℘=σ

∑
qq≤M unr

Frobf,q=σ

1
)

= πK(M)2 +O(πK(M) log logM).

We then have
EN
( ∑
q℘,qq≤M
℘,q unr

σ℘(f)σq(f)
)
� πK(M) log logM.

By partial summation,

EN
( ∑
q℘≤M
℘ unr

log q℘
q℘ − 1

s℘(f)
)

=
∑
q℘≤M
℘ unr

(
log q℘
q℘

)2

+ EN
(( ∑

q℘≤M
℘ unr

log q℘
q℘

σ℘(f)
)2)

= (logM)2 +O((log logN)2) + EN
(( ∑

q℘≤M
℘ unr

log q℘
q℘

σ℘(f)
)2)

.

Fix f , and let M ′ ≤M . The contribution of the ”small primes” is given by

( ∑
q℘≤M ′
℘ unr

log q℘
q℘

σ℘(f)
)2

=
( ∑
q℘≤M ′
℘ unr

σ℘(f)
logM ′

M ′
+

∫ M ′

2

∑
q℘≤t

σ℘(f)
1− log t

t2
dt
)2

=
(logM ′)2

M ′2
EN
(( ∑

q℘≤M ′
℘ unr

σ℘(f)
)2)

+
(∫ M ′

2

∑
q℘≤t

σ℘(f)
1− log t

t2
dt
)2

+O

(
log logM ′

logM ′

M ′

)
.

We use the Cauchy-Schwarz inequality to bound the square of the integral

(∫ M ′

2

∑
q℘≤t

σ℘(f)
1− log t

t2
dt
)2
≤
∫ M ′

2

(∑
q℘≤t
℘ unr

σ℘(f)
)2
dt ·

∫ M ′

2

(1− log t

t2

)2
dt.

On average we thus have

EN
(( ∑

q℘≤M ′
℘ unr

log q℘
q℘

σ℘(f)
)2)
� log logM ′

logM ′

M ′
+

∫ M ′

2

t

log t
log log tdt

�M ′2.
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For the primes of norm M ′ < q℘ ≤M , simply use that ∑
M ′<q℘≤M

log q℘
q℘

2

� 1

since it is the tail of a convergent series as M → +∞.
Pick now M ′ = logM

log logM < Ndξ/2n+1. It follows that

EN (X2
3 ) = M2(logM)2 +O

(
M2(log logN)2 +M2 logM +M2

(
logM

log logM

)2
)
.

4.
X2

4 =
∑

q℘,qq≤M
℘,q ramified

α℘(M)αq(M) log q℘ log qq = I2 + II2 + 2I · II.

In particular
EN (I2)�M2 log logN,

and so

EN (I · II)�M log logN · EN (II)

�M log logN

(
M +

M2

Ndξ
logM

)
�M2 log logN.

Finally,

EN (II2) = EN
(( ∑

q℘≤M
℘ ram

log q℘
∑

NK/Qλ≤M

∑
k≥2

f(λ)≡0 (℘k)

1
)2)

� 1

Nnd

∑
q℘,qq≤M

log q℘ log qq
∑
λ1,λ2

NK/Qλi≤M

∑
2≤k�logN+logM

∑
f

f(λ1)≡0 (℘k)

f(λ2)≡0 (qk)

1

�M2
∑

q℘,qq≤M

log q℘ log qq
∑
k≥2

(
1

q2℘q
2
q

)k
�M2,

which yields to
EN (X2

4 )�M2 log logN.

5. By using the exact same technique as in the previous result with the auxiliary function G(µ, λ), one gets

EN (X2
5 )�M2.

6. Now for the cross products, we easily obtain estimates by using the ones we have for X1, . . . , X5. The only product giving
a contribution is

EN (−2X1X3) = −2nM2(logM)2 +O

(
M2 log logN logM +

M2(logM)2

log logM
+NM logM log logM

)
.
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All the other terms are negligible:

EN (X1X2)�M2 logM,

EN (X1X4)�M2 logM log logN,

EN (X1X5)�M2 logM,

EN (X2X3)�M2 logM,

EN (X2X4)�M2 logM log logN,

EN (X2X5)�M2 logM,

EN (X3X4)�M2 log logN,

EN (X3X5)�M2,

EN (X4X5)�M2 log logN.

By putting everything together, we see that the terms of
size M2(logM)2 erase in σ2

N (Ψf (N,M)), which gives the
desired upper bound.

6. Conclusion

Recently Cilleruelo’s conjecture was shown for a large
family of integer polynomials of any degree by Rudnick and
Zehavi in [9]. In particular, when restricted to the caseK = Q,
our main theorem also encompasses non-included cases in the
above-mentioned result.
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