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Abstract 

In recent years, the double-layered multi-head weighers whose hoppers are arranged in two levels are widely used in the 

accurate and reliable weighing for packing food products. The weighing processes are mathematically modeled into a single 

objective optimization problems. The objective of packing problem is to minimize the total weight of combined hoppers for a 

package under the condition that the total weight must be no less than a specified target weight. This paper proposes a novel 

single objective optimization approach for double-layered multi-head weighing process. More precisely, relying on a new bound 

on the optimal weight, this study accurately determines the number of hoppers to be combined at each packing operation, and 

find the best possible hopper combination using the single-objective algorithm. This method significantly speeds up the packing 

process as a whole. According to the present approach, the candidate number of hoppers to be combined can be taken one or two 

integral values. The probability that the accurate number of hoppers to be combined becomes one integral value is explicitly 

calculated, which is the performance factor to the previous one. In addition, results from the numerical experiments to show the 

effectiveness of the proposed approach are presented. 
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1. Introduction 

The multi-head weigher (also known as combination 

weigher) is a weighing machine which is used to provide the 

accurate weight for packing food products such as 

confectionery, biscuits, nuts, snack foods, fresh and frozen 

foods, rice, pasta pieces dried fruits etc [6, 14]. The 

multi-head weigher was first invented and developed in the 

1970s. Ever since its appearance, this machine launched into 

the food industry across the world. Nowadays this kind of 

machines, thanks to their high speed and accuracy, have 

widely spread in the packaging industry and are produced 

worldwide by a number of manufacturers. In spite of 

widespread use of multi-head weighers, vary few studies are 

known. 

The double-layered multi-head weigher is the one whose 

hoppers are arranged in two levels. It is composed of a set of 

nweighing hoppers, a set of n booster hoppers and a 
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discharge chute to the packaging machine (see Figure 1 and 

Figure 2). Each weighing hopper has its own highly accurate 

load cell. This load cell will calculate the weight of product in 

the weighing hopper. The booster hoppers are nothing but the 

ordinary hoppers without load cell. They are placed 

underneath of weighing hoppers uprightly or diagonally based 

on the constructional feature of machine, according to which 

distinguish the double-layered multi-head weighers upright 

from diagonal. The packing process begins when the food 

product is fed into the top of the multi-head weigher, where a 

dispersal system, normally a vibrating or rotating top cone, 

distributes the product into a series of linear or radial feeder 

plates. This top cone is normally equipped with a load cell 

which controls the feed of product to the multi-head weigher. 

The linear or radial feeder plates vibrate individually and 

deliver the food product into the set of nweighing hoppers. 

The set of weighing hoppers send the food product into the set 

of n booster hoppers. After each delivery to the weighing 

and booster hoppers, the linear or radial feeders will stop 

vibrating and wait until the weighing hoppers have emptied 

their contents into the booster hoppers before starting again. 

 
Figure 1. Upright type double-layered multi-head weigher. 

 
Figure 2. Diagonal type double-layered multi-head weigher. 

The built-in computer in the multi-head weigher will then 

calculate the best combination of available weights from the set 

of nweighing hoppers and n booster hoppers to achieve 

the desired target weight T , and chooses some hoppers from the 

total 2n  hoppers for a package. Once the calculation is 

completed, it will open the combined hoppers (hereafter, denote 

by H   this subset, i.e. H H  ) and discharge the accurately 

weighed portion into the packing system or product trays. The 

resulting empty weighing hoppers (i.e. H H  ) are supplied 

with next new contents of product, and such a packing operation 

is repeated continuously to produce a large number of food 

packages one by one. 

The double-layered multi-head weighing process are 

mathematically modeled into a single-objective optimization 

problem. The objective of packing problem is to minimize the 

total weight of combined contents of product for a package 

under the condition that the total weight must be no less than a 

specified target weight T . It is a common knowledge that the 

number of possible different hopper subsets to be combined is 

different at each packing operation. This optimization 

problem that minimize the difference between the combined 

and the target package weight is known as the NP-complete 

subset-sum combinatorial one [11]. 

Let us briefly summarize the previous research in the field 

of multi-head weighing process. Much efforts have been 

devoted to the study of single-layered multi-head weighing 

process (without booster layer). Barreiro et al. [1] introduced 

the percentage variability reduction index for the reduction 

and control of production process variability. Keraita and Kim 

[18] investigated the optimum scheme for the determination 

of the operation time of line feeders in automatic combination 

weighers. Keraita and Kim [19] developed a weighing 

algorithm for multi-head weighers based on bit operation. 

Karuno et al. [15] introduced a second objective called 

``priority", and formulated the weighing process as a 

bi-objective optimization problem, where they proposed an 

lexicographic dynamic programming pseudo polynomial time 

algorithm. The proposed approach is primarily aimed to 

minimize the difference between the target weight and the 

combined weight for a package, and then maximized the 

duration time of food contents in the weigher. Karuno, 

Nagamochi and Wang [16] applied the pseudo-polynomial 

dynamic programming algorithm to the double-layered 

lexicographic bi-criteria combinatorial optimization problems. 

Imahori et al. [12, 13] and Karuno et al. [17] have studied the 

possibility of improving the bi-objective optimization model 

proposed by Karuno et al. [19], and investigated different 

types of actual packing operations. 

Recently, some researchers presented the statistical model for 

the multi-head weighing process. Based on a study of real data, 

Beretta and Semeraro [2], Beretta et al. [3] and del Castillo et al. 

[5] have noted that the weights of food contents thrown into the 

multi-head weigher are normally distributed, i.e. 

1 2{ , , , } ( , ),nw w w N    

where 1 2, , , nw w w  are the real weights of food contents 
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feeded in the weighing hoppers and ( , )N    denotes the 

normal distribution whose mean is   and standard deviation 

is  . In the sequel, this paper uses the cumulative 

distribution function F  of normal distribution defined by 

1 2( )
2

1
( ) = .

2

x
a

F a e dx










  

Pulido-Rojano, Garcia-Diaz and Giner-Bosch [22] 

proposed a new effective bi-objective optimization approach 

assuming that all the weights in the hoppers are independently 

filled according to the same distribution ( , )N   . Since all 

the weights are independently and identically distributed, the 

total weight of randomly selected k  hoppers follows a 

normal distribution ( , )N k k  . Thus, One might expect 

that the average package mean weight k  equals to the 

target weight T , that is, the number of hoppers k  to be 

combined at each packing operation is constant and fixed in 

advance, where k  is determined by 
T

k


 . One might call 

such k  hopper combination are valid hopper combination. 

Afterawards [7, 8, 23, 24] designed a set of algorithms and 

proposed a different filling strategy of the hoppers aimed to 

reducing process variability. 

Recently, Garcia-Diaz et al. [9] proposed a new single 

objective optimization algorithm for the double-layered 

multi-head weighing process, where the number of hoppers k  

to be combined has previously been defined. However, there 

is an important problem for choosing k  in the industrial 

setting. Although the weights of food product in the hoppers 

follow the normal distribution, the average package mean   

of food product is not the same for all the types of food 

products. Morever, 
T


 is not always integer in general. For 

example, if one packs some food product whose target weight 

T  is 300  and average package mean   is 54 , then the 

candidate number k  of hoppers to be combined becomes 

300
5.55

54
 . In such case, it is natural to choose = 5k  and 

= 6k . In other words, one must find the optimal weight 

among both 5  and 6  hopper combinations. It will reduce 

the computational time if it is proved that only 5  hopper or 

only 6  hopper combinations are valid. The computational 

cost of generating and evaluating all the valid hopper 

combinations is closely related to the accurate determination 

of the number of hoppers to be combined from the candidate 

numbers. This problem becomes more difficult when the 

entire number of hoppers are large, especilly when the 

double-layered multihead weighing process work. 

To address this problem, this paper proposes a new method 

for choosing the accurate number of hoppers to be combined, 

and solves the packaging problem through a novel single 

objective algorithm for double-layered weighers. More 

precisely, relying on a new bound on the optimal weight of 

weighing process, this paper proves a necessary condition that 

the optimal weight satisfies, and determine the accurate 

number of hoppers to be combined. The probability that the 

accurate number of hoppers to be combined becomes one 

integer instead of two values is explicitly calculated. In 

addition, results from the numerical experiments to show the 

effectiveness of the proposed approach are presented. 

This study significantly improves the optimization 

approach of the research of Garcia-Jiménez, R et al [9], and 

can be applied to the single objective optimization problem.  

Last but not least, Garcia-Diaz et al. [10] also treated 

bicriteria food packaging process optimization problems in 

double-layered upright and diagonal multihead weighers. 

Nurcahyadi et al. [21] applied Ant Colony Optimization 

algorithm to find the solution in the single-layered 

multi-head weighing process. 

The rest of paper is organized as follows. Section 2 

discusses the previous works on the double-layered 

multi-head weighing process. Section 3 and 4 propose the 

single objective optimization method based on the accurate 

determination of valid hopper combinations. Section 5 and 6 

show the numerical result and conclusion of the paper. 

2. Double-Layered Multi-Head Weighing 

Process and Single Objective 

Optimization Problems 

The following notations are used throughout this paper. 

H : Set of total 2n  hoppers. 

Q : The total number of packages needed. 

: Current iteration number of packing operation. 

1 2, , , nw w w : The weights of food product in the 

weighing hoppers at -th packing operation. 

1 2, , , nb b b : The weights of food product in the booster 

hoppers at -th packing operation. 

H : Set of all hopper combinations at -th packing 

operation. 

W : The total weight calculated as the sum of the weight in 

H  hoppers at -th packing operation. 

T : Target weight. 

A weighing hopper sends its food product to the following 

booster, whenever the booster becomes empty. The booster 

receives it as the next content. Then, the weighing hopper is 

filled with a new food product since it becomes empty after 

sending its content to the following booster. If a weighing 

hopper also becomes empty when the following booster 

becomes empty (such a situation occurs in a double-layered 

food packing system of upright type), it sends a new content to 
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the following booster after it is filled. According to the 

constructional feature of two layers, a double-layered food 

packing system classified into upright type if it cannot choose 

the food product in a weighing hopper for a package unless it 

chooses the current food product in the following booster, 

while a double-layered system is classified into diagonal type 

if it can choose the food content in a weighing hopper for a 

package no matter whether it chooses the food product in the 

following booster or not. 

It was proved in [9] that the total number UN  of 

combinations for the upright type double-layered weighing 

process when the fixed k  hoppers are combined is calculated 

by 

[ /2]
2

=0

= ,

k
i k i

U n n i

i

N C C 
            (1) 

where [ / 2k ] denotes the integer part of / 2k . It was also 

proved in [9] that the total number DN  of combinations for 

the diagonal type double-layered weighing process when the 

fixed k  hoppers are combined is computed by 

=0

= .

k
i k i

D n n i

i

N C C 
            (2) 

The double-layered multi-head weighing processes are 

mathematically modeled into a single objective optimization 

problems. This weighing process seek to find the best 

combination H H  at every packing operation such that 

some weight W  is minimized under the condition that 

W T . The 2n -dimensional binary vectors 

1 2 1 2( , ) = ( , , , , , , , )n nx y x x x y y y  is defined as follows. 

1 if i th weighing hopper is selected,
=

0 otherwise,
ix





 

1 if i th booster hopper is selected,
=

0 otherwise,
iy





 

Then, by using the above vectors, the upright type 

double-layered food packing problem Package U  is 

formulated as follows. 

=1 =1

min ( , ) = ,

n n

i i i i

i i

f x y w x b y          (3) 

=1 =1

,

n n

i i i i

i i

w x b y T                 (4) 

0, =1, , ,i ix y i n             (5) 

, {0,1}, =1, , .i ix y i n              (6) 

The objective f  of (3) aims at attaining the total weight of 

selected hoppers as close to the target weight T  as possible, 

under the condition (4) (i.e., the target weight constraint). The 

equation (5) reflects the constructional feature of upright type 

that it cannot choose the i -th weighing hopper unless it 

chooses the i -th booster hopper. A solution ( , )x y  satisfying 

(4)-(6) is referred to as a feasible solution of the problem 

Package U . Moreover, for the problem Package U , *T  

is denoted by the minimum of the total weight of a feasible 

solution ( , )x y . An optimal solution * *( , ) = ( , )x y x y  is 

defined as a feasible solution satisfying * * *= ( , )T f x y . 

Similarly, the diagonal type double-layered food packing 

problem Package D  is formulated as follows. 

=1 =1

min ( , ) = ,

n n

i i i i

i i

f x y w x b y          (7) 

=1 =1

,

n n

i i i i

i i

w x b y T          (8) 

1, =1, , ,i ix y i n             (9) 

, {0,1}, =1, , .i ix y i n       (10) 

The objective f  of (7) aims at attaining the total weight of 

selected hoppers as close to the target weight T  as possible, 

under the condition (8) (i.e., the target weight constraint). The 

equation (9) reflects the constructional feature of diagonal 

type that it cannot choose the i -th weighing hopper unless it 

chooses the i -th booster hopper. A solution ( , )x y  satisfying 

(8)-(10) is referred to as a feasible solution of the problem 

Package D . Moreover, for the problem Package D , *T  

is denoted the minimum of the total weight of a feasible 

solution ( , )x y . An optimal solution * *( , ) = ( , )x y x y  is 

defined as a feasible solution satisfying * * *= ( , )T f x y . 

An important property of optimal solution for both 

packaging problems is proved in the following. This can be 

regarded as an improvement of Lemma 3 in [16]. 

Theorem 1. Let * *( , )x y  be the optimal solution that 

satisfies * * *= ( , )T f x y  for both problems Package U  

and Package D . Then it holds that 

*
1 2 1 2< min{ , , , , , , , }.n nT T T w w w b b b   (11) 
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Proof of Theorem 1. First, assertion for the problem 

Package U  is proved. Since the optimal solution * *( , )x y  

is a feasible one with the target weight constraint (4), the left 

hand side inequality of (11) holds. By the optimality of 
* *( , )x y , it holds that 

* *( , ) <kf x y b T            (12) 

for any vector * *( , ) = (0,1)k kx y . If the converse inequality 

* *( , ) kf x y b T   holds, then it implies that deleting 

* *( , ) = (0,1)k kx y  from the optimal solution becomes another 

feasible solution, and it contradicts the optimality of * *( , )x y . 

Similarly, it also holds that 

* *( , ) <kf x y w T               (13) 

for any vector * *( , ) = (1,1)k kx y . Therefore, the right hand side 

inequality of (11) holds for the problem Package U . 

Next, the assertion for the problem Package D  is 

proved. Since the optimal solution * *( , )x y  is a feasible one 

with the target weight constraint (8), the left hand side 

inequality of (11) also holds for the problem Package D . 

By the optimality of * *( , )x y , it holds that 

* *( , ) <kf x y w T               (14) 

for any vector * *( , ) = (1,0)k kx y . If the converse inequality 

* *( , ) kf x y b T   holds, then it implies that deleting 

* *( , ) = (1,0)k kx y  from the optimal solution becomes another 

feasible solution for the problem Package D , and it 

contradicts the optimality of * *( , )x y . In the similar fashion 

as above, it also holds that 

* *( , ) <kf x y b T               (15) 

for any vector * *( , ) = (0,1)k kx y . Therefore, the right hand side 

inequality of (11) holds for the problem Package D . 

Finally, the theorem is proved. 

3. Accurate Determination of Valid 

Hopper Combinations 

This section proposes the accurate determination method 

for valid hopper combination from the candidate number of 

hoppers, and solve the single-objective optimization problem. 

Assume as in [9] that all the weights in the 2n  hoppers 

follow independently and identically a normal distribution 

1 2 1 2{ , , , , , , , } ( , ),n nw w w b b b N     (16) 

where   is the average package weight and   is the 

standard deviation. Garcia-Diaz et al. [9] proposed an 

optimization approach in which the number of hoppers k  to 

be combined at each packing operation is constant and fixed 

in advance, where k  is determined by =
T

k


 and the set of 

all possible k -hopper combinations becomes valid hopper 

combinations. As already mentiond in section 1, =
T

k


 is 

not always integer for any   and T . It is hard to fix   

such that =
T

k


 becomes an integer in the real industrial 

settings. 

The present paper shows a novel method for the accurate 

determination of hoppers to be combined. It follows from 

Theorem 1 that the following weight bound holds. 

1 2 1 2< min{ , , , , , , , }.n nT W T w w w b b b 
 

Thus, the accurate number of hoppers to be combined is 

determined by 

1 2 1 2min{ , , , , , , , }
< .n nT w w w b b bT

k
 


  (17) 

This number of hoppers k  is defined in detail.  

Setting = ,
T

k


 
 
 

 

if 

1 2 1 2min{ , , , , , , , }
= .n nT w w w b b bT

 

    
   
   

 (18) 

Otherwise, setting =
T

k


 
 
 

 

and = 1,
T

k


 
 

 
 if 

1 2 1 2min{ , , , , , , , }
1 = ,n nT w w w b b bT

 

    
   

   
 (19) 

where 
T



 
 
 

 denotes the integer part of 
T


. 

Now, the probability that the number of hoppers to be 

combined becomes one integral value =
T

k


 
 
 

 is explicitly 

calculated. This probability is computed by (18) and using the 

property of extreme distribution [4]: 
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1 2 1 2

1 2 1 2

1 2 1 2

min{ , , , , , , , }
= = =

min{ , , , , , , , }
= < 1

= min{ , , , , , , , } < 1

= 1 m

n n

n n

n n

T w w w b b bT T
P k P

w w w b b b T
P

T
P w w w b b b

P

  

 




         
           

        

  
   
  

   
        

 1 2 1 2

1

1

in{ , , , , , , , } 1

= 1 1 1

= 1 1 < 1 1 1

n n

n

n

T
w w w b b b

T T
P w P b

T T
P w P b




 
 

 
 

   
         

         
                            

         
                          

2

= 1 1 1 ,

n

T
F 



 
  

  
  

    
             

                     (20) 

where F  is the cumulative distribution function of normal 

distribution. From (20), one concludes that this probability 

increases when the total number of hoppers 2n  increases.  

The paper gives some example for special values of 

1
T




  
   
  

. 

If 1 = 3
T

  


  
    
  

, then one has from Figure 3 that 

    

1 2 1 2

2 2

min{ , , , , , , , }
=

= 1 1 3 = 1 1 0.00135 .

n n

n n

T w w w b b bT
P

F

 

 

     
     
    

    

 (21) 

If 1 = 2
T

  


  
    
  

, then one has from Figure 3 that 

    

1 2 1 2

2 2

min{ , , , , , , , }
=

= 1 1 2 = 1 1 0.0227 .

n n

n n

T w w w b b bT
P

F

 

 

     
     
    

    

 (22) 

If 1 =
T

  


  
    
  

, then one has from Figure 3 that 

    

1 2 1 2

2 2

min{ , , , , , , , }
=

= 1 1 = 1 1 0.1587 .

n n

n n

T w w w b b bT
P

F

 

 

     
     
    

    

 (23) 

 
Figure 3. Normal distribution [20]. 

4. Single objective optimization approach 

This section gives an improved single objective algorithm. 

Input 

2n -Total number of hoppers, 

k -Number of hoppers involved in each packing operation 

( 2 k n  ), 

T -Target weight ( > 0T ), 

Q -Total number of packages to be produced, 

-Iteration number of packing (1 Q  ), 

 -Average package weight of food product, 

 -Standard deviation of the weights supplied to each 

hopper. 

Step 1. Initialize the all data. 

Set = 0,  and 1 1= = , = = = 0n nw w b b  for all 
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1 i n  . 

Step 2. New packaging operation. 

Set 
min= , = , = 0

'
H ' H k  . 

Step 3. Fill all empty hoppers. For all the weighing and 

booster hoppers, the random values chosen from the normal 

distribution ( , )N    is assigned. 

Step 4. Determine the accurate number k  of hoppers to be 

combined as follows. 

Set = ,
T

k


 
 
 

if (18) holds. Otherwise, set 

= , 1
T T

k
 

   
   

   
 

Step 5. Combine all valid combinations. 

The hoppers that satisfies the (5) or (9) are combined for the 

upright or diagonal machines, respectively. 

Step 6. Evaluate all the valid combinations. 

Calculate the sum of the weights for each combination of 

all the k  hopper combinations. If sum weight is less than the 

target weight T , then delete this combination from H  

Step 7. Find the best possible combination among H . 

The hopper combination whose difference with T is 

minimal is selected. 

Step 8. Discharge and pack the food product. 

The food product from the best hopper combination is 

discharged and packed. 

Step 9. Update the number of packages produced and check 

whether the process is complete. If the required number of Q  

packets has been completed, the process ends. Otherwise, it 

returns to Step 3. 

5. Experimental Results 

This section presents the experimental result. These results 

show that the present new approach is most effective in the 

double-layered multihead weighing process. Application's 

user interface for the double-layered upright and diagonal 

machine are presented in Figure 4 and Figure 5. 

 
Figure 4. Experimental result for Upright type. 

 
Figure 5. Experimental result for Diagonal type. 
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In the experiment, taking the total number of hoppers 

=16n , the total weight = 200T , the average package mean 

= 58.5  and the total number of packages to be produced 

=10000Q . Then the candidate number of valid hopper k  is 

calculated by 
200

= = 3.(418803).
58.5

k  

Therefore, the valid number of hoppers to be combined is 

as follows. 

200 200
= = 3, 1 = 4.

58.5 58.5
k k

   
    

   
 

According to the previous method, one must find the 

optimal value from all the 3 -hopper combinations and 4

-hopper combinations at every packing, i.e. the total number 

of combinations is computed by (1) and (2), respectively. 

In contrast to the previous one, the present method 

decreases this total number of combinations significantly 

because (18) is satisfied at some packing operations. Thus, 

the probability that the valid number of hoppers to be 

combined becomes one integer is calculated in terms of (20) 

as follows. 

 

32

200
= 3 = 1 1 58.5 1 > 0,

58.5
P k F

    
            

   (24) 

which represents the performance factor of the present 

method to the approach in [9]. 

6. Conclusion 

As stated above, the present paper proposed an improved 

single objective optimization approach for double-layered 

multi-head weighing process. The innovative finding is an 

accurate determination method for the number of hoppers to 

be combined at each packing operation relying on a new 

bound on the optimal weight This method significantly 

speeds up the packing process as a whole. According to the 

present approach, the candidate number of hoppers to be 

combined can be taken one or two integral values. The 

probability that the accurate number of hoppers to be 

combined becomes one integral value is explicitly 

calculated, which is the performance factor to the previous 

one. The experimental result reveals the effectiveness of the 

proposed approach. 
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