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Abstract 

Timely and precise identification of foliar diseases is essential in contemporary agriculture to avert crop loss, enhance 

productivity, and guarantee food security. Paddy, being one of the most extensively farmed and consumed staple crops globally, 

is especially vulnerable to several leaf diseases that can markedly diminish yield. Conventional illness detection techniques, 

which depend significantly on manual observation and expert evaluation, are frequently time-consuming, labor-intensive, and 

susceptible to discrepancies. These constraints need the implementation of automated and efficient disease detection 

technologies. This research investigates the utilization of a pre-trained EfficientNetB3 convolutional neural network for the 

identification and categorization of paddy leaf diseases. The model was trained and assessed on a rich and diverse dataset 

comprising annotated pictures of healthy and sick paddy leaves. The performance evaluation included conventional 

classification criteria like as accuracy, precision, recall, and F1-score to ensure a comprehensive assessment of the model's 

efficacy. The EfficientNetB3 model exhibited exceptional performance, with an overall accuracy of 96% in the detection and 

classification of prevalent paddy leaf diseases. This elevated accuracy signifies the model's proficiency in generalizing 

effectively across diverse illness categories and imaging settings. The findings underscore the capability of deep learning and 

computer vision methodologies to revolutionize agricultural operations by offering scalable, dependable, and instantaneous 

solutions for disease identification. The suggested approach facilitates early diagnosis, aiding farmers and agronomists in 

executing timely and precise treatments, hence minimizing crop loss and enhancing production. Moreover, the incorporation of 

AI-driven technologies into current agricultural frameworks fosters sustainable farming and strengthens the resilience of food 

production systems. The research highlights the significant influence of artificial intelligence on precision agriculture and 

establishes a basis for additional investigation into intelligent crop monitoring systems. 
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1. Introduction 

The advent of deep learning in disease detection for agri-

culture is undoubtedly a transformative technological break-

through. This revolutionary technology has significantly im-

pacted various industries, including agriculture, by providing 

advanced solutions for energy and architecture. One crucial 

advantage of deep learning is its ability to detect crop diseases, 

which can have a substantial impact on yield and quality. 

Paddy, being a major food crop, is particularly susceptible to 

various diseases that can significantly diminish yield and pose 

a threat to food security. Traditional disease detection meth-

ods relying on human skills are time-consuming and er-

ror-prone. In contrast, utilizing pre-trained CNN models of-

fers an innovative and efficient alternative. These models 

have already shown their effectiveness in various image 

recognition tasks, providing a promising solution to improve 

the automation and accuracy of rice leaf disease diagnosis. 

In this study, we focused on the performance of the Effi-

cientNetB3 architecture in detecting and classifying common 

paddy leaf diseases. Through rigorous training and optimiza-

tion, the EfficientNetB3 model achieved an impressive ac-

curacy of 96%. This result highlights the model’s effective-

ness in early diagnosis of paddy leaf disease, which is nec-

essary for protecting the health and productivity of paddy 

crops. The research underscores the potential of artificial 

intelligence-powered (AI) systems in revolutionizing paddy 

farming and ensuring the stability of global paddy production. 

Thus, this study unequivocally emphasizes the critical role of 

deep learning in advancing agricultural practices [16]. 

2. Literature Review 

Recent research highlights the effectiveness of the Mask 

R-CNN instance segmentation model in ArcGIS Pro for de-

tecting and segmenting paddy fields from aerial images and 

enhancing rice production management. The study found that 

the ResNet-50 backbone performed better than ResNet-101 

for this task. The RGB + DVI image dataset achieved the 

highest mean average precision of 74.01%. Utilizing aerial 

images and labeled data, the Mask R-CNN model proved 

crucial for accurate paddy field detection and segmentation, 

demonstrating the potential of advanced image analysis in 

agricultural monitoring [1]. 

In their study on rice disease detection, the authors high-

lighted that ResNet-50 achieved the highest accuracy of 

99.75%, with a validation accuracy of 99.69%. The Res-

Net-50 model’s connection-skipping design contributed to its 

superior performance. Transfer learning with pre-trained 

models, including Inception V3, VGG16, VGG19, and Res-

Net-50, significantly improved disease detection accuracy. 

Wang et al., as discussed by the authors, developed an auto-

mated rice blast disease diagnosis technique leveraging deep 

learning, image processing, and transfer learning with these 

pre-trained models, demonstrating the effectiveness of these 

advanced techniques in enhancing agricultural disease man-

agement [2]. 

Recent advancements in paddy leaf disease detection have 

seen CNN models achieving high accuracy. Notably, Zhang et 

al., as discussed by the authors, developed a hybrid model 

named MSCVT, which leverages the strengths of CNNs for 

extracting local disease information and Vision Transformers 

(ViT) for capturing global receptive fields. This model inte-

grates multiscale convolution and self-attention mechanisms, 

enabling the fusion of local and global features at both the 

shallow and deep levels. The MSCVT model demonstrated 

exceptional performance, achieving a recognition accuracy of 

99.86% on the PlantVillage dataset and 97.50% on the Apple 

Leaf Pathology dataset. This hybrid approach showcases the 

potential of combining CNN and ViT technologies for ad-

vanced crop disease recognition [3]. 

In a recent investigation concerning the detection of dis-

eases in rice crops, a YOLO v5 detection network operating at 

multiple scales was introduced, resulting in superior perfor-

mance. The network was founded on DenseNet-201 and fea-

tured a Bidirectional Feature Attention Pyramid Network 

(Bi-FAPN) module to improve the precision of detection. The 

proposed methodology encompasses preprocessing, segmen-

tation, feature extraction, and detection stages. This sophis-

ticated strategy yielded an average precision rate of 82.8 and 

an accuracy level of 94.87%, underscoring its efficacy in the 

identification and categorization of diseases in rice crops at an 

early stage. The integration of DenseNet-201 and Bi-FAPN in 

the YOLO v5 framework significantly contributed to these 

high-performance metrics [4]. 

In a recent study, a stacking- based integrated learning 

model was developed for rice disease recognition, incorpo-

rating four convolutional neural networks: an improved 

AlexNet, improved GoogLeNet, ResNet50, and Mo-

bileNetV3as base learners, and a support vector machine 

(SVM) as the sublearner. This model achieved a high recog-

nition rate of 99.69% on the rice dataset. The stacking-based 

model outperformed the individual models, demonstrating 

superior performance on the plant dataset. The study em-

ployed precision, recall, accuracy, and F1 metrics for a com-

prehensive evaluation of the model’s performance. This in-

tegrated approach highlights the effectiveness of combining 

multiple neural networks with an SVM for advanced plant 

disease detection [5]. 

In a recent study, Huang et al. proposed a high-quality 

image augmentation (HQIA) method for generating 

high-quality rice leaf disease images using a dual generative 

adversarial network (GAN) approach. This method integrates 

Improved Training of Wasserstein GANs (WGAN- GP) and 

Optimized-Real-ESRGAN (Opt-Real-ESRGAN) to produce 

enhanced images. The HQIA method significantly improved 
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the recognition accuracy of rice leaf diseases compared to 

using the original training set alone. The high- quality images 

generated through this augmentation technique led to better 

training outcomes, demonstrating the efficacy of HQIA in 

enhancing model performance for plant disease detection [6]. 

Alam et al. (2024) demonstrated the remarkable accuracy 

of EfficientNetB3, along with other models, in their study on 

leaf disease detection. Notably, EfficientNetB3 achieved an 

accuracy of nearly 99% in identifying paddy leaf diseases. 

This impressive performance underscores the potential of this 

model in revolutionizing agricultural disease detection [7]. 

In a recent study focused on plant disease detection, four 

pre-trained CNN deep learning modelsaˆAlexNet, VGG16, 

ResNet50, and DenseNet121aˆwere utilized as edge solutions. 

Among these, DenseNet121 demonstrated the highest accu-

racy at 96.4%. The model maintained high recall, precision, 

and F1 scores when deployed on a Vision Processing Unit 

(VPU) device. The study also incorporated image transfor-

mation techniques and down sampling to address class dis-

tribution. Testing was conducted on various hardware plat-

forms, including CPU, GPU, and VPU, using PyTorch and 

OpenVINO frameworks, ensuring robust performance across 

different processing environments [8]. 

Similarly, Abhijit Pathak et al. (2024) [9] showcased a 

comparable approach using the VGG16 model, which 

achieved an impressive 99.6% accuracy in detecting tomato 

leaf diseases. These findings underscore the significant po-

tential of deep learning models to revolutionize agricultural 

disease detection [9]. 

This paper presents a Deep Convolutional Neural Network 

(CNN) transfer learning-based approach using a modified 

VGG19 model for the accurate detection and classification of 

rice leaf diseases. The model underwent two levels of fine- 

tuning to enhance the classification accuracy. Compared to 

previous models that achieved 93% accuracy in predicting 

five diseases, the improved model attained a significantly 

higher accuracy of 98.7% in predicting ten disease classes. 

The study also analyzed the model architecture and common 

computer vision techniques, emphasizing smaller model sizes, 

minimal GPU usage, and shorter training times, thereby op-

timizing efficiency and performance in practical applications 

[10]. 

This paper proposes a deep convolutional neural network 

aimed at enhancing performance more effectively than other 

pretrained models. Several hyperparameters were meticu-

lously adjusted to achieve improved accuracy. [11]. 

The research utilized deep learning algorithms, particularly 

tailored CNN models, for the classification of rice leaf dis-

eases, resulting in a test accuracy of 98%. This study under-

scores the efficacy of sophisticated neural network architec-

tures in improving the detection of paddy leaf diseases, 

thereby providing advantages to farmers and agricultural 

methodologies [12]. 

This study introduces a convolutional neural network 

model tailored for the classification of rice leaf diseases, 

attaining an accuracy rate of 99.99%. The study highlights the 

efficacy of deep learning methodologies in the diagnosis of 

bacterial blight, blast, brown spot, and tungro in rice crops 

[13]. 

This study examines the application of a Deep DenseNet 

Network for the identification of paddy diseases, resulting in 

an accuracy of 99.94%. This underscores the promise of ad-

vancements in deep learning technologies, such as convolu-

tional neural networks, for enhancing disease detection and 

rectifying shortcomings in conventional manual approaches 

[14]. 

This paper examines the application of the ConvNeXt-L 

method for feature extraction within the DLCPO-DCPLD 

technique, which automates the classification of paddy leaf 

diseases, thereby improving accuracy and efficiency relative 

to conventional methods, while not specifically addressing 

pre-trained CNN models [15]. 

AI-based systems have been extensively applied to plant 

disease diagnosis in the past few years. Seyam and Pathak 

(2024) introduced AgriScan, a deep learning-based 

cross-platform app to enhance disease detection speed and 

accuracy in crops. The system employs CNNs trained on 

massive image databases of plants for identifying various 

plant diseases with high accuracy (S et al., 2024; Upganlawar 

et al., 2024). Such CNN-based models use transfer learning 

and data augmentation to become more adaptable among 

different species of plants and different environmental condi-

tions [17]. 

3. Methodology 

This section outlines the methodology employed for train-

ing a Convolutional Neural Network (CNN) model using the 

EfficientNetB3 architecture for image classification. The 

implementation was carried out using Python and the Ten-

sorFlow library with Keras API. 

3.1. Workflow Chart 

Figure 1 illustrates the entire process through a clear and 

easy-to-understand flowchart, making the steps straightfor-

ward to grasp

 

http://www.sciencepg.com/journal/mlr


Machine Learning Research http://www.sciencepg.com/journal/mlr 

 

4 

 
Figure 1. Workflow chart. 
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3.2. Data Preparation 

 
Figure 2. Sample image data from paddy doctor dataset. 

1. Data Collection: The dataset comprised images of rice 

plants, categorised into different disease classes. Data were 

collected from the Paddy Doctor: Paddy Disease Classifica-

tion dataset available on Kaggle. Figure 2 shows a sample of 

the utilized image data. 

2. Image Resizing: All images were resized to 224×224 

pixels2. This standardization ensured consistent input di-

mensions for the CNN model, improved computational effi-

ciency, and facilitated model training. 

3. Data Augmentation: To enhance the robustness and 

generalisation ability of the model, data augmentation tech-

niques were applied to the training dataset after the initial data 

splitting and resizing. These techniques were implemented to 

increase the diversity of the training data and reduce overfit-

ting. The specific augmentations employed included: 

4. Random Horizontal Flips: Creating mirrored versions of 

the images along the vertical axis. 

5. Random Vertical Flips: Creating mirrored versions of the 

images along the horizontal axis. 

6. Random Rotations: Rotating the images by random an-

gles within a defined range (e.g., +/- 15 degrees) to introduce 

variations in image orientation. 

7. Random Zoom: Applying random zoom levels (e.g., up 

to 10%) to simulate variations in the distance and scale of the 

subject in the images. 

These augmentations were performed online during the 

training process. By applying these transformations, the 

model was exposed to a wider range of variations in the paddy 

leaf disease images, making it more resilient to unseen data 

and improving its ability to accurately classify diseases1. The 

application of these data augmentation techniques was crucial 

in achieving the reported accuracy of 96% with the Effi-

cientNetB3 model. 
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3.3. Data Splitting and Distribution 

The dataset was split into training, validation, and test sets 

using a stratified approach to maintain class distribution 

across each subset. Figure 3 shows the data distribution 

among the training, test, and validation datasets. 

1. Training set: 80% of the total dataset (8325 images) 

was allocated for model training. 

2. Validation set: 10% of the total dataset (1041 images) 

was reserved for hyperparameter tuning and model 

evaluation during training. 

3. Test set: The remaining 10% (1041 images) was kept 

separate for final model evaluation and performance 

assessment. 

 
Figure 3. Data distribution proportionality between the three sets. 

3.4. Model Training 

1) Model Architecture: The EfficientNetB3 architecture 

was chosen due to its efficiency and performance on 

image classification tasks4. EfficientNetB3 is part of the 

EfficientNet family and employs a compound scaling 

method to optimise both the depth and width of the 

network. The base EfficientNet architecture utilizes 

Mobile Inverted Bottleneck Convolution (MBConv) 

blocks, incorporating depthwise separable convolutions 

and squeeze-and-excitation modules. EfficientNetB3 

consists of multiple MBConv blocks arranged in layers, 

followed by a convolutional layer, batch normalisation, 

a Swish activation function, global average pooling, and 

finally, a fully connected layer with a softmax activation 

function for classification. The specific configuration of 

EfficientNetB3 includes approximately 7 convolutional 

layers (referring to the main convolutional building 

blocks) and has 3.1 million trainable parameters. The 

model was implemented using the EfficientNetB3 class 

available within the tensorflow.keras.applications mod-

ule. 

2) Training Parameter: The model was trained for 20 

epochs using the Adam optimizer with a learning rate of 

0.0018. The batch size used during training was. The 

learning rate was kept constant throughout the training 

process. The Adam optimizer was chosen for its effi-

ciency in training deep neural networks. 

3) Loss Function: Categorical Cross-Entropy served as 

the loss function to quantify the disparity between 

anticipated and actual class labels. The loss for a cer-

tain sample is computed as follows: 

L = -Σ(i=1 to C) [yᵢ * log(ŷᵢ)] 

C is the total number of classes, yᵢ signifies the true 

label (one-hot encoded) for class i, and ŷᵢ represents 

the projected probability for class i produced by the 

model. This loss function imposes more penalties on 

the model when the projected probability for the cor-

rect class is low, so motivating it to give higher con-

fidence to the accurate label. Categorical 

Cross-Entropy is especially appropriate for mul-

ti-class classification tasks, such as the identification 

of paddy leaf diseases, where each input picture is 

assigned to one of several potential disease categories. 

During training, the model parameters are adjusted to 

minimize loss, hence enhancing the model's capacity 

to properly categorize novel, unseen data [18]. 
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3.5. Model Evaluation and Metrics 

Upon concluding the training procedure, a detailed classi-

fication report was systematically produced to assess the 

performance of the trained model for each individual class. 

This report included essential parameters, such as accuracy, 

recall, F1-score, and support, offering significant insights into 

the model’s prediction performance and its effectiveness 

across different categories in the dataset. 

Alongside the classification results, essential performance 

measures, including accuracy, loss, and F1-score, was rigor-

ously computed for both the training and validation datasets. 

These measures were essential for tracking the convergence 

of the model throughout the training and were pivotal in de-

tecting possible overfitting problems. 

The loss measure offers insight into the model’s prediction 

inaccuracies, directing the optimization process during train-

ing. The F1-score, assessed independently for the training and 

validation sets, facilitates a comparison study essential for 

verifying the model’s resilience. A consistent evaluation of 

these critical measures is vital for confirming that the model 

not only conforms to the training data but also generalizes 

effectively to novel data, thereby validating its relevance in 

practical situations. 

3.6. Prediction and Model Saving 

1) Test Predictions: The trained model was employed to 

forecast the class labels for the unseen test set, thereby 

assessing its performance in a practical context. This 

technique is essential for evaluating the model’s gener-

alization capacity and resilience as it offers insight into 

the model’s adaptability to data outside the training set. 

To guarantee a thorough assessment, many metrics were 

utilized to examine the accuracy, precision, recall, and 

F1-score of the model’s predictions. 

2) Model Preservation: The resulting model, demonstrat-

ing optimal performance on the validation set, was re-

tained for future applications and deployment. This 

stage is essential for repeatability and future research 

progress as it enables further investigation and use of the 

model in similar activities or fields. By storing the 

model in a meticulously organized framework, re-

searchers can guarantee the preservation of the precise 

parameters and configurations utilized during training, 

thereby upholding the integrity of subsequent studies 

and practical applications. 

4. Results and Discussion 

4.1. Training and Validation Performance 

To evaluate the performance of the CNN model trained on 

EfficientNetB3, we monitored both the training and validation 

losses and accuracy over 20 epochs. The results are shown in 

Figure 4. 

 
Figure 4. Training and Validation Loss and Accuracy. 

The training loss and validation loss curves exhibited a 

steady decline over the epochs, with both converging to low 

values. The training loss starts at approximately 7.5 and drops 

to below 0.5 by the 20th epoch, whereas the validation loss 

starts higher than the training loss but follows a similar de-

creasing trend, stabilizing at approximately 0.5. This indicates 

that the model effectively learned and generalized well to the 

validation set. The training accuracy begins at approximately 

60% and quickly improves, reaching nearly 100% by the 20th 

epoch. The validation accuracy closely follows, starting at 
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approximately 65% and stabilizing at approximately 97%. 

The best validation accuracy was observed at the 17th epoch, 

indicating minimal overfitting and good generalization. 

4.2. Loss and Accuracy Calculations 

4.2.1. Training and Validation Loss 

The loss for each sample is calculated using the categorical 

cross-entropy loss function, which is given by 

Loss = − ∑ 𝑦𝑖
𝑁
𝑖=1 log(𝑦𝑖̂)  

where yi is the true label, yˆi is the predicted probability for 

class i, and N is the number of classes. The average loss over 

all samples in a batch was used to update the model weights 

during the training. The training loss was calculated over the 

training dataset and the validation loss was calculated using 

the validation dataset. 

4.2.2. Training and Validation Accuracy 

Accuracy is calculated as the ratio of correctly predicted 

samples to the total number of samples and is defined as 

Accuracy =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  

The accuracy of the model was computed for both training 

and validation datasets. High training accuracy combined 

with high validation accuracy indicates that the model gener-

alizes well to unseen data. 

4.3. Confusion Matrix Analysis 

The confusion matrix in Figure 5 provides a detailed 

breakdown of the model performance across different classes. 

 
Figure 5. Confusion Matrix. 
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The confusion matrix shows the numbers of correct and 

incorrect predictions for each class. The diagonal elements 

represent the true positives (correct predictions), whereas the 

off-diagonal elements represent false positives and false 

negatives. The confusion matrix shows that the model per-

formed exceptionally well for most classes, with high 

true-positive rates and low misclassification rates. For exam-

ple, a class blast has 166 correct predictions and only a few 

misclassifications. Similarly, the normal class yielded 175 

correct predictions, indicating a high degree of accuracy. 

However, some classes exhibit slight confusion, such as 

bacterial panicle blight being misclassified as blast (3 in-

stances). This suggests that although the model is highly 

accurate, there is still room for improvement in distinguishing 

between certain classes. 

4.4. Classification Report 

The classification report (Table 1), derived from the con-

fusion matrix, and provides additional metrics such as preci-

sion, recall, and F1-score for each class. A summary of the 

classification reports is as follows. 

Table 1. Classification Report. 

Class Precision Recall F1-score Support 

bacterial_leaf_blight 0.94 0.88 0.91 50 

bacterial_leaf_streak 0.95 1.00 0.97 38 

bacterial_panicle_blight 0.91 0.83 0.87 35 

blast 0.97 0.95 0.96 174 

brown_spot 0.92 0.96 0.94 98 

dead_heart 1.00 1.00 1.00 144 

downy_mildew 0.90 0.91 0.91 64 

hispa 0.97 0.97 0.97 161 

normal 0.98 0.99 0.98 177 

tungro 0.97 0.99 0.98 108 

Accuracy   0.96 1049 

Macro avg 0.95 0.95 0.95 1049 

Weighted avg 0.96 0.96 0.96 1049 

 

1) Precision measures the accuracy of positive predictions, 

defined as 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

2) Recall measures the ability to identify all positive in-

stances, defined as 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

3) F1-score is the harmonic mean of precision and recall, 

defined as 

F1-score= 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

The high precision and recall across most classes indicated 

that the model’s predictions were accurate and reliable. 

4.5. In-Depth Analysis 

The results indicate that the Convolutional Neural Network 

(CNN) model, which was trained using EfficientNetB3, 

demonstrates a high degree of accuracy coupled with strong 

generalization capabilities. The convergence of the training 

and validation loss curves, along with a minimal disparity 

between the training and validation accuracies, suggests that 

the model does not exhibit underfitting or overfitting. 

4.5.1. Analysis of Overfitting and Underfitting 

1) Overfitting: This phenomenon occurs when a model 

excels on training data but falters on validation data. 

However, this was not observed in this case, as evi-

denced by the closely aligned training and validation 
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curves. 

2) Underfitting: Conversely, underfitting transpires when a 

model performs inadequately on both training and val-

idation datasets. This scenario was also absent given that 

both training and validation accuracies were com-

mendably high. 

4.5.2. Insights from the Confusion Matrix 

1) High True Positives: A majority of classes exhibit a sig-

nificantly high number of true positives, signifying that the 

model accurately identifies a large proportion of samples. 

2) False Positives and False Negatives: Despite the com-

petent performance, there are instances of misclassifi-

cation (i.e., false positives and false negatives), partic-

ularly among classes sharing similar visual characteris-

tics, such as bacterial panicle blight and blast. This ob-

servation underscores the necessity of enhanced feature 

differentiation during the learning process. 

4.5.3. Metrics of Precision, Recall, and F1-Score 

1) High Precision and Recall: Elevated precision and re-

call values indicate that the model is proficient in both 

identifying true positives and minimizing false posi-

tives. 

2) Balanced F1-Scores: The consistently high F1-scores 

across various classes reflect an optimal equilibrium 

between precision and recall. 

4.6. Discussion 

The results demonstrate that the CNN model trained on 

EfficientNetB3 achieves a high accuracy and generalization 

capability. The convergence of the training and validation loss 

curves and the minimal gap between the training and valida-

tion accuracy suggest that the model is neither underfitting 

nor overfitting. 

The confusion matrix and classification report further con-

firmed the model’s robust performance with high precision, 

recall, and F1-scores across all classes. Some minor misclas-

sifications indicate potential areas for improvement, possibly 

through more extensive data augmentation or the tuning of 

hyperparameters. 

Overall, the model’s performance was highly satisfactory, 

making it a reliable tool for the classification of rice diseases. 

Future work could focus on addressing slight misclassifica-

tions and further optimizing the model for even higher accu-

racy and robustness. This might include: 

1) Data Augmentation: Enhance the dataset with more 

diverse samples to improve model robustness. 

2) Hyperparameter Tuning: Fine-tune learning rates, batch 

sizes, and other parameters to achieve better perfor-

mance. 

3) Model Architecture Improvements: Experiment with 

different CNN architectures or ensemble methods to 

further enhance accuracy. 

5. Conclusion 

In conclusion, this study investigated the use of various 

pre- trained Convolutional Neural Network (CNN) models to 

detect dis-eases in paddy leaves. The authors collected im-

ages of paddy leaves with different diseases, applied stand-

ard image-processing techniques, and trained the Efficient-

NetB3 model on these images. They evaluated the model 

based on accuracy, precision, recall, and the F1-score. The 

results show that the EfficientNetB3 model achieved a re-

markable accuracy of 96%. This study found high precision 

and recall for most disease classes, indicating that the model 

was generally accurate in its pre-dictions. Specifically, for 

bacterial leaf blight, the model achieved a precision of 0.94, 

recall of 0.88, and F1-score of 0.91. For bacterial leaf streaks, 

it achieved a precision of 0.95, recall of 1.00, and F1-score 

of 0.97. The precision, recall, and F1-scores for other dis-

eases, such as blasts, brown spots, dead hearts, downy mil-

dew, hispa, normal, and tungro, were similarly high, with 

most exceeding 0.90. The overall accuracy was 96%, with 

macro-and weighted averages of precision, recall, and 

F1-scores of around 0.95 and 0.96, respectively. The authors 

demonstrated that the EfficientNetB3 model is highly effec-

tive in detecting paddy leaf diseases. This can help farmers 

diagnose diseases quickly and accurately, potentially leading 

to better crop yields and improved food security. The success 

of the EfficientNetB3 model underscores the critical role of 

deep learning in advancing agricultural practices and en-

hancing the productivity and stability of paddy fields. 
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