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Abstract: In this paper we address the Polya permanent problem that was first raised in the second decade of the last century.
Despite this, it continues to be treated in several surveys, of which we highlight the studies that point out Polya’s permanent
problem over finite fields. Unlike previous papers, we focus on finite commutative rings, and to this end, we start by considering
a commutative ring with identity R and its decomposition into a direct sum of finite local rings. Next we suppose that the
characteristic of each residue field Fi is different from two, and we proof that if n is greater than or equal to 3, then no bijective
map Φ from Mn(R) to Mn(R) transforms the permanent into a determinant. We developed this technique to estimate the order
of the general linear group of degree n over a finite commutative ring with identity. The paper begins with the introduction
where we present the title, the preliminaries that help the understanding of the following subject, then we talk about the unit
permanent and unit determinant in Mn(R), we demonstrate the main result and conclusions. Regarding the methodology, we
use the previous results on finite fields and the structure of finite commutative rings and also radical theory of rings.
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1. Introduction
The study of Pólya’s permanent problem began in 1913

[1]. Currently, it has been generalized in many directions
[3, 4, 6, 8, 13].

Let A = [aij ] be an n× n matrix. Two basic parameters of
A are its determinant and its permanent defined by

det A =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσ(i)

∧ per A =
∑
σ∈Sn

n∏
i=1

aiσ(i), (1)

respectively. In both cases, Sn is the symmetric group of
degree n and sgn(σ) ∈ {−1, 1} is the sign of the permutation
σ.

Recently, in [8] the authors proved that the number of zeros
of the permanent function is strictly less than the number
of zeros of the determinant function for square matrices of
arbitrary size n ≥ 3 over an arbitrary finite field F of

characteristic different from 2. As a consequence they obtain
the answer to the Pólya problem over F, by showing that, for
n ≥ 3 there are no bijective transformations which converts
the permanent to the determinant for square matrices of an
arbitrary size n ≥ 3 over any finite field of characteristic not
2.

The aim of this paper is to extend the remarkable results
obtained in [8], for finite fields, to a general finite commutative
ring with identity. It should be noted that the determinant
and the permanent may be defined, using the formulas (1),
for matrices with entries in an arbitrary commutative ring with
identity.

Our main result can be formulated as follows:
Theorem 1.1. Let R be a finite commutative ring with

identity and R =
⊕k

i=1Ri its decomposition in a finite direct
sum of local rings. Suppose that n ≥ 3. Then, if each
residue field Fi = Ri/N (Ri) verifies charFi ≥ 3, for every
i = 1, . . . , k, no bijective map Φ : Mn(R)→Mn(R) satisfies

perA = detΦ(A). (2)
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The proof has three stages. First we make use of the fact
that a finite commutative ring R with identity is a direct sum
of local rings. This allows us to reduce the problem to the case
where the ring is local. Secondly, for a local ring, we reduce
the problem to its residue field. Finally, for fields we use the
results obtained in [8].

2. Preliminaries

In this section we establish some facts about rings that are
used throughout the argument. All rings considered have an
identity element denoted by 1. The set of all units in the ring
R is denoted by U(R) and the set of all zero divisors by Z(R).
Following [15] we include the zero element ofR also as a zero
divisor.

The following fact about finite rings is well known.
However, for the sake of completeness, we present a proof.

Lemma 2.1. Let R be a finite ring. Then, every element of
R is either a unit or a zero divisor.

Proof Assume that x ∈ R is not a zero divisor and consider
the map φ : R → R given by φ(r) = xr. Note that, if
φ(r) = φ(s), then x(r − s) = 0. Since x is not a zero
divisor it follows that r = s. Hence, φ is injective. Since
R is finite, by the pigeonhole principle φ is surjective. Thus,
there exists y ∈ R such that xy = 1. Similarly, we can prove
that there exists z ∈ R such that zx = 1. Now we have
z = z(xy) = (zx)y = y. Hence, xy = yx = 1. That is,
x is a unit. �

We denote the nilradical of a ring R by N (R). If the ring
R is commutative, then the nilradical is the set of all nilpotent
elements.

It is well-known that for a commutative ring if x ∈ N (R),
then 1 + x (and also 1− x) is a unit. In fact, if xn = 0, then

1 = (1 + x)(1− x+ x2 + . . .+ (−1)n−1xn−1).

The next lemma, while a simple generalization of this fact,
is very useful for our purposes.

Lemma 2.2. An element u in a commutative ring R is a unit
if and only if u+ x is a unit, for every x ∈ N (R).

Proof Assume that u is a unit and let x be an element of
N (R). Since the radicalN (R) is an ideal of R, it follows that
u−1x ∈ N (R). Therefore, u−1x is a nilpotent element and
thus 1 + u−1x is a unit. Since the set U(R) of all units in R
forms a group it follows that u(1 + u−1x) = u+ x is a unit.

Conversely, assume that u+ x is a unit and denote by x̂ the
inverse of u+ x. We have that

(u+ x)x̂ = 1⇔ ux̂ = 1− xx̂.

Since x ∈ N (R), the element xx̂ also belongs toN (R). So,
xx̂ is nilpotent which implies that 1−xx̂ is a unit. Thus, ux̂ is
a unit and then u is a unit. �

The following lemma deals with polynomials. Roughly
speaking, it asserts that in order to decide when the evaluation
of a polynomial p(x1, . . . , xk) ∈ R[x1, . . . , xk] at a point
(a1, . . . , ak) ∈ Rk is a unit, we can avoid the radical.

Lemma 2.3. Let R be a commutative ring, (a1, . . . , ak)
an element in Rk and p(x1, . . . , xk) a polynomial in the
polynomial ring R[x1, . . . , xk]. Then, p(a1, . . . , ak) is a unit
in R if and only if p(a1 + n1, . . . , ak + nk) is a unit in R, for
all n1, . . . , nk ∈ N (R).

Proof Let ψ denote the canonical epimorphism from R onto
R/N (R). Suppose that a1, . . . , ak ∈ R and n1, . . . , nk ∈
N (R). Since ψ preserves addition and multiplication, we have

ψ [p(a1 + n1, . . . , ak + nk)] = p(ψ(a1) + ψ(n1), . . . , ψ(ak) + ψ(nk)).

Since, for i = 1, . . . , k, each ni belongs to Ker(ψ), it follows that

ψ[p(a1 + n1, . . . , ak + nk)] = p[ψ(a1), . . . , ψ(ak)] = ψ[p(a1, . . . , ak)].

Therefore, p(a1 + n1, . . . , ak + nk) = p(a1, . . . , ak) + n, for some n ∈ N (R). The claim follows by Lemma 2.2. �
The above lemma is more useful when the ring R is finite. As usual, we write |S| to denote the number of elements in a finite

set S. If R is a finite commutative ring and p(x1, . . . , xk) is a polynomial in R[x1, . . . , xk], we define the set

Up(R) =
{

(a1, . . . , ak) ∈ Rk : p(a1, . . . , ak) ∈ U(R)
}
.

That is, Up(R) is the set of all points (a1, . . . , ak) in Rk

such that the evaluation of the polynomial p(x1, . . . , xk) at
(a1, . . . , ak) is a unit. It follows by Lemma 2.3 that

|Up(R)| = |N (R)|k|Up(R/N (R))|. (3)

We end this section by recalling a well known fact in the
structure theory of finite commutative rings. A commutative

ring R is called local if it has exactly one maximal ideal M .
The field F = R/M is called the residue field of the local ring
R. Every finite commutative ringR can be uniquely expressed
as a direct sum of finite local rings, [16]. That is,

R = R1 ⊕ . . .⊕Rl,

where Ri, for i = 1, . . . , l, are uniquely determined local
rings.



21 Abrantes Malaquias Belo Caiúve: On the Polya Permanent Problem over Finite Commutative Rings

3. Unit Permanent and Unit Determinant
in Mn(R)

In this section we derive results concerning the number of
matrices with unit permanent and the number of matrices with
unit determinant in Mn(R).

Let R be a finite commutative ring; we define the sets

Ln(R) = {A ∈Mn(R) : per A ∈ U(R)} ,

and
Sn(R) = {A ∈Mn(R) : det A ∈ U(R)}

of all matrices with unit permanent and unit determinant,
respectively. We will investigate the cardinality of these sets.
Let us also define the sets

Pn(R) = {A ∈Mn(R) : per A ∈ Z(R)} and Dn(R) = {A ∈Mn(R) : det A ∈ Z(R)}

of all matrices with zero divisor permanent and zero divisor determinant, respectively. By Lemma 2.1 we conclude that

|Sn(R)|+ |Dn(R)| = |Pn(R)|+ |Ln(R)| = |Mn(R)| = |R|n
2

. (4)

We note that any bijective map Φ : Mn(R) → Mn(R)
satisfying (2) would induce a bijection from the set Sn(R)
onto the set Ln(R). Therefore, to prove the Theorem 1.1 it
is enough to show that the cardinality of Sn(R) does not equal
the cardinality of Ln(R).

In the following theorem we reduce the question of
the cardinality of Sn(R) and Ln(R), where R a finite
commutative ring, to the case where R is a local ring.

Theorem 3.1. Let R be a finite commutative ring and
suppose that R decomposes as R = R1 ⊕ . . . ⊕ Rk, where
each Ri is a local ring, for i = 1, . . . , k. Then

|Sn(R)| =
k∏
i=1

|Sn(Ri)| and |Ln(R)| =
k∏
i=1

|Ln(Ri)|.

Proof The decomposition R = R1 ⊕ . . . ⊕ Rk induces a
natural isomorphism,

Mn(R) ∼= Mn(R1)⊕ . . .⊕Mn(Rk).

So, each matrix A ∈ Mn(R) decomposes, under this
isomorphism, as (A1, . . . , Ak), where each Ai is in Mn(Ri),
for i = 1, . . . k.

Now we observe that each element of R can be identified
with an k-tuple (r1, . . . , rk), where ri ∈ Ri, for i =
1, . . . , k, with componentwise addition and multiplication.
Since the determinant and the permanent functions are defined
by addition and multiplication, we have the decompositions

detA = (detA1, . . . , detAk)

and
perA = (perA1, . . . , perAk).

To complete the proof we observe that the set U(R), of all
units in R, decomposes as U(R) = U(R1) ⊕ . . . ⊕ U(Rk),
[16]. Hence, detA is a unit if and only if each detAi is a unit
and perA is a unit if and only if each perAi is a unit and the
result follows. �

Finally, we reduce the local case to the finite field case.
Theorem 3.2. Let R be a finite local ring, M the maximal

ideal of R and F = R/M the finite residue field of R. Then

|Sn(R)| = |N (R)|n
2

|Sn(F)|

and
|Ln(R)| = |N (R)|n

2

|Ln(F)|.

Proof Note that, since R is a finite local ring, the nilradical
equals the maximal ideal M . On the other hand, the
determinant and the permanent are polynomial maps, in n2

variables, in the entries of the matrix. So, the claim follows
from Eq. (3). �

4. Proof of the Main Theorem

We now have all the machinery needed to prove the main
theorem.

Proof (of Theorem 1.1). As mentioned early it is a key
observation that a bijective map Φ : Mn(R) → Mn(R)
satisfying perA = detΦ(A) for all matrices A ∈ Mn(R)
would induce a bijection from the set Sn(R) onto the set
Ln(R). Therefore, to prove the theorem, it suffices to show
that |Sn(R)| does not equal |Ln(R)|.

Let R be a finite commutative ring. Suppose that R
decomposes as R = R1 ⊕ . . . ⊕ Rk in a direct sum of finite
local rings. For i = 1, . . . , k, let Fi = Ri/N (Ri) be the
residue field of each local ring Ri. From Theorem 3.1 and
Theorem 3.2 we obtain

|Sn(R)| =
k∏
i=1

|Sn(Ri)| =
k∏
i=1

|N (Ri)|n
2

|Sn(Fi)|. (5)

Note that an element r in the ring R = R1 ⊕ . . . ⊕ Rk is
nilpotent if and only if its projection in each local ring Ri is
nilpotent. Since the nilradical of a commutative ring is the set
of all nilpotent elements it follows that

N (R) = N (R1)⊕ . . .⊕N (Rk),

and thus |N (R)| =
∏k
i=1 |N (Ri)|. From this identity and Eq.

(5) we conclude
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|Sn(R)| = |N (R)|n
2
k∏
i=1

|Sn(Fi)|. (6)

Similarly, we also have

|Ln(R)| = |N (R)|n
2
k∏
i=1

|Ln(Fi)|. (7)

Now we make use of the results obtained in [8], where
it was proven that for n ≥ 3 and any finite field F, with
characteristic different from two, the number of zeros of the
permanent function is strictly less than the number of zeros of
the determinant function, that is, |Pn(F)| < |Dn(F)|.

From Eq. (4) we conclude that |Pn(F)| < |Dn(F)| is
equivalent to

|Sn(F)| < |Ln(F)|. (8)

Finally, combining Eq. (8) with Eqs. (6) and (7), we obtain

|Sn(R)| < |Ln(R)|.

Hence, |Sn(R)| does not equal |Ln(R)| and the claim
follows. �
Remark . As it is well-known, see for example [16], if F is

a finite field of order q, the general linear group GL(n,F) of
degree n over the field F has order

(qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1).

Our method leads us to generalize this fact to finite
commutative rings. Over a commutative ring R, a matrix is
invertible if and only if its determinant is a unit in R, [16].
So, let R be a finite commutative ring and assume that R
decomposes as R = R1 ⊕ . . . ⊕ Rk, in a direct sum of local
rings. If GL(n,R) denotes the general linear group of degree
n over the finite ring R, we have from Eq. (6) that

|GL(n,R)| = |N (R)|n
2
k∏
i=1

|GL(n,Fi)|,

where Fi, for every i = 1, . . . , k, is the residue field of the
local ring Ri.

5. Conclusion
For a finite commutative ring R with identity we proof that

no bijective map

Φ : Mn(R)→Mn(R)

can transform the permanent into determinant. This extends
to finite commutative rings the results obtained in [6] for finite
fields.

For the proof, we have used the structure of finite
commutative rings to reduce the problem into finite local
rings. Another tool in the proof was radical theory, namely
the nilradical.

The method we introduced allowed us to estimate the
order of the general linear group of degree n over a finite
commutative ring, which generalizes the known result to finite
fields.

Abbreviations

Mn Matrice of order n
det Determinant
per Permanent
Sn Symmetric group of degree n
Sgn(σ) Sign of permutation σ
Char Charateristic
U(R) The set of all units in the ring R
Z(R) The set of all zero in the ring R
N (R) Nilradical of a ring R
|S| The number of elements in finite set S
F = R/M Residue field of the local ring R
Ln(R) The set of all matrices with unit permanent ofR
Sn(R) The set of all matrices with unit determinant of

R
Pn(R) The set of all matrices with zero divisor

permanent of R
Dn(R) The set of all matrices with zero divisor

determinant of R
Eq. Equation
Eqs. Equations
GL(n,F) The general linear group of degree n over the

field F
Mn(R) Matrices of order n in R
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