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Abstract 

Using a piecewise linear multiple change-point model instead of more traditional survival techniques is more beneficial when 

dealing with mortality data. Utilizing this technique, the hazard model is estimated and the number of cut-point locations is 

found. Using various covariates, such as sociodemographic, biological, and proximate co-factors, this piecewise hazard model is 

fitted to the Infant Mortality Data of Bangladesh Demographic and Health Survey 2014. Finding the change point and the impact 

of covariates on the hazard rate is done using the maximum likelihood estimation process. The parameter's significance is 

subsequently supported by the Wald test statistic. It turns out that the mother's educational status, religion, mother's age in years, 

the number of children they have ever had, currently breastfeeding, the size of the child, desire for more children, cesarean 

delivery, ANC visits, and birth orders are all significant factors. It is also discovered that the detected change point of the hazard 

rate is extremely important for the child until they reach the age of five. Through the various time cut points, it is found that a 

piecewise linear multiple change-point model is very important for under-five child mortality. Public health specialists, 

researchers, and clinicians can all benefit from this piecewise hazard model. One of the most crucial elements in lowering child 

mortality is time. 
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1. Introduction 

The most significant members of society are those under 

the age of five. The future of the nation will be significantly 

impacted by its growth and development. Increasing child 

survival and health can help nations achieve more demo-

graphic balance. As a consequence, in the majority of indus-

trialized and developing nations, child health is a top priority 

on policy agendas. Millions of children under five still pass 

away every year from easily avoidable causes, despite this. 

An essential public health objective is the advancement of 

medicine in the fight against infant mortality. New develop-

ments in clinical trials frequently result in a considerable 

increase in newborn survival. A better understanding of how 

medical advancements, therapies, or interventions affect pa-

tient populations' survival rates by presenting a worldwide 

picture of infant mortality survival trends in the general pop-

ulation can be gained. The study's technique is applied to 

survival data to determine the locations of trends in infant 

mortality and hazard function trends. 

In the field of change point estimation, a lot of information 

is available regarding piecewise constant exponential models 
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with a single change point. Several biostatisticians have ex-

tensively studied the estimation and testing in a piecewise 

constant model with one change point in parametric and 

semi-parametric approaches employing likelihood-ratio type 

tests, score tests, and Bayesian tests. 

It is first stated that there is a change score for hazard 

functions in a partial parametric constant model while ex-

amining the time to failure of individuals with 

non-lymphoblastic leukemia. They used likelihood ratio type 

testing to determine the change point.  

To find the change point, they employed likelihood ratio 

type testing is employed. However, at 182 days, data from 24 

observations of non-lymphoblastic patients were censored. 

This censored data was not taken into account in the analysis. 

The study claimed that the likelihood ratio test findings were 

not substantially impacted by removing this data [1]. 

From this point forward, the majority of the subsequent 

work develops hypotheses by altering the probability calcu-

lation for censored information or deleting censored infor-

mation while focusing on the observable survival time varia-

ble. Later, the unboundedness aspect of the probability is 

investigated when the alter point approaches the maximum 

observation of the failure times [2]. 

A study examined tests based on the maximal score statistic 

and found a relationship between the typical Brownian bridge 

and the Ornstein-Uhlenbeck preparation, as well as the nor-

malized score handle's asymptotic limiting process [3]. 

Assuming T(n-1) to be the second-largest observation, 

maximizing the log-likelihood function in the change point 

over [0, T(n-1)], and providing the asymptotic properties of 

the estimators for the piecewise hazard functions as well as 

the change point was proposed [4]. 

Later, to verify that the likelihood function at the change 

point is finite, the precise critical values of the maximum 

likelihood estimator are computed over the following three 

intervals: (i) [0, T(n-1)], (ii) [p
th

 sample quantile, (1-p)
th 

sam-

ple quantile], and the greatest observation is censored. [5] 

To provide a likelihood-ratio test, the model with and 

without censoring for i.i.d. event periods is tested. This in-

vestigation provided joint and approximate confidence zones 

for the change point and the size of change over another in-

terval [6]. 

A recent study addressed estimates using a semi-parametric 

technique with censoring [7, 8]. The estimation of the change 

point for the hazard functions is also examined based on the 

estimated cumulative hazard, which combines the martingale 

technique with censoring and the least squared principle [9]. 

While there is a wealth of literature on single change point 

hazards, there is a dearth of information on multiple change 

point issues. To the best of knowledge, published works on 

multiple change points hazard concerns have been done in 

two studies [10-12]. An algorithm was presented to fit both 

susceptible and long-term survivors with observable covari-

ates using a grid search weighted least squared method to 

discover and estimate the number of change points in the 

hazard functions. All possible change points are assumed to 

fall inside a specific, known interval [B1, B2] in this strategy. 

This is a simulation study with minimal theoretical content, 

and assuming a predetermined interval for change points 

makes the application much less viable [11]. 

An extensive study proposed a methodology for estimat-

ing multiple change points using the Nelder-Mead Simplex 

algorithm and a model selection approach using sequential 

testing with likelihood ratio test and Wald-type test statistics 

in the piecewise constant hazard model and piecewise linear 

hazard model for random right censored data [10]. Covariate 

additions will readily fit into the updated model. When es-

timating multiple change points, the Nelder-Mead Simplex 

algorithm can accommodate an infinite number of 

co-variates, however, it can only handle additive variables. 

In the Bayesian framework, a Bayesian approach for multi-

ple change-point estimation using Gibb‘s sampling is also 

used [13]. After that a stochastic approximation Monte Carlo 

algorithm to identify which particular number and location 

of change-points gives the highest log-posterior values but 

does not present the relative probabilities of models with 

different numbers of changepoints [14]. Later, both the 

uncertainty in the change-point locations and hazards for a 

given change-point model are estimated by a reversible jump 

algorithm to a collapsed change-point model, and a proba-

bilistic interpretation for the number of change-points is also 

obtained [15]. 

In this case, the piecewise linear multiple change-point 

model is selected through sequential testing with Wald-type 

test statistics, and the methodology is used to estimate the 

change points in the hazard rate of child death. 

Now, the popular Cox hazard model is written as 

ℎ(𝑡) = ℎ0(𝑡) 𝑒𝑥𝑝
𝑧′𝛽            (1) 

Here, t‘s are observed times; z‘s be the vector of covariates 

and β be the regression coefficients. 

In the Cox proportional model, the baseline hazard is as-

sumed to be fixed. Nonetheless, the hazard function—which 

shows the immediate chance of failure at a given point in 

time—is an essential component of survival analysis. Alt-

hough popular survival strategies such as the Cox propor-

tional hazards model do not require explicit estimation of the 

hazard function, there are some situations in which it is useful. 

This is because the Cox proportional hazards model focuses 

more on the impact of the covariates on the hazard function. 

Models of change-point hazard rates are one type of this. 

These models presuppose the existence of a function with 

different time-varying hazard rates. These intervals, which are 

unknown and need estimation, are frequently referred to as the 

"change points." 

Considering three change points and by taking logarithm on 

both sides of the equation (1), the equation for the piecewise 

linear multiple change-point model can be derived which is 

given below: - 
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∴ 𝜂(𝑡) = α0 + α1t + α2(t − τ1) + α3(t − τ2) +

α4(t − τ3) + z
′𝛽              (2) 

Here, α‘s are hazard rates for a particular time interval or 

until a change point is detected and τ‘s are change points. 

Again let, Ci be the censoring times and δi be the censoring 

indicators. Then the loglikelihood function for the model is 

given by 

𝐿𝑜gL = ∑ ,𝛿𝑖*𝛼0 + 𝛼1𝑇𝑖 + 𝛼2(𝑇𝑖 − 𝜏1) + 𝛼3(𝑇𝑖 − 𝜏2) +
𝑛
𝑖=1

𝛼4(𝑇𝑖 − 𝜏3) + z
′𝛽+ −

∫ 𝑒{𝛼0+𝛼1𝑢+𝛼2(𝑢−𝜏1)+𝛼3(𝑢−𝜏2)+𝛼4(𝑢−𝜏3)+z
′𝛽}𝑑𝑢 

𝑇𝑖
0

  (3) 

2. Materials and Methods 

2.1. Data 

To examine infant mortality in Bangladesh, the BDHS 

2014 data set from The DHS program conducted by USAID is 

used. For conducting survival analysis, the child's age in 

months is taken as survival time, and status is denoted by 

whether the child is alive or not. Moreover, two types of 

variables such as socioeconomic and demographic variables, 

and Proximate and Biological factors as covariates are listed 

below: 

Table 1. List of Covariates. 

Demographic & So-

cio-economic Variables 
Proximate and Biological variables 

Educational Status Currently Breastfeeding 

Religion Desire for more children 

Woman's age in years 

Size of child 

ANC Visits 

Birth order 

Delivery by caesarean section 

Total children ever born 

2.2. Estimation Procedure 

The maximum likelihood estimation method is used to es-

timate the parameter of the loglikelihood function stated in 

equation (3). R-programming language is used to conduct the 

estimation procedure. 

2.3. Testing the Significance of the Estimates 

Examining model (2) for change points is of interest to us. 

Testing if the risk before and after such points are equal would 

be an equivalent hypothesis. The null hypothesis can be tested 

that 𝛼1 = 𝛼2  or 𝛼1 − 𝛼2 =   in order to compare the option 

of one change point with the null hypothesis of no change 

points. To assess a linear combination, using of a Wald test 

statistic is suggested here. 

The following Wald test statistic can be used to test a hy-

pothesis of the form  

𝐻0: 𝐶
′𝜃 = 𝑀, given 𝜃′ = ,𝛼1, 𝛼2, … , 𝛼𝑘+1, 𝜏1, 𝜏2, … , 𝜏𝑘-  

𝑋𝑊 = (𝐶
′𝜃̂ − 𝑀)

′
[𝐶′Σ𝜃̂̂𝐶]

−1
(𝐶′𝜃̂ − 𝑀)~𝜒𝑠

2 

where 𝐶′  is an   𝑝 matrix,   𝑝 , and M is the (  

 ) solution vector. The suggested approach is a step-by-step 

process even though it involves many tests. As a result, more 

than one hypothesis at once is never tested. To test 

𝐻0: 𝛼𝑘−1 − 𝛼𝑘 =   versus 𝐻1: 𝛼𝑘−1 − 𝛼𝑘    a Wald type 

test statistic of the form is used, 

𝑋𝑊 =
(𝛼̂𝑘−1−𝛼̂𝑘)

2

𝑉𝑎𝑟(𝛼̂𝑘−1−𝛼̂𝑘)
 ~ 𝜒2  

3. Results and Discussion 

3.1. Survival Status of Child 

The survival status of children under five is displayed in Table 

2. Despite the censorship of 96% of the sample, the size of the 

sample allows for sufficient events to be analyzed. The plot 

displays the children's survival probability and censor cases 

report; the censor in the graph is represented by the + symbol. 

The total survival time of the children is 58 months (Figure 1). 

Table 2. Condition of under-five-year-old children's survival. 

Total N No of deaths 

Censored 

N Percent 

7760 314 7446 96.00% 
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Figure 1. Child survival status. 

3.2. Estimation 

Still, figuring out how many change points there are and 

where they are is a matter of interest. Using Nelder Mead 

Simplex algorithm through R programming an estimated 

hazard function is obtained which is shown in Figure 2. 

 
Figure 2. Estimated Infant Mortality Hazard Function. 

By utilizing the suggested approach, it is found that the 

hazard function has five change points (namely at 3.95, 14.99, 

22.99, 30.99 and 45.99 months) and is defined by Equation 

(4). 

𝜂(𝑡) =  .  88 +  .   2𝑡 +  . 22(𝑡 − 3.95) −

 . 2 (𝑡 −  4.99) +  . 29(𝑡 − 22.99) +  . 48(𝑡 −

3 .99) +  . 6 (𝑡 − 45.99)           (4) 

Later, testing the significance of the change points by the 

Wald test as stated above is done. The result of the Wald Test 

for the significance of the change points is given below: - 

Table 3. Results of Wald test. 

Null Hypothesis Wald Test Statistic P-value 

𝛼1 − 𝛼2 =    179.164 0.0000*** 

𝛼2 − 𝛼3 =    2.941 0.0863** 

𝛼3 − 𝛼4 =    52.283 0.0000*** 

𝛼4 − 𝛼5 =    179.335 0.0000*** 

𝛼5 − 𝛼6 =    741.585 0.0000*** 

‗***‘ and ‗**‘ denote rejection of hypothesis under 5% and 10% 

level of significance respectively. 

After that, the model with the covariates as stated above is 

fitted, and the coefficients of the covariates are given below: - 
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Table 4. Socioeconomic and demographic variables as covariates. 

Covariate Coeff Exp (Coeff) Wald P 

Educational Status 0.02926104 1.02969 0 

Religion -0.00544255 0.99457 0 

Woman's age in years -0.02450831 0.97578 0 

Table 5. Proximate and Biological factors as covariates. 

Covariate Coeff Exp (Coeff) Wald P 

Currently Breastfeeding 0.652956 1.9212 0 

Desire for more children 0.007533 1.0075 0 

Size of child 0.024365 1.0246 0 

ANC Visits -0.050064 0.9511 0 

Birth order 0.693071 1.9998 0 

Delivery by caesarean section 0.056475 1.0581 0 

Total children ever born -0.719095 0.4871 0 

 

4. Discussion 

The hazard function increases gradually up to the first 

change point, then sharply decreases till the second change 

point, increases gradually up to the fourth change point, and 

then sharply increases until the fifth change point. From the 

above result of the Wald Test, it is clear that the hazard rate 

between the interval between 0 to 3.95 months is not the same 

as the hazard rate between the interval between 3.95 months 

and 14.99 months. Moreover, the hazard rate between the 

interval 14.99 months and 22.99 months is not the same as the 

hazard rate between the interval 22.99 months and 30.99 

months, and the same result for the interval between (22.99, 

and 30.99) months and (30.99 and 45.99). So there exist 5 

change points. 

By utilizing the suggested method, it is found that the 

hazard function has five change points 3.95, 14.99, 22.99, 

30.99, and 45.99 months respectively which means in those 

time points infants need more care till completing five years 

of age. 

Table 4 finds that the educational level, women's age, and 

religion of the respondents are significant factors in the 

piecewise linear multiple change-point model. 

Table 5 shows all proximate and biological factors such as 

total children ever born, present breastfeeding, desire for more 

children, size of the child, delivery by cesarean section, ANC 

visits, and birth orders are statistically significant in the 

piecewise linear multiple change-point model of the child 

mortality status. 

5. Conclusions 

In the last few years, statisticians have created various 

techniques for analyzing data in the area of survival analysis. 

Estimating the survival function, determining the risk and 

prognostic variables of a specific disease, and establishing the 

correlations between the risk factors and the response or dis-

ease variable over time are the key goals of the survival 

analysis.  

However, it is no longer limited in terms of determining the 

risk factor. These days, determining the hazard rate's time or 

change point is of scientific interest. The Cox proportional 

hazard model assumes a constant baseline risk across time, 

which is unrealistic for serious illnesses like HIV, cancer, and 

other diseases that take lives. That‘s why in this study 

―Piecewise linear multiple change point Model‖ to analyze 

the infant mortality data is considered. 

The data on under-five child mortality from the Bangladesh 

Demographic and Health Survey 2014 using the proposed 

model is fitted. This technique actualizes and plays a signifi-

cant role in survival models, especially at different time cut 

points. The model is very helpful in estimating the patient risk 

at various times. The crucial month period and influencing 

factors for under-five child mortality were found using the 

piecewise multiple change-point model for the first time in the 
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case of Bangladesh. These results can be used to establish 

time intervals for evaluating the survival status of children 

under five in this study. 

Some basic approaches are provided that can be applied to 

many additional relevant situations, using Wald-type test 

statistics and maximum likelihood estimation. The resulting 

hazard function estimate permits non-parametric extrapola-

tion of very long-term survival by extending the trend from 

the last change point. This hazard function estimate can also 

be used for prediction. Decisions about health care policy may 

be impacted by change-point hazard functions. In the future 

one can compare the hazard rate of the same interval with 

another country to reach the sustainable development goals. 

The proposed comprehension of population death rate trends 

can help us find gaps, investigate remedies, boost output, and 

ultimately improve public health. 
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