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Abstract 

The realization of accurate State of Health (SOH) and State of Charge (SOC) estimation is a prerequisite to ensure the safe use of 

energy storage batteries, which helps to further improve the energy utilization efficiency effectively. Data-driven methods are 

efficient, accurate, and do not rely on accurate battery models, which is a hot direction in battery state estimation research. 

However, the relationships between variables in the lithium-ion battery dataset are mostly nonlinear, which largely affects the 

prediction of the model. In addition, the model also has a series of defects, such as large computation, strong data dependence, 

and long consumption time. In this paper, a joint online estimation method of battery SOC-SOH based on tree modeling 

algorithm is proposed to solve the above problems. Based on NASA battery sample data, this study explores the changing law 

between SOC and discharge voltage and temperature under different State of Health (SOH). Subsequently, a combination of 

RFR, GBDT and XGBoost tree modeling algorithms are used for battery SOC-SOH estimation based on the above variation 

rules. The experimental results show that the R
2
 scores of the XGBoost algorithm in predicting both SOC and SOH are more than 

0.995, indicating its good adaptability and feasibility. 
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1. Introduction 

New non-polluting renewable energy sources, represented 

by wind and solar energy, are difficult to generate electricity 

in a continuous and stable manner. In order to make renewable 

energy a completely reliable primary energy source, energy 

storage is a crucial factor that cannot be ignored [1]. With the 

characteristics of high energy density and high power density, 

lithium-ion batteries are widely used in energy storage sys-

tems. Most battery energy storage systems consist of a single 

unit connected in series through multiple modules to form a 

system. When any single unit in the battery pack reaches the 

voltage constraint limit, the “barrel effect” will be formed, 

leading to the decline of the overall capacity and power per-

formance of the battery pack, and even an explosion [2]. The 

online estimation of SOC and SOH of Li-ion batteries is es-

sential to extend the cycle life of batteries and reduce the 

potential risk of accidents. 
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Currently, there are three main methods for SOC estimation, 

including: time integration method, open circuit voltage 

method, and data driven based method. In particular, the time 

integration method discretized the sum of the current flowing 

through the battery and obtained the SOC value by simple 

division. The open circuit voltage method measures the open 

circuit voltage of the battery, and obtains the charging state 

according to the corresponding relationship between the open 

circuit voltage and the charging state. Ma et al. [3] proposed a 

State of Health (SOH) estimation method based on the cor-

relation between capacity degradation and OCV parameter 

changes, which takes into account the correlation between 

battery capacity degradation and OCV changes. Wang et al. [4] 

proposed a new method for calculating model parameters and 

estimating State of Charge (SOC) of lithium-ion batteries 

based on parameter estimation of open circuit voltage (OCV) 

under multi-temperature conditions. Although highly accurate, 

the OCV method requires a long resting time to reach equi-

librium in practical testing, and the resting time is affected by 

environmental conditions and monitoring equipment, so the 

method is usually used in laboratories or for calibra-

tion-assisted techniques. Comparatively, the data driven based 

method only needs to obtain the physical quantities measured 

during battery charging and discharging to extract the features, 

and then use these features to train the model to establish the 

mapping model between the battery data features and SOC. 

Reference [5] uses a generalized learning system (BLS) to 

process historical capacity data and generate feature nodes as 

an input layer to a neural network. This method also requires 

at least 25% of the historical capacity data, although it does 

not need an in-depth study of the battery aging mechanism. 

Reference [6] constructs a random forest regression model for 

SOC estimation, which effectively avoids the overfitting 

problem and improves the estimation accuracy, and provides a 

reference for future research on estimation models. Due to the 

frequent changes in operating conditions, the energy con-

sumption under different operating conditions varies greatly, 

which makes it difficult to measure the electrochemical pa-

rameters in the actual driving process of the vehicle. Refer-

ence [7] analyzes the energy consumption of vehicles and 

extracts the energy consumption factors. Based on the col-

lected vehicle operation data, machine learning algorithms 

such as Lasso, Ridge, LGBoost, and XGBoost are used to 

train the data, and the energy consumption of temperature 

stratification is proposed. The model not only has high accu-

racy, but also achieves good prediction results. 

Commonly used SOH estimation methods mainly include 

direct measurement method, modeling method and data 

driven method. The Coulomb counting method is the most 

direct, which completely discharges all the power after a full 

charge, records the current and voltage of the discharging 

process, and calculates its capacity by integration. This 

method considers that the real capacity of the battery cannot 

be measured precisely, and the power calculated by integra-

tion has measurement error. The open-loop voltage method 

[8] is to obtain the relationship between open-loop voltage 

and capacity through a large number of experiments. For 

on-line prediction, SOH can be obtained by directly meas-

uring the open-loop voltage. The impedance spectrum 

method is to apply small amplitude currents of different 

frequencies to the battery to obtain the impedance of the 

battery, and the SOH is predicted by electrode kinetic anal-

ysis based on the impedance spectrum. The research of 

model-based methods focuses on identifying and analyzing 

the main aging mechanisms of lithium-ion batteries and 

estimating the battery SOH value based on the correlation 

between the battery SOH value and the model parameters. 

The commonly used models generally contain two main 

categories: electrochemical and equivalent circuit models. 

Electrochemical models. Hosseininasab S. et al. at RWTH 

Aachen University, Germany, proposed an estimation 

method based on a fractional-order battery EM model, which 

avoids the high computational cost due to the small number 

of calibration parameters while maintaining a high estima-

tion accuracy [9]. An online estimation method for SOH and 

aging parameters based on the reduced-order electrochemi-

cal life cycle model was proposed by BiY. et al. at Auburn 

University, USA, which achieves the estimation of SOH and 

aging parameters. It was experimentally verified that the 

estimation errors of the proposed method were within 3% 

and 4% for capacity and power degradation at different 

temperatures, respectively [10]. Gao Yizhao et al. proposed a 

SOH estimation method for Li-ion batteries based on an 

enhanced degradation electrochemical model and dual non-

linear filters [11]. Equivalent circuit modeling. Amirs et al. 

from University of Management Sciences, Lahore, Pakistan 

proposed a method for estimating SOH of battery based on 

dynamic equivalent circuit model. Compared to the 1-RC 

model, the proposed 2-RC model has relatively low com-

putational complexity and outperforms the N-RC model [12]. 

Based on the simplified second-order RL network ECM, 

Yang Jufeng et al. proposed a SOH estimation method based 

on the decoupled dynamic characteristics of constant-current 

charging current. Compared with the traditional nonlinear 

least squares method, the dynamic decoupling method pro-

posed in this paper has lower computational effort and 

higher parameter identification accuracy [13]. Chen Mang et 

al. proposed a comprehensive SOH estimation method based 

on multi-factor ECM, which has an estimation error of about 

1% for the same battery model [14]. Zhang et al [15] ana-

lyzed the impedance characteristics by a pseudo 

two-dimensional (P2D) model based on the variation of 

battery impedance characteristics. In addition, they cor-

rected the original model on this basis and compared it with 

the EIS model, which reduced the prediction error by half. 

Improved reliability is more favorable for SOH estimation 

under real operating conditions. The state of health of a 

battery can be estimated using a data-driven algorithm by 

relying only on the aging data of the battery. By virtue of 

superiority, data-driven algorithms are increasingly used in 
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battery state estimation. Sarmah et al. [16] proposed a 

method combining experimental tests with numerical pro-

cessing and using attenuation as an equivalent variable pa-

rameter to study the electrochemical coupling behavior of 

lithium-ion battery power capacity. They developed an arti-

ficial neural network structural model and validated this 

network model with a linear regression algorithm, which 

showed that the internal stress characteristics of the battery 

have a strong linear SOH relationship. Fan [17] proposed a 

hybrid algorithm based on Gate Recursive Unit Convolu-

tional Neural Network (GRU-CNN) for analyzing and 

studying the charging voltage profile of Li-ion batteries 

using an innovative modeling approach to estimate the SOH 

online from the measured data, such as voltage, current and 

temperature. In order to overcome data redundancy and 

improve the accuracy of the algorithm budget, he proposed 

an improved support vector machine algorithm based on 

principal component analysis (PCA) [18] to optimize the 

extracted dataset to eliminate noisy bad points and redun-

dancy, and particle swarm optimization algorithm to glob-

ally improve the support vector regression machine, which 

further improves the prediction accuracy of the model and 

the computational speed. 

The above related studies are based on single-parameter 

estimation. However, there is a certain coupling link between 

SOC and SOH. For example, when estimating the SOC, the 

change of the maximum capacity of the battery needs to be 

considered, i.e., the effect of the SOH of the battery needs to 

be taken into account. When the battery cell is aging, the 

capacity and internal resistance will deviate from the nominal 

value, which will lead to a large SOC estimation error. At the 

same time, inaccurate SOC estimation will also affect the 

SOH correction. It can be seen that there will be some overlap 

in the estimation steps of these two parameters. In addition, 

considering the nonlinear relationship between the variables 

of the lithium-ion battery data set, it is difficult to use the 

model to establish an accurate fitting relationship between 

SOC and SOH on the discharge data set. Secondly, the method 

of SOH estimation using charge state data can not achieve 

online estimation. Therefore, the study of joint estimation of 

SOC and SOH can save some calculation steps and has high 

practical significance. Whether for SOC or SOH estimation, 

the data-driven method is very dependent on the choice of 

machine learning algorithm. The tree model in the machine 

learning algorithm has great advantages in dealing with the 

nonlinear relationship between features, which is just suitable 

for processing the charging and discharging data of energy 

storage batteries. 

Therefore, in order to predict SOC & SOH more accurately, 

after analyzing the discharge data of NASA B0005 battery, 

this paper finds the coupling relationship between temperature, 

terminal voltage and SOC & SOH, and studies the prediction 

method based on tree model. In this study, RFR algorithm, 

GBDT algorithm and XGBoost algorithm are used respec-

tively to train and test on the dataset, and the prediction result 

errors of different algorithms are compared. Simulation 

analysis shows that the XGBoost-based algorithm has better 

estimation stability and accuracy than other tree models. 

Secondly, this paper tests the running time of the algorithm, 

and the simulation analysis shows that although the XGBoost 

algorithm uses the ensemble learning method, it still has ex-

cellent computing speed in predicting SOC and SOH. Finally, 

the comparison with the estimation error results of other pa-

pers proves the effectiveness of the tree model algorithm. 

2. Algorithm Overview 

Random Forest Regression, GBDT, XGBoost mentioned in 

this study are integrated machine learning algorithms based 

on decision trees. Decision tree modeling is a popular ma-

chine learning method capable of describing the complex 

relationship between general input-output data and the inter-

pretability of input features. 

2.1. Decision Tree Algorithm 

 
Figure 1. Schematic diagram of decision tree algorithm. 

A decision tree is a nonlinear classifier that resembles the 

structure of a tree and consists of a root node, leaf nodes and 

internal nodes (non-leaf nodes). Each non-leaf node has a 

feature attribute on it. Based on the different values of the 

samples in the feature attribute, the samples on the nodes are 

categorized into different subsets, the structure of which is 

shown in Figure 1. Each leaf node has a category tag, and each 

sample falling into this leaf node will be set to such category 

tag. When predicting, the samples start from the root node and 

go through a series of feature attributes to discriminate and 

obtain the predicted results. 

The decision tree learning algorithm is a recursive process. 

At each step of execution, the dataset is divided into several 

subsets according to the feature split points, and each subset is 

reused as the initial dataset for the next execution. Common 

decision tree algorithms contain three main types: the ID3 

algorithm, the C4.5 algorithm and the CART algorithm. The 
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CART algorithm is mostly used when solving regression 

problems. The following is an introduction to the selection of 

feature segmentation points when the CART algorithm gen-

erates trees. 

For the dataset D , kC is the subset of samples in D  be-

longing to the kth class and K is the number of classes. The 

Gini coefficient ( )giniG D  can be expressed as: 

2

1
( ) 1 ( )


 

K k
gini k

C
G D

D
 

The CART algorithm chooses the “feature-value” combi-

nation with the smallest Gini coefficient as the segmentation 

point. In addition, CART algorithm and C4.5 algorithm also 

introduce the method of discretization of continuous features, 

and take each value of continuous features as the segmenta-

tion point. The sample set is divided into two subsets, the 

sample whose value is larger than the partition point is taken 

as one subset, and the rest of the samples are divided into 

another subset. Decision trees have the advantage of being 

easy to understand and interpret, but are prone to overfitting. 

To improve these drawbacks, the random forest approach was 

further proposed. 

2.2. Random Forest Algorithm 

Random Forest is an upgraded algorithm of Decision Tree, 

which mainly introduces random feature selection on the basis 

of Bagging. Random feature selection is to select a feature 

subset randomly before each decision tree determines the 

segmentation point, and then select the segmentation point on 

this feature subset. Therefore, random forest contains two 

random, similar to Bagging's “random” in sample selection 

and “random” in feature selection. The learning framework of 

a random forest is shown in Figure 2. The advantage of ran-

dom forest regression is that it reduces the risk of overfitting. 

However, random forest algorithm performs poorly when 

dealing with high-dimensional sparse data, because it is dif-

ficult for random forest algorithm to find a good segmentation 

point when processing high-dimensional sparse data, resulting 

in a decline in the accuracy of the model. In contrast, GBDT 

and XGBoost algorithms perform better when dealing with 

high-dimensional sparse data and data with class imbalance, 

and can better handle these problems. 

 
Figure 2. Schematic diagram of random forest structure. 

2.3. GBDT Algorithm 

Gradient Boosting Decision Tree (GBDT) is an iterative 

decision tree algorithm, which is a more commonly used 

model in Boosting algorithm. GB in GBDT, Gradient Boost-

ing, is a large class of algorithms in Boosting. The basic idea 

is to train the new weak learner according to the negative 

gradient information of the loss function of the current model, 

and then combine the trained weak learner into the existing 

model by accumulation. Therefore, the Gradient Boosting 

algorithm, which uses a decision tree as a weak classifier, is 

called GBDT, sometimes also called Multiple Additive Re-

gression Tree (MART) or Gradient Boosting Machine (GBM). 

The logic of its implementation is to build the base learners 

sequentially and try to reduce the bias between the learners. 

GBDT is based on the idea of numerical optimization, and 

uses the fastest descent method to solve the optimal solution 

of the loss function: using the regression tree to fit the nega-

tive gradient, and using Newton's method to calculate the step 

size. The GBDT model can avoid overfitting by reducing the 

bias and uses a forward distribution algorithm, which uses a 

decision tree, usually a CART tree. Each of them generates 

multiple weak learners through multiple iterations, and finally 
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the multiple weak learners are weighted and combined. 

The GBDT pays attention to the residual error of the result 

generated by the iteration in each round of iterative training, 

and the residual error of the output is continuously reduced in 

each round of iteration, thereby realizing that each round of 

iteration changes to the gradient direction in which the loss 

function is reduced, so that the GBDT can achieve better 

output effect by using less decision trees and less depth. Alt-

hough GBDT has a strong operational advantage, it needs to 

use serial training rather than parallel training in the training 

process, and can only use some local parallel means within the 

decision tree to improve the training speed. Relatively 

speaking, the parallel training mode of XGBoost algorithm 

makes up for this shortcoming. 

2.4. XGBoost Algorithm 

XGBoost has made a large number of optimizations on the 

basis of gradient boostingdecision tree (GBDT) algorithm to 

improve the performance and speed of the algorithm, which is 

one of the most representative algorithms in integrated 

learning. The structure of the XGBoost model is shown in 

Figure 3. The XGBoost model consists of multiple decision 

trees, which build a tree model of decisions and possible 

outcomes, including the root node, internal nodes, and leaf 

nodes (end nodes). Each decision tree focuses on the residuals 

of the previous tree, branching outward from the root node 

and using a gradient algorithm to find a new decision tree 

building method to reduce the residuals of the model training, 

and finally the tree integration model is obtained by summa-

tion to predict the final result [17]. 

XGBoost not only uses the first derivative of the loss 

function, but also uses the information of the second deriva-

tive of the loss function, which has higher accuracy than 

GBDT. XGBoost adds a regularization term to the loss func-

tion to prevent overfitting. In addition, XGBoost also intro-

duces feature subsampling similar to the use of random forests, 

that is, features are selected in a randomly generated feature 

subset, which improves the learning efficiency of the base 

learner. Compared with GBDT, XGBoost improves the ac-

curacy of the algorithm and the efficiency of the implemen-

tation. 

 
Figure 3. Schematic diagram of XGBoost algorithm structure. 

In summary, Random Forest Regression, GBDT, and 

XGBoost are all integrated machine learning algorithms based 

on decision trees, which are widely used in both classification 

and regression problems. Decision trees are easy to under-

stand and interpret, but are prone to overfitting; Random 

Forest Regression reduces the risk of overfitting, but performs 

poorly when dealing with high-dimensional sparse data and 

data with imbalanced categories; while GBDT can deal with a 

variety of data types, but consumes a long training time; 

XGBoost is fast, accurate, and scalable, but requires more 

computational resources. 
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3. Data Analysis 

3.1. LI-ION Battery Capacity Degradation Data 

This paper mainly uses the public battery data provided by 

NASA as the simulation experimental data. The battery 

number used in this study is B0005, the battery model is 

lithium iron phosphate battery, and the nominal capacity is 

2Ah. The battery runs under three working conditions of 

charging, discharging and measuring internal resistance. The 

three working conditions are in the same room temperature 

(24℃) environment. First, charge the battery with a constant 

current of 1.5A until the voltage reaches 4.2V, and then charge 

it with a constant voltage until the current drops below 20mA. 

In the discharge stage, the battery is discharged at a constant 

current of 2A until the voltage reaches 4.2V, which is the 

corresponding discharge cut-off voltage. The relevant work-

ing conditions of the battery are shown in Table 1: 

Table 1. Battery charging and discharging working status. 

Battery Name 
Charge Cutoff 

Voltage(V) 

Discharge Cutoff 

Voltage (V) 

Charging Current 

(A) 

Discharge Current 

(A) 

Rated Capacity 

(Ah) 

B0005 4.7 2.7 1.5 2 2 

 

3.2. Raw Data Analysis 

SOC is defined as the ratio between the battery's current 

remaining charge and its actual capacity. For practical appli-

cation, it is generally calculated based on the amount of power 

that has been released from the battery. 

0
( )

( ) (1 ) 100%  


t

m

I t dt
SOC t

C

 

Where I refers to the current, the integral of I over [0, t] 

indicates the amount of power discharged by the battery, and 

mC  refers to the actual capacity of the battery at the current 

time. 

With the increase of battery usage time, its internal irre-

versible aging reaction will gradually intensify, externally 

showing the phenomenon that the actual capacity mC  is 

decreasing. Therefore, the SOH of the battery is often defined 

from the perspective of capacity. 

0

100% mC
SOH

C
 

Where 0C  refers to the rated capacity of battery at factory. 

According to the above relationship, the temperature-SOC 

and voltage-SOC curves of the lithium-ion battery are calcu-

lated and drawn using the data set, as shown in Figure 4 and 

Figure 5 below. 

As can be seen in Figure 4, the slope of SOC and the dis-

charge voltage gradually decrease with the change of SOH of 

the battery, which indicates that the discharge voltage of the 

battery accelerates as the battery ages. From the figure, it can 

be seen that in the voltage range (3.89-3.87), the first and 84th 

discharge curves are closely connected, but the 168th dis-

charge curve is very different from these two discharge curves, 

which indicates that the battery has experienced significant 

aging. In the voltage range (2.935-2.925), the first discharge 

curve decreases smoothly, but the 168th discharge curve de-

creases faster, which can also indicate that the battery has 

experienced significant aging when it is in the 168th dis-

charge. 

 
Figure 4. Voltage-SOC curve at discharge. 

 
Figure 5. Temperature-SOC curve. 

http://www.sciencepg.com/journal/jeee


Journal of Electrical and Electronic Engineering http://www.sciencepg.com/journal/jeee 

 

29 

Figure 5 shows the relationship between SOC and temper-

ature. The colors in the graph represent the decay of the bat-

tery. The blue color represents the first discharge and the red 

color on the far right represents the 168th discharge. As can be 

seen in the figure, the slope of SOC versus temperature de-

creases with the number of cycles as the cell decays. This 

shows that as SOH decreases, the temperature increases at a 

progressively slower rate. 

3.3. Eigenvalue Extraction 

From Figures 4 and 5, it can be seen that the temperature 

and terminal voltage affect the SOC&SOH of the battery. In 

order to better investigate the relationship between the 

SOC&SOH and the temperature and voltage, the method of 

calculating the person correlation coefficient is used to verify 

the conjecture. The formula of pearson is shown below: 

( , )



xy

x y

Cov x y
r

S S
 

where 

1

( )( )

1



 





n

i i

i

x x y y

Cov
n

, 
2

1

( )

1









n

i

i
x

x x

S
n

, 

2

1

( )

1









n

i

i
y

y y

S
n

 

 
Figure 6. Thermal map of pearson correlation. 

Figure 6 is a thermal map of pearson correlation. The closer 

the color is to red, the higher the positive correlation, and the 

closer the color is to dark blue, the higher the negative cor-

relation. By observing the thermodynamic diagram, it can be 

found that voltage has a positive correlation with SOC and 

SOH, but temperature has a great negative correlation with 

SOC, which shows that temperature must be one of the factors 

affecting SOC. SOC & SOH will be further explored around 

voltage and temperature below. 

3.4. Model Building 

There are three factors affecting battery aging: SOC, sur-

face temperature and discharge voltage. A defined set of SOC, 

discharge time, and discharge voltage corresponds to a unique 

SOH. The new coupling relationship between SOC and SOH 

is shown in Figure 7 below: 

 
Figure 7. T/U-SOC&SOH coupling diagram. 

From Figure 7, it can be seen that the SOH of the cell is 

gradually decreasing. When the color changes from yellow to 

deep red, the battery aging gradually deepens. A total of 168 

discharge curves are plotted in the figure. Each curve repre-

sents a different battery SOH state, indicated by the color bar 

on the right side of the figure. In summary, the predicted 

expression for SOH is as follows: 

( , , )SOH F SOC U Tem  

However, the direct prediction of the SOH of battery by the 

above method will bring great computational pressure to the 

computer, and the storage space obtained is very limited. 

Therefore, a novel SOC-SOH coupling relation is adopted 

in this paper to simplify the computational complexity. When 

determining the z-axis SOC value, it will correspond to a 

two-dimensional coordinate (U, T), and the above information 

can determine the discharged battery health curve. With this 

feature, the battery SOH can be predicted based on a machine 

learning model. The estimated expression is as follows: 

100% 100%( , , , ) 
now nowSOC SOC SOC SOCSOH F Tem U Tem U  
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3.5. Model Accuracy 

In this paper, two metrics used to characterize the predic-

tion error, root mean square error (RMSE) and coefficient of 

determination (R
2
 score), are used to evaluate the accuracy of 

the ML model. The expression is as follows: 

2

12

2

1

1
( )

1
1

( )









 







n

i ii

n

i ii

y y
nR

y
n



 

2

1

1
( )





 
n

i

i

RMSE y y
n

 

The closer the value of R
2
 to 1, the better the model per-

formance. The closer the RMSE value is to 0, the better the 

model performance. 

3.6. General Workflow of The Model 

The general workflow of the model in this paper is shown 

in Figure 8. After feature extraction, the total dataset is ran-

domly divided into two parts, the training set and the test set, 

with a ratio of 4:6. After training, models with R
2
 scores of 0.5 

or less will be retrained. Models with R
2
 scores that meet the 

criteria will be used to predict the full dataset for the next 

stage of analysis. 

 
Figure 8. General workflow. 

4. Results and Discussion 

The CPU of the device used in this paper is Intel(R) Core(TM) 

i7-6700HQ CPU @ 2.60GHz, and all training is completed on 

the same device. In this paper, three methods were used to predict 

the voltage and temperature on the full data set, as shown in 

Figure 9. The prediction error is defined by the equation 

 p rerror y y , where py  refers to the predicted value and 

ry  refers to the true value. In these three graphs, the closer the 

curve is to 0y , the better the prediction. From Figure 9(a), (b) 

and (c), it can be seen that for predicting temperature, the overall 

trend shows that Random Forest has better prediction in com-

parison to GBDT. From the error fluctuation ranges listed in 

Table 2, it can be seen that the error fluctuation interval is 7.7 for 

Random Forest and 10.2 for GBDT, meanwhile, while the 

XGBoost error fluctuation range is well controlled within 0.75. It 

can be seen from Figure 9(e), (f), and (g) that for voltage predic-

tion, the tree model shows better performance than that for 

temperature prediction. At this time, the prediction errors of 

several methods are in the range of (-0.6, 0.5), and the error curve 

of XGBoost is close to 0y , which indicates that XGBoost 

can make more accurate predictions. 

Table 2. The fluctuation range of prediction errors for each model 

MODEL Temperature-error Voltage-error range 

RFR (-4, 3.7) (-0.32, 0.43) 

GBDT (-6, 4.2) (-0.58, 0.47) 

XGBoost (-0.8, 1.1) (-0.001, 0.003) 
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                          (a) RFR-T                                            (b) GBDT-T              

  
                        (c) XGBoost-T                                          (d) RFR-U        

  
                         (e) GBDT-U                                          (f) XGBoost-U 

Figure 9. Prediction errors of the three models on temperature and voltage. 

Next, this study uses three models to predict the SOC in the whole process, and the characteristics used are as follows: 
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battery output current, load current, load voltage and time; in 

order to make the model have better generalization ability, the 

data set used for training is randomly extracted from the 

complete set with a probability of 0.4; finally, the SOC 

throughout the whole process is predicted, and the results are 

shown in Figure 10. 

  
                           (a) RFR-SOC                                    (b) GBDT-SOC 

 
(c) XGBR-SOC 

Figure 10. Thermal plot of scatter coupling of predicted and true values of SOC. 

 
                                  (a)                                            (b) 

Figure 11. (a) SOC prediction model R2-RMSE; (b) SOH prediction model R2-RMSE. 

Figure 10 shows the thermal plot of scatter coupling be- tween the predicted SOC values of all data and the real SOC 
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values produced by each model. The closer the points are to 

the diagonal line, the closer the predicted values are to the true 

values, and the redder the points are, the higher the number of 

points. As can be seen from the figure, the RFR method can fit 

the data, but there are still a large number of points outside the 

diagonal. Compared with RFR, the point distribution of 

GBDT coupling plot is more concentrated, indicating that the 

random forest prediction error is in a small range of fluctua-

tion state. Combined with the R
2
-RMSE histogram of the 

model in Figure 10(a), it can be seen that the R
2
 of XGBoost = 

0.997, which is not only excellent close to 1 but also much 

higher than that of RFR and GBDT. The error of RFR is also 

at the highest level, which is in line with the prediction situa-

tion presented in Figure 11. Table 3 shows the RMSE of other 

literatures in predicting SOC. Although the performance of 

RFR and GBDT methods is weaker than that of the methods 

listed in the table, the predictive ability of XGBoost model is 

much better than that of the listed literature. In addition, the 

XGBoost model obtained after training predicts the full data 

running time of 0.2ms, which proves that it is fully competent 

for online estimation. 

  
(a) 0RFR-SOH                              (b) GBDT-SOH 

 
(c) XGBoost-SOH 

Figure 12. Thermal plot of scatter coupling between predicted and true values of SOH. 

Figure 12 shows the thermal plot of scatter coupling be-

tween predicted and true values of SOH by the model. The 

plot shows that the tree models are more generalizable in 

predicting SOH than in predicting SOC. None of the three tree 

models showed large fluctuations in the plot. Combined with 

Figure 11(b), it can be seen that XGBoost still performs the 

best, although this time the prediction of RFR is closer to the 

prediction ability demonstrated by GBDT, with a decrease in 

the RMSE of RFR. Table 4 also shows the RMSE of other 

literatures in predicting SOH. At this time, the performance of 

RFR and GBDT methods is slightly improved. Although the 

error is greater than the listed literature, the model does not 

need complex data preprocessing in the early stage, which 

also proves the application value of the tree model. Mean-

while, the prediction ability of XGBoost model is higher than 

that of existing neural networks, and the model prediction 

consumes 0.07ms, which provides a strong guarantee for 

realizing online estimation. 
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Table 3. Comparison of SOC prediction results of different models 

with other methods. 

Model Target RMSE (%) 

XGBoost SOC 0.3 

RFR SOC 42 

GBDT SOC 35.5 

Deep transfer neuralnetwork + MDA 

[19] 
SOC 1.04 

LSTM + UKF [20] SOC 0.93 

Deep LSTM [21] SOC 0.76 

Bidirectional LSTM encoder–decoder 

[22] 
SOC 1.07 

Table 4. Comparison of SOH prediction results of different models 

with other methods 

Model Target RMSE (%) 

XGBoost SOH 0.1 

RFR SOH 8 

GBDT SOH 5 

(DCNN-EL) [23] SOH 3.539 

Deep Neural Network (DNN) [24] SOH 1.59 

LSTM+GPR [25] SOH 0.32 

DNN+LSTM [26] SOH 98.5 

5. Conclusions 

Most data-driven methods can accurately estimate the state 

of the lithium battery, which can effectively reduce the risk 

and loss caused by failure when the power battery is used. 

However, the relationships between the variables of the bat-

tery data set are mostly nonlinear, which largely affects the 

prediction of the model. In addition, the model also has a 

series of defects, such as large computation, strong data de-

pendence, and long consumption time. Considering such 

problems, this study proposes a joint SOC&SOH estimation 

method based on a tree model, which realizes the online de-

tection and estimation of the battery management system. 

First of all, this paper starts from the basic algorithm of tree 

modeling, and analyzes the advantages and disadvantages of 

different tree modeling algorithms, such as decision tree, 

random forest, GBDT, and XGBoost. Secondly, this paper 

utilizes the open data of the battery provided by NASA as the 

simulation experimental data, and explores the effects of 

temperature and voltage on SOC by plotting the tempera-

ture-SOC curve and the voltage-SOC curve, and determines 

that these two features can be used as the off-built features for 

predicting SOC by combining the analysis of the person heat 

map. Subsequently, the fitted surface of U&T-SOC/SOH is 

plotted, and the estimation formulas of SOC and SOH are 

established. Finally, this paper extracts some data as training 

sets, trains different tree models, and makes predictions on the 

whole data set. After comparative analysis, it is found that tree 

model is a more suitable machine learning model to estimate 

SOC&SOH. In particular, the XGBoost algorithm not only 

obtained R
2
 scores of more than 0.995 on both occasions, but 

also ran less than 0.2ms on the forecast full data set, demon-

strating its great potential for online estimation. 

The method proposed in this paper has two main advantages. 

(1) Compared with the traditional estimation methods that 

mostly can only realize offline estimation, the method proposed 

in this paper can realize online estimation, which further im-

proves the timeliness of estimation. (2) The method proposed in 

this paper does not need to obtain the fitting coefficients of the 

corresponding SOC-SOH complex functional relationships, nor 

does it need to identify the parameters of the corresponding 

equivalent circuit models, etc., which further improves the gen-

eralization ability of the algorithm. 
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