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Abstract

The Weitzman overlapping coefficient A(X,Y) is the most important and widely used overlapping coefficient, which represents
the intersection area between two probability distributions. This research proposes a new general technique to estimate A(X,Y)
assuming the existence of two independent random samples following normal distributions. In contrast to some studies in this
scope that place some restrictions on the parameters of the two populations such as the equality of their means or the equality of
their variances, this study did not assume any restrictions on the parameters of normal distributions. Two new estimators for
A(X,Y) were derived based on the proposed new technique, and then the properties of the estimator resulting from taking their
arithmetic mean was studied and compared with some corresponding estimators available in the literature based on the
simulation method. An extensive simulation study was performed by assuming two normal distributions with different parameter
values to cover most possible cases in practice. The parameter values were chosen taking into account the exact value of A(X,Y),
which taken to be small (close to zero), medium (close to 0.5) and large (close to 1). The simulation results showed the
effectiveness of the proposed technique in estimating A(X,Y). By comparing the proposed estimator of A(X,Y) with some
existing corresponding estimators, its performance was better than the performances of the other estimators in almost all
considered cases.
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1. Introduction

The well-known Weitzman overlapping (OVL) coefficient
A(X,Y) is a measure of similarity between two probability

ture in many applications such as; comparison of income
distributions [14]; distinctness clusters [18], reliability analy-

distributions. Although the Weitzman coefficient is the most
important interference coefficient, there are some other
overlapping coefficients that have been discussed and studied
in the literature, see [2, 4-7, 11-14, 17]. A(X,Y) represents
the common area under two probability density functions
(pdfs). The OVL coefficients are widely used in the litera-

sis [2] and goodness of fit test [1].

Let X and Y be two independent continuous random
variables follow f;(x) and f,(x) respectively. The Weit-
zman [19] OVL coefficient between X and Y is defined by,

AX,Y) = [ min{f, (x), f,(x)}dx.
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There are two main methods used to estimate the OVL
coefficients; the parametric method and the non-parametric
method. The parametric method assumes that the formulas of
the probability density functions are known but depend on
unknown parameter(s). To estimate the OVL coefficient,
these parameters can be estimated by using one of the
well-known statistical methods, such as the method of mo-
ments or the maximum likelihood method (see, [15, 6, 3]). If
it is not possible to determine the probability density function
models for the data or if there are some doubts about the
validity of the assumption of a particular data model, the
alternative is to use the non-parametric method instead of the
parametric method. The non-parametric method does not
require any assumptions about the formulas of probability
density functions, as this method is used to estimate the for-
mulas of the probability density functions themselves (see,
[14, 9, 10]).

If X and Y follow N(u;,02) and N(u,,0%) respec-
tively, where N(u,c?) is the pdf of a normal distribution
with mean u and variance ¢? then

AKX, Y) = [7 min{N(uy,07), N1z, 63)}dx.

Under the assumption, o2 = 62 = ¢2, Inman and Bradley
[15] derived the value of A(X,Y), which is given by,

AX,Y) =20 (_M)

20
=2 (—81/2)

where 6 = (i, — u;)/o and @®(t) is the standard normal
cumulative distribution function at a point t . Let
X1 X2, 0, X, and Y1, Y, ..., Y, be two independent random
samples drawn from the two normal densities N(u,02)
and N(u,,02) respectively. The maximum-likelihood esti-
mator of A(X,Y) is[15],

A -7
AnX,Y) =20 (—l s l),

where X and ¥ are the maximum likelihood (ML) estima-
tors of pu; and u, respectively and S? is the pooled ML
estimator of o2, which is given by,

T (Xi—X)%+ T2 (Y —T)?

ni+n;

52 =

Mulekar and Mishra [16] derived the formula of A(X,Y)
under the assumption that the two means are equal, i.e.
Uy = py = p. Now, define C = 6,/0,, then they gave the

following formula for A(X,Y),

1—2d(b) + 20(Ch),if0 < C < 1

AX,Y) = { 1+ 2®(b) — 2®(Ch),ifC=1 ’
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where = \/—In(C?)/(1 — C?). The corresponding estima-
tor of A(X,Y) that suggested by [16] is,

1—-20(b) +29(Ch),if 0 < 6, < 6,

AynX,Y) = - i
(X, Y) { 1+2®(b) — 20(Ch),if 6, = 6,

where, B = \/—ln(fz)/(l—fz), C=6,/6, &2

n ~ n o n n.
Ziil(xi_li)z 6'2 _ Zizzl(yi_ﬂ)z Zi=11Xi+Zi:21 Y
1 2 .

ng ny and ‘[1\. = ni+n;

It is important to note that the value of b is undefined if
0, = o, and the corresponding estimator b is also unde-
fined if 6, = 6,. In this case, the value of the parameter
A(X,Y) =1 (because the two densities are identical), and
then the value of the corresponding estimator A, (X,Y)
must be 1.

The previous two studies placed some restrictions on the
parameters of the distributions. The first assumed that the
two variances were equal, while the second assumed that the
two means were equal. To overcome this problem, Eidous
and Al-Shourman [8] estimated A(X,Y) under a pair of
normal distributions without using any assumptions on their
parameters. Their proposal was based on approximating the
integral of A(X,Y) and then the resulting approximation
was estimated instead of estimating the exact value of
AKX, Y).

The aim and main idea of this paper parallel the work of
[8]. Without using any assumptions about the parameters of
normal distribution, this paper proposed a new technique to
deal with the integral of A(X,Y) by writing it as an ex-
pected value for a function or some functions and then esti-
mating the resulting expected value instead of estimating
A(X,Y) itself.

2. Main Results

Let X and Y be two random variables from
filsu,0f) = N(uy,0f)  and  f,(y; ha, 03) = N(up, 03)
respectively. In this section, a new technique for estimating
overlapping Weitzman coefficient is suggested,

AX,Y) = [2, min{fy(x wy, 07, fo(x; p, 03)}dx.

This proposed technique consists of two stages. In the first
stage, the coefficient was written as an expected value of
some function. In the second stage, a new estimator was
proposed for the resulting expectation. Accordingly, the es-
timator was derived as follows.

Consider min{fi(X; py,0f), f2(X; 42, 03)}/ f1(X; 1y, 07)
as a function of X and min{f,(Y; uy, 02), f2(Y; 1y, 02}/
f2(Y; iy, 0%) as afunction of Y. Then,
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E (min{fl(X:uLtHz)yfz (X;12,0%)}
f1(Xiug,03)
foo min{fy (x; 41,69).f2(X:42.03)}
0 fr(xpa,08)

):

f1(x 1y, 012) dx

= [7 min{fy(x; g, 02), fo (x; o, 03) Ydx
=AX,Y)

and

E (min{f1 (V;u1,09).£(V;12,03))
f2(Yiuz,0%)
% min{fi ;1,002 (ikz2.09))
0 f2itz2.0%)

):

f(y; Hz'Uzz) dy

= [Z min{f,(v; w1, 01, fo(v; oy 03}y
= [7 min{fy(x; uy, 02), fo (x; o, 03) }dx
= A(X,Y).

From the last two formulas, A(X,Y) can also be ex-
pressed as the average of the above two formulas as follows,

AX,Y) =

1 [ E (min{fltx;ul.a%).fz (X;#2,0)}
2 fi(X;p1,0%)

B (min{ﬁ(Y:ul,af),fz(Y:uz,a%)}
fo(Y;u2,03)

)+
I

Based on the last three formulas for A(X,Y) and based on
the two independent random samples X;,Xj,..., X, and
Y1,Ys, ..., Yy, the ML estimators of uy,pu,, ofand o are
fo=X, f,=Y, 62=S? and 82 = S? respectively.
Therefore, the ML estimators for f;(x;p,,0%) and

f2(vi k2, 0%) are fi(x; b, 67) and f(y; fiz, 67) respectively.

Now, A(X,Y) can be estimated using any of the following
two estimators that are consistent with the first two formulas
of A(X,Y),

AKX, Y) = 1 s (min{fl(Xi; ﬁl,a%),fz(xi;ﬁz,ag)})

ny <=1 f1(Xi; B1,87)

or,

& 1 wny (min{fi(¥i 81.89)./2(YisB2,63)
AXY) = n_zzijl( : (Vi 03) })'

After conducting a preliminary simulation study, this study
shows that the average of the last two estimators for A(X,Y)
(corresponding to the last formula of A(X,Y)) is more stable
than each of them individually. Therefore, the finite properties
of the following proposed estimator is investigated in our

simulation study in the next section,
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i —lLym (min{fl(xi;ﬁl.af).fz(xi;ﬁz.a%)})
AProp X, 1) 2 [n1 Zi:l f1(Xi; B1,62) +
gz (mtn{fl(vi; ﬁl,&n,fz(vi:nz.&%)})]

=1 fo(Yi:2,62)

1
nz

3. Simulation Study

In this section, a simulation study was conducted to inves-
tigate the performance of the proposed estimator of A(X,Y)
compared to some estimators found in the literature under
pair of normal distributions. One of the general estimators
that was taken into consideration in this study is the
non-parametric kernel estimator developed by [9], which we
will denote it by A, (X,Y) (see also [12] for the selection of
bandwidth).

We considered the following three cases at which four pairs
of distributions were chosen to simulate the data for each case.
The basis of the selection process for these distributions is to
ensure small, medium (less than 0.5), medium (greater than
0.5) and large values for the true values of A(X,Y). The
3 X 4 =12 pairs are given in Table 1.

Four pairs of normal distributions with equal variances are
selected (See Table 1). In this case, the estimators A, (X,Y),
An(X,Y) and Ap,,,(X,Y) are considered and their perfor-
mances were compared.

Four pairs of normal distributions with equal means are
selected (See Table 1). The estimators A, (X,Y), Ay (X,Y)
and Epmp (X,Y) are considered in this case.

Four pairs of normal distributions with different variances
and different means are selected (See Table 1). In this case,
only the two estimators A, (X,Y) and Ap,,,(X,Y) are in-
vestigated.

It should be noted here that, on the first hand, the estimator
An(X,Y) was developed assuming that the variances are
equal, while A, (X,Y) was derived assuming that the
means are equal. On the other hand, the estimator A, (X,Y)
was developed without using any assumptions on the param-
eters of the distributions or even on the shape of the distribu-
tions themselves. Finally, the proposed estimator ﬁprop X,Y)
was derived assuming that the two distributions are normal
but without using any assumptions on their parameters.
Therefore, A, (X,Y) and Ap,,,(X,Y) can be used for all
three cases mentioned above, while the estimator A,y (X,Y)
can be used in the first case only, and the estimator A,y (X,Y)
can only be used in the second case.

Let x;, X3, .., X, aNd yy, ¥, ..., ¥, are two independ-
ent simulated samples from f;(x) and f,(y) respectively,
then to study the behavior of the various estimators for dif-
ferent sample sizes,
(nq,n,) = (10,10), (50,50),(100,200) are chosen. For
each sample size, R = 1000 replications are used. The Rel-
ative Bias (RB), Relative Mean Square Error (RMSE) and
Efficiency (EFF) were computed for each estimator under
study. These measures were computed according to the fol-
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lowing rules.
If 4 is an estimator of n then,

RB = E(ﬁ)—n'
n
RMSE = YMSE
n
Where
s R
E(U) — 2 ; [6)]

and

o ~ 2
MSE() = X () — E(D) /R

The efficiency of each considered estimator is computed
with respect to the nonparametric estimator, A,(X,Y). The
efficiency of fj with respectto A,(X,Y) is,

MSE@A(X,Y))

EFF == @

The simulation results are reported in Tables 2 to 4.

Table 1. The 12 simulated pair normal distributions f; (x) and f,(y) together with the corresponding exact values of the overlapping coef-

ficient A(X,Y).

Normal distributions

f1(x)

N(0,1)
N(0,1)
N(0,1)
N(0,1)

Case 1: Equal variances

N(0,1)
N(0,1)
N(0,1)

Case 2: Equal means

N(0,1)
N(0,1)

Case 3: Different means N(O,1)

and different variances N(0,1)

o O W >» UT O ™ >» U O W »

N(0,1)

4. Simulation Results

The RB, RMSE and EFF for each estimator mentioned in
the previous sections are displayed in Table 2, Table 3 and
Table 4. By examining these results, we conclude the fol-
lowing:

As a general conclusion, it is clear that the RMSE values of
the different estimators decrease with increasing sample sizes.
This a good sign for concluding that the different estimators
are consistent estimators for 4(X,Y).

By examining the results of Table 2, which concern the
case of two normal distributions with equal variances, it is
clear that the two estimators A,y(X,Y) and A, (X,Y)
perform similar to each other with some preferring for
An(X,Y) over A, (X,Y). These two estimators perform

17

f2(») A(X,Y)
N(=0.5,1) 0.8025
N(1,1) 0.671
N(1.5,1) 0.4532
N(3,1) 0.1336
N(0,1.5) 0.8064
N(0,2.5) 0.585
N(0,5) 0.3528
N(0,10) 0.2017
N(-0.2,1.1) 0.9151
N(1,2) 0.6099
N(2.5,4) 0.3577
N(5,2) 0.0891

better than the general kernel estimator A, (X,Y).

From Table 3, the performance of the estimator
Ay (X,Y) is better than the other two counterpart estima-
tors A (X,Y) and A,,,,(X,Y) when the exact values of
overlapping coefficient are large. The opposite is true for
small values of A(X,Y). This may be due to the estimation
of the common mean by using the pooled mean as suggested
by [16].

In all cases, the performance of the proposed estimator
A,rop(X,Y) is better than that of A,(X,Y). It is worthwhile
to mention here that the estimator of [16] can only be used
when the mean of the two normal distributions is assumed to
be equal.

Based on the results of Table 4, the proposed estimator
Bpmp(x, Y) achieves good performance in general. Its per-
formance is better than that of the kernel estimator A, (X,Y)
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in all cases studies. This is very evident when examining the
values RMSE and EFF that associated with the proposed and
kernel estimators. It is important to note that this result is
expected because the kernel estimator can be used more
generally without looking to the distributions at which the
data come from. It should also be noted here that the pro-
posed estimator was derived without using the assumption of
equal means or equal variances for the two normal distribu-
tions.

Finally, it should be noted that the Inman and Bradley [15]
estimator A,y (X,Y) (or Mulekar and Mishra [16] estimator
Ay (X, Y)) can be used only if the two variances (or the two
means) of the normal distributions are equal. Because of this
drawback of each of them, we recommend using the proposed
estimator Epmp(X, Y) as a general estimator for A(X,Y)
under a pair of normal distributions.

Table 2. The RB, RMSE and EFF of the estimators 4,(X,Y), A;y(X,Y) and Epmp(X, Y)when the data are simulated from pair normal
distributions with equal variances (o = 2 = 1) (Case, 1 of Table 1).

AX,Y) (ny,m2)

RB
(10,10) RMSE
EFF
RB
0.8025 (50,50) RMSE
EFF
RB
(100,200) RMSE
EFF
RB
(10,10) RMSE
EFF
RB
0.617 (50,50) RMSE
EFF
RB
(100,200) RMSE
EFF
RB
(10,10) RMSE
EFF
RB
0.4532 (50,50) RMSE
EFF
RB
(100,200) RMSE
EFF
RB

0.1336 (10,10)
RMSE

A(X,Y) An(X,Y) Ap,op(X,Y)
0.0364 -0.033 -0.0995
0.246 0.1951 0.2037
1 1.5899 1.459
-0.004 -0.0038 -0.0164
0.0914 0.0973 0.095

1 0.8821 0.9255
0.0018 0.002 -0.0022
0.0615 0.0606 0.0601
1 1.031 1.049
-0.0024 -0.0008 -0.0484
0.2803 0.2784 0.268

1 1.0141 1.094
0.002 0.0029 -0.0051
0.1342 0.1297 0.1286
1 1.07 1.0894
-0.0012 -0.0004 -0.0031
0.0812 0.0726 0.0726
1 1.2507 1.2501
0.0009 -0.0036 -0.041
0.3567 0.3461 0.3368
1 1.0619 1.1214
0.0029 0.0011 -0.0049
0.1698 0.1565 0.1556
1 1.1759 1.1899
-0.0004 -0.001 -0.0032
0.1061 0.089 0.0902
1 1.4206 1.3833
0.0607 0.0166 -0.0229
0.7837 0.6801 0.6807
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A(X,Y)

(nqy,ny)

(50,50)

(100,200)

EFF
RB
RMSE
EFF
RB
RMSE
EFF

A (X, Y)

0.0295
0.3642

0.0009
0.2093

An(x,Y)

1.328
0.0213
0.3073
1.4052
-0.0043
0.1738
1.4494

a Prop (X , Y)

1.3257
0.0158
0.3062
1.4148
-0.0057
0.1768
1.4006

Table 3. The RB, RMSE and EFF of the estimators 4, (X,Y), Ay (X,Y) and Ap,,,(X,Y) when the data are simulated from pair normal

distributions with equal means (u; = u, = 0) (Case, 2 of Table 1).

A(X,Y)

0.8064

0.5850

0.3528

(ny,ny)

(10,10)

(50,50)

(100,200)

(10,10)

(50,50)

(100,200)

(10,10)

(50,50)

(100,200)

RB
RMSE
EFF
RB
RMSE
EFF
RB
RMSE
EFF
RB
RMSE
EFF
RB
RMSE
EFF
RB
RMSE
EFF
RB
RMSE
EFF
RB
RMSE
EFF
RB
RMSE

A (X, Y)

-0.1686
-0.2447
1
-0.042
0.0954

-0.01
0.0537

-0.1213
0.297

-0.0274
0.1266

-0.0029
0.0723

-0.1349
0.3798

-0.03
0.1613

-0.013
0.0949
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Aym(X,Y)

0.0014
0.1481
2.7332
0.0014
0.0825
1.3367
0.0001
0.0463
1.3505
0.0688
0.2353
1.5925
0.0083
0.0985
1.653

0.0053
0.0593
1.4848
0.2267
0.4077
0.8684
0.0536
0.1278
1.5931
0.0187
0.0754

Z Prop (X , Y)

-0.0093
0.1606
2.3214
-0.0007
0.0844
1.2793
0.0008
0.047
1.3077
0.0152
0.2523
1.386
-0.004
0.1074
1.3906
0.0029
0.0609
1.4057
0.0105
0.3296
1.3284
0.0032
0.1323
1.4858
0.0014
0.0781
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A(X,Y)

0.2017

Table 4. The RB, RMSE and EFF of the estimators 4,(X,Y) and Epmp(X, Y) when the data are simulated from pair normal distributions
with different parameters (Case, 3 of Table 1).

AX,Y)

0.9151

0.6099

0.3577

(nqy,ny)

(10,10)

(50,50)

(100,200)

(nl! nZ)

(10,10)

(50,50)

(100,200)

(10,10)

(50,50)

(100,200)

(10,10)

(50,50)

EFF
RB
RMSE
EFF
RB
RMSE
EFF
RB
RMSE
EFF

RB

RMSE

EFF
RB

RMSE

EFF
RB

RMSE

EFF
RB

RMSE

EFF
RB

RMSE

EFF
RB

RMSE

EFF
RB

RMSE

EFF
RB

RMSE

A (X, V)

-0.187
0.4733

-0.0524
0.2116

-0.0325
0.1226

20

Aum(X,Y)

1.5846
0.5953
0.8444
0.3141
0.1694
0.278

0.5795
0.0833
0.1533
0.6402

A (X, Y)

—0.2384
0.2801
1.0000
—0.0793
0.1020
1.0000
—0.0359
0.0551
1.0000
-0.1117
0.2813
1.0000
—0.0281
0.1209
1.0000
—0.0041
0.069
1.0000
—0.1141
0.3804
1.0000
—0.0353
0.1756

a Prop (X , Y)

1.4756
-0.0112
0.4167
1.2901
0.0012
0.1732
1.4938
0.0028
0.0983
1.5566

Z Prop (X ’ Y)

—0.1537
0.2029
1.9056
—0.0404
0.0777
1.722
—0.0132
0.048
1.3183
—0.0682
0.2452
1.316
—0.0192
0.1037
1.3596
—0.0063
0.0598
1.3324
—0.0594
0.3234
1.3833
—0.0170
0.1438
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AX,Y) (ny,n2)

EFF
RB

(100,200) RMSE
EFF
RB
(10,10) RMSE
EFF
RB

(50,50) RMSE

0.0891
EFF
RB
RMSE

EFF

(100,200)

5. Conclusion

This study presented a new technique for estimating
A(X,Y) under a pair of normal distributions by writing it as
an expected value for some functions. One of the most im-
portant benefits of this technique is to estimate A(X,Y)
without placing any conditions on the parameters of normal
distributions. Based on the results of numerical simulations,
these results demonstrated the effectiveness of the new tech-
nique and that the performance of the estimator resulting from
the use of this technique is better than the performance of the
nonparametric kernel estimator of A(X,Y) that developed by
Eidous and AL-Talafha [9]. Accordingly, this technique can
be used to estimate other OVL coefficients mentioned in the
literature, such as the Matusita coefficient (see, Eidous and
Ananbeh [11]) and Pianka and Kullback-Leibler coefficients
(see, Eidous and Abu Al-Hayjaa [5]).

Abbreviations
OovL Overlapping
pdf Probability Density Function

ML Maximum Likelihood

RB Relative Bias

MSE Mean Square Error

RMSE Relative Mean Square Error
EFF Efficiency

21

A(X,Y) Aprop(X,Y)
1.0000 1.4914
—0.0064 —0.0023
0.0944 0.0791
1.0000 1.4263
—0.0098 —0.0464
0.8987 0.8097
1.0000 1.2317
0.0671 —0.0014
0.4347 0.3660
1.0000 1.4105
0.0578 0.0118
0.2547 0.2103
1.0000 1.4662
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