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Abstract 

The Weitzman overlapping coefficient ∆(X,Y) is the most important and widely used overlapping coefficient, which represents 

the intersection area between two probability distributions. This research proposes a new general technique to estimate ∆(X,Y) 

assuming the existence of two independent random samples following normal distributions. In contrast to some studies in this 

scope that place some restrictions on the parameters of the two populations such as the equality of their means or the equality of 

their variances, this study did not assume any restrictions on the parameters of normal distributions. Two new estimators for 

∆(X,Y) were derived based on the proposed new technique, and then the properties of the estimator resulting from taking their 

arithmetic mean was studied and compared with some corresponding estimators available in the literature based on the 

simulation method. An extensive simulation study was performed by assuming two normal distributions with different parameter 

values to cover most possible cases in practice. The parameter values were chosen taking into account the exact value of ∆(X,Y), 

which taken to be small (close to zero), medium (close to 0.5) and large (close to 1). The simulation results showed the 

effectiveness of the proposed technique in estimating ∆(X,Y). By comparing the proposed estimator of ∆(X,Y) with some 

existing corresponding estimators, its performance was better than the performances of the other estimators in almost all 

considered cases. 
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1. Introduction 

The well-known Weitzman overlapping (OVL) coefficient 

𝛥      is a measure of similarity between two probability 

distributions. Although the Weitzman coefficient is the most 

important interference coefficient, there are some other 

overlapping coefficients that have been discussed and studied 

in the literature, see [2, 4-7, 11-14, 17]. 𝛥      represents 

the common area under two probability density functions 

(    ). The OVL coefficients are widely used in the litera-

ture in many applications such as; comparison of income 

distributions [14]; distinctness clusters [18], reliability analy-

sis [2] and goodness of fit test [1]. 

Let   and   be two independent continuous random 

variables follow       and       respectively. The Weit-

zman [19] OVL coefficient between   and   is defined by, 

𝛥     = ∫𝑚𝑖𝑛{           }  .  
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There are two main methods used to estimate the OVL 

coefficients; the parametric method and the non-parametric 

method. The parametric method assumes that the formulas of 

the probability density functions are known but depend on 

unknown parameter(s). To estimate the OVL coefficient, 

these parameters can be estimated by using one of the 

well-known statistical methods, such as the method of mo-

ments or the maximum likelihood method (see, [15, 6, 3]). If 

it is not possible to determine the probability density function 

models for the data or if there are some doubts about the 

validity of the assumption of a particular data model, the 

alternative is to use the non-parametric method instead of the 

parametric method. The non-parametric method does not 

require any assumptions about the formulas of probability 

density functions, as this method is used to estimate the for-

mulas of the probability density functions themselves (see, 

[14, 9, 10]). 

If   and   follow        
   and        

   respec-

tively, where         is the     of a normal distribution 

with mean   and variance    then 

𝛥     = ∫ 𝑚𝑖𝑛{       
          

  }  
∞

−∞
.  

Under the assumption,   
 =   

 =   , Inman and Bradley 

[15] derived the value of 𝛥     , which is given by, 

𝛥     = 2Φ (−
|𝜇1−𝜇2|

 𝜎
)  

= 2Φ  −|δ|/2  

where δ =    −    /  and Φ    is the standard normal 

cumulative distribution function at a point  . Let 

          1
 and           2

 be two independent random 

samples drawn from the two normal densities       
   

and       
   respectively. The maximum-likelihood esti-

mator of 𝛥      is [15], 

∆̂𝐼𝑁     = 2Φ (−
|𝑋̅−𝑌̅|

 𝑆
)   

where  ̅ and  ̅ are the maximum likelihood (ML) estima-

tors of    and    respectively and    is the pooled ML 

estimator of   , which is given by, 

  =
∑  𝑋𝑖−𝑋̅ 2+
𝑛1
𝑖=1

∑  𝑌𝑖−𝑌̅ 2
𝑛2
𝑖=1

 1+ 2
.  

Mulekar and Mishra [16] derived the formula of 𝛥      

under the assumption that the two means are equal, i.e. 

  =   =  . Now, define  =     ⁄ , then they gave the 

following formula for 𝛥     , 

𝛥     =  {
1 − 2Φ 𝑏 + 2Φ C𝑏  if 0 <  < 1

1 + 2Φ 𝑏 − 2Φ C𝑏  if C ≥ 1
   

where = √−𝑙𝑛     1 −    ⁄ . The corresponding estima-

tor of 𝛥      that suggested by [16] is, 

∆̂𝑀𝑀     = {
1 − 2Φ(𝑏̂) + 2Φ( ̂𝑏̂) if 0 <  ̂ <  ̂ 

1 + 2Φ(𝑏̂) − 2Φ( ̂𝑏̂) if  ̂ ≥  ̂ 

  

where, 𝑏̂ = √−𝑙𝑛  ̂  (1 −  ̂ )⁄ ,  ̂ =  ̂  ̂ ⁄ ,  ̂ 
 =

 
∑  𝑋𝑖−𝜇̂ 2

𝑛1
𝑖=1

 1
,  ̂ 

 = 
∑  𝑌𝑖−𝜇̂ 2

𝑛2
𝑖=1

 2
 and  ̂ =

∑ 𝑋𝑖+
𝑛1
𝑖=1

∑ 𝑌𝑖
𝑛2
𝑖=1

 1+ 2
. 

It is important to note that the value of 𝑏 is undefined if 

  =    and the corresponding estimator 𝑏̂ is also unde-

fined if  ̂ =  ̂ . In this case, the value of the parameter 

𝛥     = 1 (because the two densities are identical), and 

then the value of the corresponding estimator ∆̂𝑀𝑀      

must be 1. 

The previous two studies placed some restrictions on the 

parameters of the distributions. The first assumed that the 

two variances were equal, while the second assumed that the 

two means were equal. To overcome this problem, Eidous 

and Al-Shourman [8] estimated 𝛥      under a pair of 

normal distributions without using any assumptions on their 

parameters. Their proposal was based on approximating the 

integral of 𝛥      and then the resulting approximation 

was estimated instead of estimating the exact value of 

𝛥     . 

The aim and main idea of this paper parallel the work of 

[8]. Without using any assumptions about the parameters of 

normal distribution, this paper proposed a new technique to 

deal with the integral of 𝛥      by writing it as an ex-

pected value for a function or some functions and then esti-

mating the resulting expected value instead of estimating 

𝛥      itself. 

2. Main Results 

Let   and   be two random variables from 

          
  =        

   and           
  =        

   

respectively. In this section, a new technique for estimating 

overlapping Weitzman coefficient is suggested, 

𝛥     = ∫ 𝑚𝑖𝑛{          
             

  }  
∞

−∞
.  

This proposed technique consists of two stages. In the first 

stage, the coefficient was written as an expected value of 

some function. In the second stage, a new estimator was 

proposed for the resulting expectation. Accordingly, the es-

timator was derived as follows. 

Consider 𝑚𝑖𝑛{           
             

  }/           
   

as a function of   and 𝑚𝑖𝑛{           
             

  }/

          
   as a function of  . Then, 
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𝐸 (
𝑚𝑖 {𝑓1 𝑋 𝜇1 𝜎1

2  𝑓2 𝑋 𝜇2 𝜎2
2 }

𝑓1 𝑋 𝜇1 𝜎1
2 

 ) =

∫
𝑚𝑖 {𝑓1 𝑥  𝜇1 𝜎1

2  𝑓2 𝑥 𝜇2 𝜎2
2 }

𝑓1 𝑥 𝜇1 𝜎1
2 

 
∞

0
          

       

= ∫ 𝑚𝑖𝑛{          
             

  }  
∞

−∞
  

= 𝛥       

and 

𝐸 (
𝑚𝑖 {𝑓1 𝑌 𝜇1 𝜎1

2  𝑓2 𝑌 𝜇2 𝜎2
2 }

𝑓2 𝑌 𝜇2 𝜎2
2 

 ) =

∫
𝑚𝑖 {𝑓1 𝑦 𝜇1 𝜎1

2  𝑓2 𝑦 𝜇2 𝜎2
2 }

𝑓2 𝑦 𝜇2 𝜎2
2 

 
∞

0
          

       

= ∫ 𝑚𝑖𝑛{          
             

  }  
∞

−∞
  

= ∫ 𝑚𝑖𝑛{          
             

  }  
∞

−∞
  

= 𝛥     .  

From the last two formulas, 𝛥      can also be ex-

pressed as the average of the above two formulas as follows, 

𝛥     =
 

 
*𝐸 (

𝑚𝑖 {𝑓1 𝑋 𝜇1 𝜎1
2  𝑓2 𝑋 𝜇2 𝜎2

2 }

𝑓1 𝑋 𝜇1 𝜎1
2 

 ) +

𝐸 (
𝑚𝑖 {𝑓1 𝑌 𝜇1 𝜎1

2  𝑓2 𝑌 𝜇2 𝜎2
2 }

𝑓2 𝑌 𝜇2 𝜎2
2 

 )+.  

Based on the last three formulas for 𝛥      and based on 

the two independent random samples           1
 and 

          2
, the ML estimators of           

       
  are 

 ̂ =  ̅ ,  ̂ =  ̅ ,  ̂ 
 =   

  and  ̂ 
 =   

  respectively. 

Therefore, the ML estimators for           
   and 

          
   are       ̂   ̂ 

 ) and        ̂   ̂ 
 ) respectively. 

Now, 𝛥      can be estimated using any of the following 

two estimators that are consistent with the first two formulas 

of 𝛥     , 

𝛥̂     =
 

 1
∑ (

𝑚𝑖 {𝑓1 𝑋𝑖  𝜇̂1 𝜎̂1
2  𝑓2 𝑋𝑖 𝜇̂2 𝜎̂2

2 }

𝑓1 𝑋𝑖  𝜇̂1 𝜎̂1
2 

)
 1
𝑖=   

or, 

𝛥̂     =
 

 2
∑ (

𝑚𝑖 {𝑓1 𝑌𝑖  𝜇̂1 𝜎̂1
2  𝑓2 𝑌𝑖 𝜇̂2 𝜎̂2

2 }

𝑓2 𝑌𝑖 𝜇̂2 𝜎̂2
2 

)
 2
𝑖= .  

After conducting a preliminary simulation study, this study 

shows that the average of the last two estimators for 𝛥      

(corresponding to the last formula of 𝛥     ) is more stable 

than each of them individually. Therefore, the finite properties 

of the following proposed estimator is investigated in our 

simulation study in the next section, 

𝛥̂𝑃𝑟𝑜𝑝     =
 

 
*

 

 1
∑ (

𝑚𝑖 {𝑓1 𝑋𝑖  𝜇̂1 𝜎̂1
2  𝑓2 𝑋𝑖 𝜇̂2 𝜎̂2

2 }

𝑓1 𝑋𝑖  𝜇̂1 𝜎̂1
2 

)
 1
𝑖= +

 

 2
∑ (

𝑚𝑖 {𝑓1 𝑌𝑖  𝜇̂1 𝜎̂1
2  𝑓2 𝑌𝑖 𝜇̂2 𝜎̂2

2 }

𝑓2 𝑌𝑖 𝜇̂2 𝜎̂2
2 

)
 2
𝑖= +.  

3. Simulation Study 

In this section, a simulation study was conducted to inves-

tigate the performance of the proposed estimator of 𝛥      

compared to some estimators found in the literature under 

pair of normal distributions. One of the general estimators 

that was taken into consideration in this study is the 

non-parametric kernel estimator developed by [9], which we 

will denote it by  ̂𝑘      (see also [12] for the selection of 

bandwidth). 

We considered the following three cases at which four pairs 

of distributions were chosen to simulate the data for each case. 

The basis of the selection process for these distributions is to 

ensure small, medium (less than 0.5), medium (greater than 

0.5) and large values for the true values of 𝛥     . The 

3  4 = 12 pairs are given in Table 1. 

Four pairs of normal distributions with equal variances are 

selected (See Table 1). In this case, the estimators  ̂𝑘     , 

∆̂𝐼𝑁      and ∆̂𝑃𝑟𝑜𝑝      are considered and their perfor-

mances were compared. 

Four pairs of normal distributions with equal means are 

selected (See Table 1). The estimators  ̂𝑘     , ∆̂𝑀𝑀      

and ∆̂𝑃𝑟𝑜𝑝      are considered in this case. 

Four pairs of normal distributions with different variances 

and different means are selected (See Table 1). In this case, 

only the two estimators  ̂𝑘      and ∆̂𝑃𝑟𝑜𝑝      are in-

vestigated. 

It should be noted here that, on the first hand, the estimator 

∆̂𝐼𝑁      was developed assuming that the variances are 

equal, while ∆̂𝑀𝑀      was derived assuming that the 

means are equal. On the other hand, the estimator  ̂𝑘      

was developed without using any assumptions on the param-

eters of the distributions or even on the shape of the distribu-

tions themselves. Finally, the proposed estimator ∆̂𝑃𝑟𝑜𝑝      

was derived assuming that the two distributions are normal 

but without using any assumptions on their parameters. 

Therefore,  ̂𝑘      and ∆̂𝑃𝑟𝑜𝑝      can be used for all 

three cases mentioned above, while the estimator ∆̂𝐼𝑁      

can be used in the first case only, and the estimator ∆̂𝐼𝑁      

can only be used in the second case. 

Let            1
 and            2

 are two independ-

ent simulated samples from       and       respectively, 

then to study the behavior of the various estimators for dif-

ferent sample sizes, 

( 𝑛  𝑛  =  10 10   50 50   100 200  are chosen. For 

each sample size,  = 1000 replications are used. The Rel-

ative Bias (RB), Relative Mean Square Error (RMSE) and 

Efficiency (EFF) were computed for each estimator under 

study. These measures were computed according to the fol-
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lowing rules. 

If  ̂ is an estimator of   then, 

 𝐵 =
𝐸̂ 𝜂̂ −𝜂

𝜂
   

 𝑀 𝐸 =
√𝑀𝑆𝐸̂ 𝜂̂ 

𝜂
   

Where 

𝐸̂  ̂ =
∑ 𝜂̂ 𝑗 
𝑅
𝑗=1

𝑅
  

and 

𝑀 𝐸̂  ̂ = ∑ ( ̂ 𝑗 − 𝐸̂  ̂ )
 

𝑅
𝑗= / . 

The efficiency of each considered estimator is computed 

with respect to the nonparametric estimator,  ̂𝑘     . The 

efficiency of  ̂ with respect to  ̂𝑘      is, 

𝐸𝐹𝐹 =
𝑀𝑆𝐸̂ Δ̂𝑘 𝑋 𝑌  

𝑀𝑆𝐸̂  𝜂̂ 
.  

The simulation results are reported in Tables 2 to 4. 

Table 1. The 12 simulated pair normal distributions       and       together with the corresponding exact values of the overlapping coef-

ficient 𝛥     . 

 Normal distributions 𝒇𝟏 𝒙   𝒇𝟐 𝒚   𝜟 𝑿 𝒀   

Case 1: Equal variances 

A   0 1     −0.5 1   0.8025 

B   0 1     1 1   0.671 

C   0 1     1.5 1   0.4532 

D   0 1     3 1   0.1336 

Case 2: Equal means 

A   0 1     0 1.5   0.8064 

B   0 1     0 2.5   0.585 

C   0 1     0 5   0.3528 

D   0 1     0 10   0.2017 

Case 3: Different means 

and different variances 

A   0 1     −0.2 1.1   0.9151 

B   0 1     1 2   0.6099 

C   0 1     2.5 4   0.3577 

D   0 1     5 2   0.0891 

 

4. Simulation Results 

The RB, RMSE and EFF for each estimator mentioned in 

the previous sections are displayed in Table 2, Table 3 and 

Table 4. By examining these results, we conclude the fol-

lowing: 

As a general conclusion, it is clear that the RMSE values of 

the different estimators decrease with increasing sample sizes. 

This a good sign for concluding that the different estimators 

are consistent estimators for 𝛥     . 

By examining the results of Table 2, which concern the 

case of two normal distributions with equal variances, it is 

clear that the two estimators ∆̂𝐼𝑁      and ∆̂𝑝𝑟𝑜𝑝      

perform similar to each other with some preferring for 

∆̂𝐼𝑁      over ∆̂𝑝𝑟𝑜𝑝     . These two estimators perform 

better than the general kernel estimator ∆̂𝑘     . 

From Table 3, the performance of the estimator 

∆̂𝑀𝑀      is better than the other two counterpart estima-

tors ∆̂𝑘      and ∆̂𝑝𝑟𝑜𝑝      when the exact values of 

overlapping coefficient are large. The opposite is true for 

small values of 𝛥     . This may be due to the estimation 

of the common mean by using the pooled mean as suggested 

by [16]. 

In all cases, the performance of the proposed estimator 

∆̂𝑝𝑟𝑜𝑝      is better than that of ∆̂𝑘     . It is worthwhile 

to mention here that the estimator of [16] can only be used 

when the mean of the two normal distributions is assumed to 

be equal. 

Based on the results of Table 4, the proposed estimator 

∆̂𝑝𝑟𝑜𝑝      achieves good performance in general. Its per-

formance is better than that of the kernel estimator ∆̂𝑘      
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in all cases studies. This is very evident when examining the 

values RMSE and EFF that associated with the proposed and 

kernel estimators. It is important to note that this result is 

expected because the kernel estimator can be used more 

generally without looking to the distributions at which the 

data come from. It should also be noted here that the pro-

posed estimator was derived without using the assumption of 

equal means or equal variances for the two normal distribu-

tions. 

Finally, it should be noted that the Inman and Bradley [15] 

estimator ∆̂𝐼𝑁      (or Mulekar and Mishra [16] estimator 

∆̂𝑀𝑀     ) can be used only if the two variances (or the two 

means) of the normal distributions are equal. Because of this 

drawback of each of them, we recommend using the proposed 

estimator ∆̂𝑝𝑟𝑜𝑝      as a general estimator for 𝛥      

under a pair of normal distributions. 

Table 2. The RB, RMSE and EFF of the estimators 𝛥̂𝑘     , ∆̂𝐼𝑁      and ∆̂𝑃𝑟𝑜𝑝     when the data are simulated from pair normal 

distributions with equal variances (  
 =   

 = 1) (Case, 1 of Table 1). 

𝜟 𝑿 𝒀    𝒏𝟏 𝒏𝟐    ∆̂𝒌 𝑿 𝒀   ∆̂𝑰𝑵 𝑿 𝒀   𝜟̂𝑷𝒓𝒐𝒑 𝑿 𝒀   

0.8025 

(10,10) 

RB 0.0364 -0.033 -0.0995 

RMSE 0.246 0.1951 0.2037 

EFF 1 1.5899 1.459 

(50,50) 

RB -0.004 -0.0038 -0.0164 

RMSE 0.0914 0.0973 0.095 

EFF 1 0.8821 0.9255 

(100,200) 

RB 0.0018 0.002 -0.0022 

RMSE 0.0615 0.0606 0.0601 

EFF 1 1.031 1.049 

0.617 

(10,10) 

RB -0.0024 -0.0008 -0.0484 

RMSE 0.2803 0.2784 0.268 

EFF 1 1.0141 1.094 

(50,50) 

RB 0.002 0.0029 -0.0051 

RMSE 0.1342 0.1297 0.1286 

EFF 1 1.07 1.0894 

(100,200) 

RB -0.0012 -0.0004 -0.0031 

RMSE 0.0812 0.0726 0.0726 

EFF 1 1.2507 1.2501 

0.4532 

(10,10) 

RB 0.0009 -0.0036 -0.041 

RMSE 0.3567 0.3461 0.3368 

EFF 1 1.0619 1.1214 

(50,50) 

RB 0.0029 0.0011 -0.0049 

RMSE 0.1698 0.1565 0.1556 

EFF 1 1.1759 1.1899 

(100,200) 

RB -0.0004 -0.001 -0.0032 

RMSE 0.1061 0.089 0.0902 

EFF 1 1.4206 1.3833 

0.1336 (10,10) 
RB 0.0607 0.0166 -0.0229 

RMSE 0.7837 0.6801 0.6807 
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𝜟 𝑿 𝒀    𝒏𝟏 𝒏𝟐    ∆̂𝒌 𝑿 𝒀   ∆̂𝑰𝑵 𝑿 𝒀   𝜟̂𝑷𝒓𝒐𝒑 𝑿 𝒀   

EFF 1 1.328 1.3257 

(50,50) 

RB 0.0295 0.0213 0.0158 

RMSE 0.3642 0.3073 0.3062 

EFF 1 1.4052 1.4148 

(100,200) 

RB 0.0009 -0.0043 -0.0057 

RMSE 0.2093 0.1738 0.1768 

EFF 1 1.4494 1.4006 

Table 3. The RB, RMSE and EFF of the estimators 𝛥̂𝑘     , ∆̂𝑀𝑀      and ∆̂𝑃𝑟𝑜𝑝      when the data are simulated from pair normal 

distributions with equal means (  =   = 0  (Case, 2 of Table 1). 

𝜟 𝑿 𝒀    𝒏𝟏 𝒏𝟐    ∆̂𝒌 𝑿 𝒀   ∆̂𝑴𝑴 𝑿 𝒀   𝜟̂𝑷𝒓𝒐𝒑 𝑿 𝒀   

0.8064  

(10,10) 

RB -0.1686 0.0014 -0.0093 

RMSE -0.2447 0.1481 0.1606 

EFF 1 2.7332 2.3214 

(50,50) 

RB -0.042 0.0014 -0.0007 

RMSE 0.0954 0.0825 0.0844 

EFF 1 1.3367 1.2793 

(100,200) 

RB -0.01 0.0001 0.0008 

RMSE 0.0537 0.0463 0.047 

EFF 1 1.3505 1.3077 

0.5850  

(10,10) 

RB -0.1213 0.0688 0.0152 

RMSE 0.297 0.2353 0.2523 

EFF 1 1.5925 1.386 

(50,50) 

RB -0.0274 0.0083 -0.004 

RMSE 0.1266 0.0985 0.1074 

EFF 1 1.653 1.3906 

(100,200) 

RB -0.0029 0.0053 0.0029 

RMSE 0.0723 0.0593 0.0609 

EFF 1 1.4848 1.4057 

0.3528  

(10,10) 

RB -0.1349 0.2267 0.0105 

RMSE 0.3798 0.4077 0.3296 

EFF 1 0.8684 1.3284 

(50,50) 

RB -0.03 0.0536 0.0032 

RMSE 0.1613 0.1278 0.1323 

EFF 1 1.5931 1.4858 

(100,200) 
RB -0.013 0.0187 0.0014 

RMSE 0.0949 0.0754 0.0781 
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𝜟 𝑿 𝒀    𝒏𝟏 𝒏𝟐    ∆̂𝒌 𝑿 𝒀   ∆̂𝑴𝑴 𝑿 𝒀   𝜟̂𝑷𝒓𝒐𝒑 𝑿 𝒀   

EFF 1 1.5846 1.4756 

0.2017  

(10,10) 

RB -0.187 0.5953 -0.0112 

RMSE 0.4733 0.8444 0.4167 

EFF 1 0.3141 1.2901 

(50,50) 

RB -0.0524 0.1694 0.0012 

RMSE 0.2116 0.278 0.1732 

EFF 1 0.5795 1.4938 

(100,200) 

RB -0.0325 0.0833 0.0028 

RMSE 0.1226 0.1533 0.0983 

EFF 1 0.6402 1.5566 

Table 4. The RB, RMSE and EFF of the estimators 𝛥̂𝑘      and ∆̂𝑃𝑟𝑜𝑝      when the data are simulated from pair normal distributions 

with different parameters (Case, 3 of Table 1). 

𝜟 𝑿 𝒀   (𝒏𝟏 𝒏𝟐    ∆̂𝒌 𝑿 𝒀  𝜟̂𝑷𝒓𝒐𝒑 𝑿 𝒀   

0.9151 

(10,10) 

RB −0.2384  −0.1537  

RMSE 0.2801  0.2029  

EFF 1.0000 1.9056  

(50,50) 

RB −0.0793  −0.0404  

RMSE 0.1020  0.0777  

EFF 1.0000 1.722  

(100,200) 

RB −0.0359  −0.0132  

RMSE 0.0551  0.048  

EFF 1.0000 1.3183  

0.6099  

(10,10) 

RB −0.1117  −0.0682  

RMSE 0.2813 0.2452  

EFF 1.0000 1.316  

(50,50) 

RB −0.0281  −0.0192  

RMSE 0.1209  0.1037  

EFF 1.0000 1.3596  

(100,200) 

RB −0.0041  −0.0063  

RMSE 0.069  0.0598  

EFF 1.0000 1.3324  

0.3577  

(10,10) 

RB −0.1141  −0.0594  

RMSE 0.3804  0.3234  

EFF 1.0000 1.3833  

(50,50) 
RB −0.0353  −0.0170 

RMSE 0.1756  0.1438  

http://www.sciencepg.com/journal/ijtam


International Journal of Theoretical and Applied Mathematics http://www.sciencepg.com/journal/ijtam 

 

21 

𝜟 𝑿 𝒀   (𝒏𝟏 𝒏𝟐    ∆̂𝒌 𝑿 𝒀  𝜟̂𝑷𝒓𝒐𝒑 𝑿 𝒀   

EFF 1.0000 1.4914  

(100,200) 

RB −0.0064  −0.0023  

RMSE 0.0944  0.0791  

EFF 1.0000 1.4263  

0.0891  

(10,10) 

RB −0.0098  −0.0464  

RMSE 0.8987  0.8097  

EFF 1.0000 1.2317  

(50,50) 

RB 0.0671  −0.0014  

RMSE 0.4347  0.3660 

EFF 1.0000 1.4105  

(100,200) 

RB 0.0578  0.0118  

RMSE 0.2547  0.2103  

EFF 1.0000 1.4662  

 

5. Conclusion 

This study presented a new technique for estimating 

∆      under a pair of normal distributions by writing it as 

an expected value for some functions. One of the most im-

portant benefits of this technique is to estimate ∆      

without placing any conditions on the parameters of normal 

distributions. Based on the results of numerical simulations, 

these results demonstrated the effectiveness of the new tech-

nique and that the performance of the estimator resulting from 

the use of this technique is better than the performance of the 

nonparametric kernel estimator of ∆      that developed by 

Eidous and AL-Talafha [9]. Accordingly, this technique can 

be used to estimate other OVL coefficients mentioned in the 

literature, such as the Matusita coefficient (see, Eidous and 

Ananbeh [11]) and Pianka and Kullback-Leibler coefficients 

(see, Eidous and Abu Al-Hayja`a [5]). 

Abbreviations 

OVL Overlapping 

     Probability Density Function 

ML Maximum Likelihood 

RB Relative Bias 

MSE Mean Square Error 

RMSE Relative Mean Square Error 

EFF Efficiency 
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