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Abstract 

This research evaluates the performance of various count data models, including Poisson Regression (PR), Zero-Inflated Poisson 

Regression (ZIP), Zero-Truncated Poisson Regression (ZTP), Truncated Negative Binomial Poisson Regression (TNBP), and 

Negative Binomial Poisson Regression (NBP), using immunization coverage data from the National Primary Health Care 

Development Agency (NPHCDA). The study focuses on children under 12 months, assessing model fit using Likelihood Ratio 

(LR), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) criteria. Analysis conducted with STATA 

indicates that the Truncated Negative Binomial Poisson Regression (TNBP) ouwtperformed other models in fit and efficiency. 

Both the ZTeeP and TNBP models demonstrated the best fit, with lower AIC (1959.107) and BIC (2037.649) values and higher 

Pseudo R-squared values (0.0677 for ZTP and 0.0590 for TNBP), compared to standard models. Age was identified as a 

significant predictor, negatively associated with immunization status, implying that older infants in the under-12-month category 

are less likely to receive all vaccinations. The ZTP model showed significant positive effects for antigens such as HepB0, OPV0, 

BCG, and Measles, with age having a significant negative association. The findings highlight the importance of selecting 

appropriate statistical models for accurate public health data analysis, enhancing decision-making in immunization programs. 
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1. Introduction 

Many experimental situations arise in which we observe the 

counts of events within a set unit of time, area, volume, length 

etc. Count data is a statistical data type, a type of data in which 

the observations can take only the non-negative integer values 

{0, 1, 2, 3,...}, and where these integers arise from counting, 

[5]. They are the "realization of a non-negative integer-valued 

random variable” [4]. As such, the response values take the 

form of discrete integers [26]. 

Count data are data that are obtained by counting the 

number of occurrences of a particular event rather than by 

taking measurement on some scale [6]. Count data arise in 

almost every fields of endeavour, including biology, 

healthcare, psychology, marketing and more. For example, 

we realize count data from the number of affected persons 
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with HIV/AIDs; number of death from fatal accident, number 

of admitted student in our higher institution, number of deaths 

due to child bearer, number of trade in a time interval, number 

of given disaster, number of crime on campus per semester 

and so on [20]. 

Regression analysis is a statistical tool that describes the 

functional form of the relationship between the dependent 

variable (response variable) and one or more independent 

variables, and produces a statistical model showing the 

relationship between variables. There are three goals for 

using regression analysis, first goal is used for estimation, 

the second goal is used for testing, and the third goal is used 

for prediction of the dependent variable. 

Count data, including zero counts arise in a wide variety 

of application, hence models for counts have become widely 

popular in many fields. In statistical field, one may define the 

count data as that type of observation which takes only the 

non-negative integers value. Sometimes researchers may 

count more zeros than the expected. Excess zero can be 

defined as Zero-Inflation. Excess zero sometimes may be the 

reason of occurs Over-dispersion (variance a lot larger than 

mean). Over-dispersion concept is commonly used in the 

analysis of discrete data. Therefore, linear regression is not 

applicable procedure to estimate the parameters of predictor 

due to the asymmetric distribution of the response variable. 

Under these limitations, Poisson regression and Negative 

binomial regression are used to model the Count data [2]. 

1.1. Statement of the Problem 

In many fields, count data where observations take 

non-negative integer values, including zero, are commonly 

encountered. When modeling such data, a significant 

challenge arises when the data contains more zero counts than 

expected, known as zero inflation, leading to over-dispersion. 

This deviation from the assumptions of standard count data 

models can negatively impact the accuracy of statistical 

inferences. Additionally, count data often violates the 

normality assumption because it is bounded by zero and tends 

to exhibit skewness. 

Previous studies have shown varying performance of count 

data models in handling these issues. For example, while [14] 

found the Zero-Inflated Poisson (ZIP) model to outperform 

the Negative Binomial Poisson model, [10] reported the 

opposite. Other studies, like [23], found no clear superiority 

between ZIP and Negative Binomial ZIP models. Such 

conflicting results highlight the need for further evaluation of 

these models under different conditions and datasets. 

Given these challenges, this research aims to assess the 

performance of various count data models—specifically 

Poisson Regression (PR), Zero-Inflated Poisson Regression 

(ZIP), and Zero-Truncated Poisson Regression (ZTP)—using 

immunization coverage data. The study will focus on 

selecting the best model to accurately analyze data from the 

National Primary Health Care Development Agency 

(NPHCDA) concerning antigens administered to children 

under 12 months. By identifying an optimal model, this 

research seeks to improve the understanding and application 

of count data modeling in public health contexts, particularly 

in evaluating immunization coverage. 

1.2. Aim and Objectives of Research 

The aim of this research is to assess the performance of 

Poisson regression, Zero-Inflated Poisson Regression and 

Zero-Truncated Poisson regression analysis on Count data 

using Simulated and real data (Immunization coverage on 

antigens administered to children less than 12 months) from 

the National Primary Health Care Development Agency 

(NPHCDA). 

To achieve this aim the following objectives are 

formulated: 

1) To estimate a suitable Poisson Regression (PR) model, 

Zero-Inflated Poisson Regression (ZIP), Zero-Truncated 

Poisson Regression (ZTP), Truncated Negative 

Binomial Poisson Regression (TNBP) and Negative 

Binomial Poisson Regression (NBPS) models to the 

analyse data. 

2) To determine which of the models is more efficiency in 

analyzing count data (Test for efficiency) 

3) To determine the best fit model by comparison on LR, 

AIC and BIC 

2. Review of the Existing Research 

Abdulkabir, M., et al. conducted an empirical study on 

generalized linear models for count data [1]. They utilized the 

Poisson regression model and found that its parameters were 

significant. Testing for over-dispersion using the 

Quasi-Poisson regression indicated over-dispersion in the 

Poisson model, leading them to apply the negative binomial 

regression model. The comparison between the two models, 

based on the Akaike Information Criterion (AIC), showed the 

Poisson regression model as the better fit. 

Ijomah et al. analyzed count data using logistic and Poisson 

regression models, employing Excel, SPSS 21, and Minitab 

16 for their analysis [12]. The study concluded that the 

logistic regression model provided a superior fit for modeling 

binary response variables, based on AIC and Bayesian 

Information Criterion (BIC) values. 

Lambert addressed the issue of excess zeros in count data, 

recommending the zero-inflated Poisson (ZIP) model and 

applying it to quality control data on manufacturing defects 

[14]. The study identified two sources of zero counts: a 

'perfect state' where no defects could occur, and an 'imperfect 

state' where defects could still be absent, leading to an 

increased number of zeros. 

Poston and McKibben compared the performance of 

Poisson, negative binomial, zero-inflated Poisson, and 

zero-inflated negative binomial models in predicting the 
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average number of children ever born to women in the U.S., 

finding the zero-inflated models superior [21]. 

Famoye, et al. examined count data on road accidents 

among drivers aged 65 and older, determining that the 

generalized Poisson regression model was the most suitable 

for predicting accident counts [8]. 

Karazsia and Van-Dulmen studied medically attended 

injuries in children, finding that the zero-inflated Poisson 

model provided the best fit for the observed data [13].  

Zuur, et al. discussed various models for count data 

analysis, including zero-inflated and zero-altered Poisson and 

negative binomial regression models [27]. 

Atkins, et. al. investigated count outcomes with a skewed 

distribution and excess zeros, employing a zero-altered 

Poisson model to analyze alcohol consumption data [3]. 

Peng compared count data models using injury data from 

the National Health Interview Survey, concluding that the 

zero-inflated negative binomial regression model 

outperformed logistic regression in predicting injury 

frequency among at-risk populations [19]. 

Mamun assessed zero-inflated regression models for 

under-5 mortality data in health research, finding the 

zero-inflated Poisson and negative binomial models more 

effective than standard Poisson and negative binomial models 

[17].  

Yang conducted a comparative study of zero-inflated and 

zero-altered regression models in health surveys, evaluating 

model performance under different conditions of zero 

inflation and over-dispersion [24].  

Yang et al. compared various regression models under 

different levels of zero inflation and dispersion in health data, 

demonstrating the superior performance of the zero-inflated 

and zero-altered negative binomial models [15]. 

3. Methodology 

For the purpose of this research, Raw data will be obtain 

from National Primary Health Care Development Agency 

(NPHCDA), Kebbi State on Immunization coverage for 

antigens administered to children less than 12 months. The 

antigens are; HepB0, OPV0, BCG, OPV1, PCV1, Penta1, 

OPV2, PCV2, Penta2, OPV3, PCV3, Penta3, IPV, Measles 

and Yellow Fever. With children immunization status; Fully 

Immunized, Partially Immunized and Not Immunized and 

analysis will be perform using Statistical Software Packages 

for Windows STATA. 

3.1. Poisson Distribution 

Poisson distribution is one of the important discrete 

distributions for Count data in many statistical applications, 

sometimes called the distribution of rare events. Poisson 

distribution is often used to account for rare events such as 

child suicide or ship arrival in the marina, and the use of the 

Poisson distribution has extended to other fields as 

communication technologies and statistical quality control. 

the probability mass function (P.M.F) is given by [5]. 

𝑃(𝑦;  𝜇) =  
𝑒−𝜇𝜇𝑦 

𝑦!
            (1) 

𝑓𝑜𝑟 𝑦 = 0, 1, 2, 3, … … ….  

Poisson distribution is specified with a single parameter 𝜇. 

The parameter (𝜇) can be a non-integer, the mean and the 

variance of the Poisson probability mass function are 

𝐸(𝑦) = 𝜇 𝑎𝑛𝑑 𝑉𝑎𝑟 (𝑦) = 𝜇 which is called Equi − dispersion  

3.2. Poisson Regression Model (PR) 

Poisson regression model is a non-linear (log-linear) 

regression models and it is convenient for the analysis of 

count or rate data. Poisson regression is similar to the multiple 

regression excepting that the response (y) variable is an 

observed count that follows “the Poisson distribution”. 

Therefore, the possible values of (y) are “non-negative 

integers”. 

Suppose we have a random sample 𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑛 

drawn from Poisson distribution, then the P. M. F of 𝑥𝑖, as 

follows [4]. 

𝑃(𝑥𝑖;  𝜇𝑖) =  
𝑒−𝜇𝑖𝜇𝑖

𝑥𝑖  

𝑥𝑖!
            (2) 

𝑥𝑖 = 0, 1, 2, 3, … … …. 

By assumptions of GLM [27], we have 

𝑌𝑖 ~ 𝑃(𝜇𝑖) 

𝐸(𝑌𝑖) = 𝜇𝑖 𝑎𝑛𝑑 𝑉𝑎𝑟 (𝑌𝑖) = 𝜇𝑖 

𝐿𝑜𝑔(𝜇𝑖) = 𝑋′𝛽 𝑜𝑟 𝜇𝑖 = 𝑒𝑋′𝛽 

Where 

𝑋′𝛽 =  𝛼 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2  +  𝛽3𝑋𝑖3+, … … + 𝛽𝑞𝑋𝑖𝑞 (3) 

𝑊ℎ𝑒𝑟𝑒 𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3+, … … +

 𝑋𝑖𝑞 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  

Zero-Inflated Poisson Regression Model (ZIP) 

The zero-inflated Poisson regression is used for modelling 

count data that shows over-dispersion and zero counts (excess 

zeros)'. This model considers there are two types of data 

sources, the first source is only zeros count (false zero) and the 

second source is count variables data (with true zeros) that 

distributed according to Poisson distribution. 

According to [14], the response variable 𝑌𝑖 is independent, 

and 

𝑌𝑖 ~ 0 with Probability (𝜃𝑖) 

𝑌𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖) with Probability (1 − 𝜃𝑖) 
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Where 𝜃𝑖 is the probability that observation (i) is in the 

always zeros subgroup. Therefore [27], 

Pr(𝑌𝑖 = 0) = 𝜃𝑖 + (1 − 𝜃𝑖)X Pr(𝐶𝑜𝑢𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑡 (𝑖) give a zero) (4) 

With probability that 𝑌𝑖 is a non-zero count, we have 

Pr(𝑌𝑖 = 𝑦𝑖) = (1 − 𝜃𝑖)X Pr(𝐶𝑜𝑢𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠)   (5) 

Furthermore, the probability density function for a ZIP 

model is given by [19, 7, 14]; 

Pr(𝑌𝑖 = 𝑦𝑖) = {

𝜃𝑖 + (1 − 𝜃𝑖)𝑒−𝜇𝑖  𝑖𝑓 𝑦𝑖 = 0

(1 − 𝜃𝑖)
𝑒−𝜇𝑖𝜇𝑖

𝑥𝑖  

𝑥𝑖!
 𝑖𝑓 𝑦𝑖 > 0

      (6) 

3.3. Zero-Truncated Poisson Regression Model 

(ZTP) 

Truncated regression models are most commonly used to 

model zero-truncated count data. Truncations arise when 

certain values, such as zero are absent from observed data. 

Truncated distribution arises in cases where the occurrence of 

an event is limited to values that lie above or below a given 

threshold, i.e. the Poisson distribution conditioned on being 

non-zero. 

Zero Truncated Poisson (ZTP) regression model is used to 

model positive count data. When zero count is a potential 

possible value, but is missing in the data set, we call it zero 

truncated data. The missing of zero count happens due to the 

sample scheme, in which the zero count is impossible to be 

observed [11]. 

Zero-truncated Poisson (ZTP) regression, introduced by 

[21], is used to model the always positive counts. (If zero is an 

admissible value for the dependent variable, then standard 

Poisson regression is more appropriate [16]). The sampling 

schemes are most likely the reason that gives rise to the Zero 

Truncated Poisson (ZTP) model. The density function for 

Zero-truncated Poisson (ZTP) is expressed ( for 𝑦𝑖 =

1, 2, . … 𝑛) after the zero value of being truncated, here 𝑦𝑖 can 

be any positive numbers that 𝑌𝑖  takes, the probability for 

𝑌𝑖 = 𝑦𝑖 is; 

Pr(𝑌𝑖 = 𝑦𝑖| 𝑦𝑖 > 0) =
Pr(𝑌𝑖=𝑦𝑖) 

Pr( 𝑌𝑖>𝑟)
= 

𝜇𝑦𝑖𝑒−𝜇 

𝑦𝑖![1−𝑒−𝜇]
=

𝜇𝑦𝑖  

𝑦𝑖![𝑒−𝜇−1]
  𝑦𝑖 = 1, 2, . … 𝑛      (7) 

where n is the number of observation after truncation. 

The standard assumption is to use the exponential mean 

parametrization, 

𝜇𝑖 = exp(𝑥𝑖
𝑇𝛽 + 𝑧𝑖

𝑇𝜇𝑖) , 𝑖 = 1,2,3 … … . 𝑛    (8) 

In this expression, 𝑥𝑖 is a vector of covariates and 𝛽 is a 

vector of parameters (fixed effect coefficient). The 

coefficient 𝛽  can be interpreted as average proportionate 

change in the conditional mean E(𝑌𝑖| 𝑥𝑖) for a unit change is 

𝑥𝑖. Z is a design matrix of random effects clusters and 𝜇 is a 

vector of random effects for that. 

3.4. Negative Binomial Poisson Regression 

(NBPR) 

Negative Binomial Poisson Regression (NBPR) is a 

statistical technique used for modeling count data, particularly 

when the data exhibit overdispersion. Overdispersion occurs 

when the variance of the count data is greater than the mean, 

which violates the assumption of the Poisson distribution that 

the mean equals the variance. The Negative Binomial 

distribution, which includes an extra parameter to account for 

the overdispersion, can address this issue. 

Negative Binomial Poisson Regression (NBPR) is an 

extension of Poisson regression that accounts for 

overdispersion by introducing an additional parameter to 

model the variance separately from the mean. 

Negative Binomial distribution function is given as 

g(𝑦|𝑥) =
Γ(𝑦+𝑘) 

Γ(𝑢) Γ(𝑦+1)
(

𝑘

𝑢+𝑘
)

𝑘

(
𝑢

𝑢+𝑘
)

𝑦
        (9) 

𝑤ℎ𝑒𝑟𝑒 𝑦𝑖 = 0, 1, 2, . … : 𝑘 𝑎𝑛𝑑 𝑛  are negative binomial 

parameter with E(𝑦) = 𝜇  and Var(𝑦) = 𝜇 + 𝜇2𝑘:  k 

mention as disperse parameter which is shown that the data 

consist over-dispersed 

3.5. Truncated Negative Binomial Poisson 

Regression (TNBP) 

Truncated Negative Binomial Poisson Regression (TNBP) 

is a specialized form of regression used for modeling count 

data that is truncated at some value. Truncation occurs when 

the data is not observed or recorded below or above a certain 

threshold. This can happen in various scenarios, such as when 

data collection processes exclude certain counts or when 

counts naturally cannot be below or above a certain number. 

3.6. Model Selection 

It is important that we have one or more a criterion to 

consider the best results and choose the appropriate model for 

data representation. 'There are several methods that provide a 

measure for selecting the appropriate model'. So, we will use 

the following methods to selecting best model. 

3.7. Akaike Information Criterion 

The Akaike information criterion (AIC) is an evaluating 

model fit for a given data among different types of non-nested 

models. It is widely used for statistical inference, and its 

http://www.sciencepg.com/journal/ijsda


International Journal of Statistical Distributions and Applications http://www.sciencepg.com/journal/ijsda 

 

93 

formula is given as 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 2𝑘              (10) 

Where 

L: The maximum likelihood function of the model. 

K: Number of model parameters. 

The model with minimum AIC value is chosen as the best 

model to fit the data. 

Bayesian Information Criterion 

The Bayesian information criterion (BIC) is another 

estimator for evaluating model fit for a given data among 

different types of non-nested models, and its formula is given 

as  

𝐵𝐼𝐶 = −2𝑙𝑜𝑔𝐿 + 𝑘𝑙𝑜𝑔𝑛         (11) 

Where 

L: The maximum likelihood function of the model. 

k: Number of model parameters. 

n: The number of observations, or the sample size. 

The model with minimum BIC value is chosen as the best 

model to fit the data. 

The Likelihood Ratio Test 

The likelihood ratio test (LR) is a statistical test used to 

compare two “nested models” and determine which model fits 

the data better, its formula is given as 

𝐿𝑅 = −2𝑙𝑜𝑔
𝐿1 

𝐿2
             (12) 

Where 

𝐿1: The likelihood of the first model. 

𝐿2: The likelihood of the second model. 

4. Analysis and Results 

Raw data was obtained from National Primary Health Care 

Development Agency (NPHCDA), Kebbi State on 

Immunization coverage for antigens administered to children 

less than 12 months. For convenience, the following variables 

were derived that is coded as: 

The antigens are; HepB0 (1 = Yes, 0= No), OPV0 (1 = Yes, 

0= No), BCG (1 = Yes, 0= No), OPV1, PCV1 (1 = Yes, 0= 

No), Penta1 (1 = Yes, 0= No), OPV2 (1 = Yes, 0= No), PCV2 

(1 = Yes, 0= No), Penta2 (1 = Yes, 0= No), OPV3 (1 = Yes, 

0= No), PCV3 (1 = Yes, 0= No), Penta3 (1 = Yes, 0= No), IPV 

(1 = Yes, 0= No), Measles (1 = Yes, 0= No), Yellow Fever (1 

= Yes, 0= No), Sex/Gender (1 = male, 0 = female) and Ages 

(count are considered) i.e all the independent variables were 

coded to 0 and 1 except for age which was considered as 

numeric variable with children immunization status; Fully 

Immunized, Partially Immunized and Not Immunized. The 

collected data was analyzed using statistical software package 

STATA and the following results were obtained: 

Table 1. Poisson regression. 

    Number of obs = 750 

    LR chi2(16) = 74.59 

    Prob > chi2 = 0.0000 

Log likelihood = -1060.4086    Pseudo R2 = 0.0340 

Status Coef. Std. Err. Z P>|z| [95% Conf. Interval]  

Age  -.0107634 .0079186 -1.36 0.174 -.0262835 .0047568 

Gender .0065227 .0477234 0.14 0.891 -.0870134 .1000589 

HepB0 .2401427 .1041869 2.30 0.021 .0359401 .4443453 

OPV0 .2851453 .1329035 2.15 0.032 .0246593 .5456313 

BCG .2762152 .103503 2.67 0.008 .073353 .4790773 

PCV1 -.0028828 .1051621 -0.03 0.978 -.2089967 .2032311 

Penta1 .0900432 .102993 0.87 0.382 -.1118194 .2919058 

OPV2 .048612 .1030479 0.47 0.637 -.1533581 .2505822 

PCV2 -.0238464 .1144921 -0.21 0.835 -.2482468 .2005541 

Penta2 .020943 .1203517 0.17 0.862 -.214942 .256828 

OPV3 .0835448 .1886173 0.44 0.658 -.2861383 .453228 

PCV3  -.0717459 .1185837 -0.61 0.545 -.3041656 .1606739 

Penta3 .0190417 .1969425 0.10 0.923 -.3669585 .405042 
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IPV -.0999678 .2296027 -0.44 0.663 -.5499809 .3500452 

Measles .4534085 .3824454 1.19 0.236 -.2961708 1.202988 

Yellow Fever  -.2064341 .2748705 -0.75 0.453 -.7451704 .3323022 

_cons .240673 .1655188 1.45 0.146 -.083738 .565084 

. estat ic 

Table 2. Truncated Poisson regression. 

    Number of obs = 750 

Truncation point: 0    LR chi2(16) = 139.84 

    Prob > chi2 = 0.0000 

Log likelihood = -962.55365    Pseudo R2 = 0.0677 

Status Coef. Std. Err. z P>|z| [95% Conf. Interval]  

Age  -.0305948 .0107627 -2.84 0.004 -.0516892 -.0095003 

Gender .0059933 .0559341 0.11 0.915 -.1036355 .115622 

HepB0 .3743356 .1295592 2.89 0.004 .1204042 .628267 

OPV0 .5417303 .1853856 2.92 0.003 .1783812 .9050793 

BCG .501562 .1432965 3.50 0.000 .2207059 .7824181 

PCV1 .0608188 .1313071 0.46 0.643 -.1965383 .318176 

Penta1 .1377057 .1246479 1.10 0.269 -.1065996 .382011 

OPV2 .0857016 .1269404 0.68 0.500 -.1630971 .3345002 

PCV2  -.0301775 .1413009 -0.21 0.831 -.3071221 .2467671 

Penta2 .0680832 .1497724 0.45 0.649 -.2254652 .3616317 

OPV3 .1550095 .2406803 0.64 0.520 -.3167151 .6267342 

PCV3  -.1305315 .1497319 -0.87 0.383 -.4240005 .1629376 

Penta3 .0772947 .2519963 0.31 0.759 -.416609 .5711983 

IPV  -.2428938 .2999722 -0.81 0.418 -.8308286 .345041 

Measles 1.380408 .5430408 2.54 0.011 .3160674 2.444748 

Yellow Fever -.59394 .373232 -1.59 0.112 -1.325461 .1375813 

_cons -.4113474 .233137 -1.76 0.078 -.8682874 .0455927 

. estat ic 

Table 3. Truncated negative binomial regression. 

    Number of obs = 750 

Truncation point: 0    LR chi2(15) = 120.72 

Dispersion= mean    Prob > chi2 = 0.0000 

Log likelihood = -962.55365    Pseudo R2 = 0.0590 

Status Coef. Std. Err. Z P>|z| [95% Conf.  Interval] 

Age  -.0305948 .0107627 -2.84 0.004 -.0516892 -.0095003 
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Gender .0059933 .0559341 0.11 0.915 -.1036355 .115622 

HepB0 .3743356 .1295592 2.89 0.004 .1204042 .6282669 

OPV0 .5417302 .1853855 2.92 0.003 .1783812 .9050792 

BCG .5015619 .1432965 3.50 0.000 .2207059 .782418 

PCV1 .0608188 .1313071 0.46 0.643 -.1965383 .3181759 

Penta1 .1377057 .1246478 1.10 0.269 -.1065996 .3820109 

OPV2 .0857016 .1269404 0.68 0.500 -.1630971 .3345002 

PCV2  -.0301775 .1413008 -0.21 0.831 -.3071221 .2467671 

Penta2 .0680832 .1497724 0.45 0.649 -.2254652 .3616316 

OPV3 .1550095 .2406802 0.64 0.520 -.3167151 .6267341 

PCV3  -.1305314 .1497319 -0.87 0.383 -.4240005 .1629376 

Penta3 .0772946 .2519963 0.31 0.759 -.416609 .5711982 

IPV  -.2428937 .2999722 -0.81 0.418 -.8308285 .345041 

Measles 1.380408 .5430407 2.54 0.011 .3160673 2.444748 

Yellow Fever  -.5939399 .373232 -1.59 0.112 -1.325461 .1375813 

_cons  -.4113472 .233137 -1.76 0.078 -.8682872 .0455928 

/lnalpha  -23.13146 . . .   

Alpha 9.00e-11 . . .   

Likelihood-ratio test of alpha=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000 

. estat ic 

Table 4. Negative binomial regression. 

    Number of obs = 750 

    LR chi2(16) = 74.59 

Dispersion= mean    Prob > chi2 = 0.0000 

Log likelihood = -1060.4086    Pseudo R2 = 0.0340 

Status Coef. Std. Err. Z P>|z| [95% Conf.  Interval] 

Age  -.0107634 .0079186 -1.36 0.174 -.0262835 .0047568 

Gender .0065227 .0477234 0.14 0.891 -.0870134 .1000589 

HepB0 .2401427 .1041869 2.30 0.021 .0359401 .4443453 

OPV0 .2851453 .1329035 2.15 0.032 .0246593 .5456313 

BCG .2762152 .103503 2.67 0.008 .073353 .4790773 

PCV1  -.0028828 .1051621 -0.03 0.978 -.2089967 .2032311 

Penta1 .0900432 .102993 0.87 0.382 -.1118194 .2919058 

OPV2 .048612 .1030479 0.47 0.637 -.1533581 .2505822 

PCV2  -.0238464 .1144921 -0.21 0.835 -.2482468 .2005541 

Penta2 .020943 .1203517 0.17 0.862 -.214942 .256828 

OPV3 .0835448 .1886173 0.44 0.658 -.2861383 .453228 

PCV3  -.0717459 .1185837 -0.61 0.545 -.3041656 .1606739 
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Penta3 .0190417 .1969425 0.10 0.923 -.3669585 .405042 

IPV  -.0999678 .2296027 -0.44 0.663 -.5499809 .3500452 

Measles .4534085 .3824454 1.19 0.236 -.2961707 1.202988 

Yellow Fever  -.2064341 .2748705 -0.75 0.453 -.7451704 .3323021 

_cons .240673 .1655188 1.45 0.146 -.0837379 .565084 

/lnalpha  -38.46945 . .    

Alpha 1.96e-17 . . .   

Likelihood-ratio test of alpha=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000 

. estat ic 

Table 5. Zero-inflated Poisson regression. 

    Number of obs = 750 

    Nonzero obs = 723 

    Zero obs = 27 

Inflation model = logit    LR chi2(16) = 74.58 

Log likelihood = -866.1446    Prob > chi2 = 0.0000 

Status Coef. Std. Err. Z P>|z| [95% Conf. Interval] 

Age  -.0247416 .0136018 -1.82 0.069 -.0514006 .0019174 

Gender .0089983 .0617592 0.15 0.884 -.1120475 .1300441 

HepB0 .4217198 .1411287 2.99 0.003 .1451126 .698327 

OPV0 .4870499 .1955768 2.49 0.013 .1037265 .8703734 

BCG .4826598 .1535231 3.14 0.002 .18176 .7835596 

PCV1 .0171423 .1439135 0.12 0.905 -.264923 .2992077 

Penta1 .1569799 .1357069 1.16 0.247 -.1090008 .4229605 

OPV2 .0922848 .1377348 0.67 0.503 -.1776704 .36224 

PCV2 -.0306114 .1533053 -0.20 0.842 -.3310842 .2698614 

Penta2 .0386251 .1624761 0.24 0.812 -.2798222 .3570723 

OPV3 .1593018 .2586079 0.62 0.538 -.3475604 .666164 

PCV3 -.12049 .1625509 -0.74 0.459 -.4390838 .1981038 

Penta3 .0430333 .2708739 0.16 0.874 -.4878697 .5739364 

IPV  -.1703819 .3256836 -0.52 0.601 -.80871 .4679463 

Measles .9598294 .6506126 1.48 0.140 -.3153478 2.235007 

Yellow Fever -.3935698 .4134645 -0.95 0.341 -1.203945 .4168056 

_cons -.7665347 .259896 -2.95 0.003 -1.275921 -.257148 

Inflate 

Status -55.17046 1713445 -0.00 1.000 -3358345 3358234 

_cons 30.59125 1713403 0.00 1.000 -3358178 3358239 
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Table 6. Model Comparison. 

Model Obs df Log likelihood Likelihood Ratio Test  AIC BIC 

Poisson regression 750 17 -1060.409 74.59 2154.817 2233.358 

Truncated Poisson regression 750 17 -962.5537 139.84 1959.107 2037.649 

Truncated negative binomial regression 750 17 -962.5537 120.72 1959.107 2037.649 

Negative binomial regression 750 17 -1060.409 74.59 2154.817 2233.358 

Zero inflated Poisson regression 750 19 -866.1446 74.58 1770.289 1858.071 

 

5. Discussion and Interpretation of 

Results 

Results obtained from the Poisson Regression (PR) Model 

with Log likelihood = -1060.4086 LR chi2(16) = 74.59, Prob > 

chi2 = 0.0000, Pseudo R2 = 0.0340 have coefficients and 

Significance HepB0: Coefficient = 0.2401, p-value = 0.021 

(significant), OPV0: Coefficient = 0.2851, p-value = 0.032 

(significant), BCG: Coefficient = 0.2762, p-value = 0.008 

(significant). These significant variables suggest that HepB0, 

OPV0, and BCG vaccinations positively impact the status 

variable (Immunization coverage) while other variables (Age, 

Gender, PCV1, Penta1, OPV2, PCV2, Penta2, OPV3, PCV3, 

Penta3, IPV, Measles, Yellow Fever) are not statistically 

significant (p > 0.05). The model Fit for Poisson Regression: 

Log likelihood: -1060.4086, AIC: 2154.817 and BIC: 

2233.358. 

Zero-Truncated Poisson Regression (ZTP) Model with log 

likelihood = -962.55365, LR chi2(16) = 139.84, Prob > chi2 = 

0.0000, Pseudo R2 = 0.0677, with Coefficients and 

Significance: Age: Coefficient = -0.0306, p-value = 0.004 

(significant), HepB0: Coefficient = 0.3743, p-value = 0.004 

(significant), OPV0: Coefficient = 0.5417, p-value = 0.003 

(significant), BCG: Coefficient = 0.5016, p-value = 0.000 

(significant), Measles: Coefficient = 1.3804, p-value = 0.011 

(significant). Here, Age is significant and negatively 

associated with the status, indicating that as age increases, the 

count of immunization status decreases. Other significant 

variables positively affect the status (Immunization coverage) 

while other variables are not statistically significant (p > 0.05). 

The model fit: Log likelihood: -962.55365, AIC: 1959.107 

and BIC: 2037.649. 

Truncated Negative Binomial Poisson Regression (TNBP) 

Model with log likelihood = -962.55365, LR chi2(15) = 

120.72, Prob > chi2 = 0.0000, Pseudo R2 = 0.0590, with 

Coefficients and Significance: Age: Coefficient = -0.0306, 

p-value = 0.004 (significant), HepB0: Coefficient = 0.3743, 

p-value = 0.004 (significant), OPV0: Coefficient = 0.5417, 

p-value = 0.003 (significant), BCG: Coefficient = 0.5016, 

p-value = 0.000 (significant), Measles: Coefficient = 1.3804, 

p-value = 0.011 (significant). The TNBP model has similar 

significant variables as the ZTP model, suggesting robustness 

in results across these models. 

While other variables are not statistically significant (p > 

0.05). The model Fit: Log likelihood: -962.55365, AIC: 

1959.107 and BIC: 2037.649. 

Negative Binomial Poisson Regression Model with Log 

likelihood = -1060.4086, LR chi2(16) = 74.59 Prob > chi2 = 

0.0000, Pseudo R2 = 0.0340, with Coefficients and 

Significance: HepB0: Coefficient = 0.2401, p-value = 0.021 

(significant), OPV0: Coefficient = 0.2851, p-value = 0.032 

(significant), BCG: Coefficient = 0.2762, p-value = 0.008 

(significant), The NBP model has the same significant 

variables as the PR model. Other variables are not statistically 

significant (p > 0.05). The Model Fit: Log likelihood: 

-1060.4086, AIC: 2154.817 and BIC: 2233.358. 

5.1. Model Comparison 

Poisson Regression: AIC: 2154.817 BIC: 2233.358 

Likelihood: -1060.4086 

Zero-Truncated Poisson Regression: AIC: 1959.107 BIC: 

2037.649 

Truncated Negative Binomial Poisson Regression: AIC: 

1959.107 BIC: 2037.649 

Negative Binomial Poisson Regression: AIC: 2154.817 

BIC: 2233.358 

5.2. Efficiency Test 

To determine the most efficient model, compare the AIC 

and BIC values. Lower values indicate a better fit. 

Best Fit Models: ZTP and TNBP have the lowest AIC and 

BIC values, indicating they fit the data better than the Poisson 

and Negative Binomial models. 

To determine which method is more efficient in analyzing 

count data. 

AIC/BIC Comparison: Lower AIC and BIC values indicate 

better model fit. The Truncated Poisson and Truncated 

Negative Binomial models have the lowest AIC (1959.107) 

and BIC (2037.649) values, suggesting better performance 

than the Poisson and Negative Binomial models. 
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Pseudo R2: Higher values indicate better model fit. The 

Truncated Poisson (0.0677) and Truncated Negative Binomial 

(0.0590) models have higher Pseudo R2 values compared to 

the Poisson (0.0340) and Negative Binomial (0.0340) models. 

It can be clearly seen from the results that the best models: 

Zero-Truncated Poisson Regression (ZTP) and Truncated 

Negative Binomial Poisson Regression (TNBP). These results 

suggest that the ZTP and TNBP models provide a more 

efficient analysis of count data on immunization coverage, 

with significant predictors being crucial for understanding 

factors influencing immunization status in children under 12 

months. 

Significant Predictors: HepB0, OPV0, BCG, Measles 

(positive), Age (negative) in ZTP and TNBP models. HepB0, 

OPV0, and BCG consistently show significant positive effects 

on immunization status across all models, indicating these 

vaccines are important predictors of immunization coverage. 

Age is negatively associated with immunization status in the 

truncated models, implying that older children within the <12 

months category might be less likely to receive all 

immunizations. Measles vaccination is significant in the 

truncated models, suggesting an impactful role in 

immunization status. 

6. Major Findings 

1) Significant Predictors: 

Across all models, HepB0, OPV0, and BCG are 

consistently significant predictors of the immunization status, 

indicating their strong influence on the count of 

immunizations administered to children under 12 months. 

The Age variable is only significant in the truncated models 

(TPR and TNBP), suggesting that older children within the 

sample have a lower count of immunizations. 

The Measles variable is significant in the truncated models 

but not in the standard Poisson or Negative Binomial models. 

2) Model Fit and Efficiency: 

The Truncated Poisson and Truncated Negative Binomial 

models show better fit (higher log likelihood) compared to the 

standard Poisson and Negative Binomial models, suggesting 

that accounting for the truncation (i.e., excluding zero counts) 

provides a more accurate model for this dataset. 

The AIC and BIC values also indicate better model fit for 

the truncated models compared to the non-truncated models. 

3) Efficiency of Models: 

Based on the log likelihood, AIC, and BIC, the Truncated 

Poisson Regression (TPR) appears to be the most efficient 

model for analyzing the count data in this study. It provides 

the best fit among the models tested and identifies significant 

predictors more effectively. 

7. Conclusion 

Base on the analysis as well as the results obtained, the 

following are conclusion reach: 

1) Age has the highest impact on diabetes followed by 

gender 

2) HepB0, OPV0, and BCG are significant predictors of 

immunization coverage. 

3) The Zero-Truncated Poisson Regression (ZTP) and 

Truncated Negative Binomial Poisson Regression 

(TNBP) models are identified as the most efficient 

model for this dataset, providing the best fit and 

identifying significant predictors effectively and more 

efficient for analyzing count data on immunization 

coverage, based on their lower AIC and BIC values and 

higher Pseudo R2. These models provide a better fit and 

capture the significant predictors of immunization status 

more effectively, suggesting they provide a better fit to 

the data compared to the Poisson Regression (PR) and 

Negative Binomial Poisson Regression (NBP) models. 

4) Both ZTP and TNBP models indicate significant effects 

for Age, HepB0, OPV0, BCG, and Measles. 

5) Among these models, the Truncated Negative Binomial 

Poisson Regression (TNBP) can handle overdispersion 

better than the ZTP model, which might be preferable 

for count data with overdispersion. 

6) Therefore, the TNBP model is recommended for 

analyzing the count data on immunization coverage 

among children under 12 months. 

8. Recommendations 

In the light of the above it is recommended that: 

1) Future research could focus on further exploring the 

effects of age and measles immunization, as they 

showed significance in the truncated models. 

2) These results offer valuable insights for the National 

Primary Health Care Development Agency (NPHCDA) 

to improve immunization strategies and ensure higher 

coverage for children under 12 months. 

3) Case study and other agency or organization concern 

should use the results of this research as a means of 

justification concerning cases of immunization coverage 

in kebbi state. 

4) Health personnel should intensify efforts in creating 

awareness on the importance of immunization coverage 

in the state through village heads, local chiefs, imams 

and pastors, town announcers, social gatherings and 

mass media. 

5) The Ministry of Health (MOH) could develop a strategic 

plan to build poly-clinics in every district capital and 

cheap-compound health facilities, at least in every 

community. This could help to access health care. 

6) Further research could be done in this area by 

considering other cases from the clinics in and around 

the Birnin Kebbi metropolis in order to examine the 

spatial variation. This would even improve upon the 

scope. 
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Abbreviations 

PR Poisson Regression 

ZIP Zero-Inflated Poisson Regression 

ZTP Zero-Truncated Poisson Regression 

TNBP Truncated Negative Binomial Poisson 

Regression 

NBPR Negative Binomial Poisson Regression 

NPHCDA The National Primary Health Care 

Development Agency 

AIC Akaike Information Criterion 

BIC Bayesian Information Criterion 

LR Likelihood Ratio Test 
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