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Abstract 

This paper presents a data-driven approach to optimizing electric vehicle (EV) charging infrastructure using a stacked ensemble 

learning model, which predicts power demand (kWh) per session to address challenges like long wait times, geographic 

disparities, and uneven resource allocation. Leveraging data from 85 EV drivers across 105 charging stations, the study identifies 

critical factors influencing station performance, such as session duration, time of day, and regional demand. Extensive 

preprocessing steps, including cyclical encoding of time-related variables, one-hot encoding of categorical features, and 

standardization of numerical variables, ensured the dataset was properly prepared for machine learning analysis. The stacked 

ensemble model combines Random Forest, XGBoost, and Neural Network models, effectively capturing both linear and 

non-linear relationships in the data. The results highlight significant urban-rural disparities in charging infrastructure. Urban 

stations exhibit higher and more consistent demand, whereas rural areas show sporadic and limited usage, underscoring the need 

for targeted infrastructure investment in underserved regions. Temporal patterns further reveal peak charging demand during 

business hours at workplace stations, emphasizing the potential for dynamic optimization of station placement and operational 

capacity based on usage trends. The model achieved a low Mean Squared Error (MSE) on training data (0.1577 kWh), but a 

higher MSE on test data (1.7875 kWh) indicates overfitting, suggesting the need for further refinement. Despite this limitation, 

the model offers valuable insights into optimizing EV charging networks, enabling policymakers and developers to improve 

infrastructure planning and reduce geographic inequities. Future work will focus on expanding the dataset to include residential 

and public charging scenarios, incorporating additional variables like weather and traffic patterns, and refining model 

architecture to improve generalization. This study contributes to building equitable and efficient EV charging networks, 

supporting the growing adoption of sustainable transportation. 
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1. Introduction 

1.1. Background 

The rapid adoption of electric vehicles (EVs) has created an 

urgent need for a well-distributed charging infrastructure. 

This need has become increasingly apparent as EV sales 

continue to rise, driven by growing consumer interest. Ac-

cording to the U.S. Department of Energy [1], battery electric 

vehicles (BEVs) are capturing a growing share of total 

light-duty vehicle sales, with many new car shoppers con-

sidering an EV for their next purchase. 

As more consumers transition to EVs, the demand for re-

liable, fast-charging stations is outpacing supply, particularly 

in rural areas. Pew Research Center [2] highlights the signif-

icant geographic disparities, noting that only 17% of rural 

residents have access to a public charging station within a 

mile of their residence. This imbalance persists despite efforts 

from the Biden-Harris Administration, which has doubled the 

number of publicly available EV chargers since taking office 

(U.S. Department of Energy, [4]). By 2024, there were over 

190,000 public charging ports, with approximately 1,000 new 

public chargers being added each week (U.S. Department of 

Energy, [4]). 

However, reliability remains a major concern. J.D. Power 

[3] reports a 25% to 46% increase in broken charging stations, 

leading to a 20% drop in consumer satisfaction with public 

DC fast-charging networks between 2022 and 2024. This 

dissatisfaction underscores the need for further investments in 

charger maintenance and technology improvement, which the 

administration has begun addressing through new funding 

initiatives, including $325 million in January 2024 (U.S. 

Department of Transportation, 2024). 

These efforts aim to support the transition to a ze-

ro-emission federal fleet, with light-duty zero-emission vehi-

cle acquisition targets by 2027 and medium- and heavy-duty 

targets by 2035 (U.S. Department of Transportation, [5]). 

Nonetheless, challenges such as high installation costs, grid 

capacity issues, and geographic disparities remain, making it 

essential to address these barriers for an equitable and effec-

tive EV charging network. 

1.2. Problem Statement 

Despite increased efforts to expand charging networks, 

many EV owners still face challenges such as long wait times, 

geographic limitations, and unreliable charging stations. 

These issues are often the result of uneven infrastructure 

distribution and a lack of accurate power demand prediction. 

To address these problems, there is a need for more precise 

demand forecasting and optimization of station placement and 

operational features. Predictive models can play a crucial role 

in helping decision-makers allocate resources more effec-

tively, improving both the availability and reliability of 

charging stations. This paper aims to fill these gaps by de-

veloping a machine learning model that optimizes EV 

charging station features, such as power usage patterns, sta-

tion location, and maintenance scheduling. By doing so, the 

model seeks to reduce wait times, mitigate geographic dis-

parities, and ensure the charging network keeps pace with the 

growing adoption of EVs. 

1.3. Purpose and Objectives 

This study develops a stacked ensemble approach model 

that predicts power (kWh) required for each charging session, 

aiming to minimize wait times and address geographic dis-

parities in EV infrastructure. Current charging networks 

struggle to meet rising EV demand, particularly in under-

served areas, resulting in long wait times and uneven access. 

By accurately predicting power usage and station load, the 

model helps optimize station placement and operational ca-

pacity, ensuring charging stations are located in high-demand 

areas and equipped to handle peak usage. 

Trained on data from 85 EV drivers across 105 charging 

stations, the model identifies key factors affecting station 

performance, such as peak usage and regional demand. This 

data-driven approach provides a framework for policymakers 

and developers to improve infrastructure deployment and 

reliability, reducing geographic disparities and minimizing 

congestion. By guiding optimal station placement and opera-

tion, the model offers a solution for creating a more efficient 

and accessible EV charging network. 

2. Literature Review 

The rapid growth of electric vehicle (EV) adoption has 

sparked extensive research into optimizing charging infra-

structure. This literature review examines recent studies on 

EV charging demand prediction, infrastructure planning, and 

socioeconomic considerations, with a focus on linear regres-

sion models and geographic disparity analysis. 

2.1. Charging Demand Prediction 

Recent advancements in machine learning have signifi-

cantly improved EV charging demand forecasting. Wang et al. 

[6] and Yi et al. [7] employed various predictive models to 

forecast EV charging demand at station and commercial lev-

els, respectively. These approaches have shown promise in 

capturing complex temporal patterns in charging behavior. 

Koohfar et al. [9, 10] conducted a comparative analysis of 

various machine learning algorithms for EV charging demand 

prediction, providing insights into the effectiveness of dif-

ferent techniques, including linear regression. 

Linear regression models, in particular, have been widely 

used due to their simplicity and effectiveness in handling 

numerical data with linear relationships between input fea-
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tures and output. These models have demonstrated success in 

predicting power demand and optimizing charging station 

performance, especially when dealing with time-series data 

and multiple variables such as charging duration, time of day, 

and geographic location. 

2.2. Infrastructure Planning and Optimization 

Optimizing the location and capacity of EV charging sta-

tions is crucial for efficient infrastructure development. Hu et 

al. [14] proposed a model that considers both point and path 

demands for charging station location optimization. Ge et al. 

[12] developed a data-driven multi-objective optimization 

approach, integrating simulation and optimization techniques 

to balance multiple objectives in EV charging infrastructure 

planning. 

Shahraki and Pantoš [15] focused on optimal locations for 

public charging stations based on real-world vehicle travel 

patterns, emphasizing the importance of data-driven ap-

proaches. Their work highlighted the potential of using his-

torical charging data and geographic information to inform 

infrastructure planning decisions, aligning closely with the 

objectives of linear regression-based predictive models. 

2.3. Socioeconomic Considerations and 

Accessibility 

Several studies have addressed the socioeconomic aspects 

of EV charging infrastructure, which are particularly relevant 

to geographic disparity analysis. Khan et al. [11] analyzed the 

distribution of EV charging stations in New York City, re-

vealing correlations between socio-demographic features and 

charging station accessibility. Lou et al. [13] conducted a 

comprehensive national study in the United States, uncover-

ing income and racial disparities in access to public EV 

charging infrastructure. 

These studies underscore the importance of considering 

geographic and socioeconomic factors in predictive models 

for EV charging infrastructure. Linear regression models can 

be particularly useful in quantifying these disparities and 

informing policy decisions to ensure equitable access to 

charging stations across different regions and demographic 

groups. 

2.4. Challenges in Data Quality and Availability 

A recurring theme in the literature is the challenge of data 

quality and availability for EV charging infrastructure opti-

mization. Many studies highlight the limitations of publicly 

available datasets, which often lack granularity or critical 

variables necessary for accurate predictions. For instance, Cui 

et al. [8] noted the importance of capturing fast-charging 

behavior at public stations, emphasizing the need for com-

prehensive data collection strategies. 

The success of linear regression models, like the one pro-

posed in this study, heavily depends on the quality and com-

prehensiveness of the input data. Future research [17-19] 

should focus on improving data collection methods and de-

veloping techniques to handle incomplete or noisy data ef-

fectively. 

This literature review demonstrates the multifaceted nature 

of EV charging infrastructure optimization [20, 21], encom-

passing demand prediction, location optimization, and soci-

oeconomic considerations. The use of linear regression mod-

els, as proposed in this study, offers a promising approach to 

address these challenges, particularly in predicting power 

demand and analyzing geographic disparities [16]. The field 

continues to evolve rapidly, with new methodologies and 

approaches being developed to address the complex chal-

lenges of creating an efficient and equitable EV charging 

network. 

3. Methodology 

3.1. Dataset Description 

The dataset used in this study consists of charging session 

data from 85 EV drivers across 105 charging stations located 

in 25 workplace sites. Key variables include total kilo-

watt-hour (kWh) charged (the target variable), charge dura-

tion, platform used, distance traveled by the user, and station 

ID. These features allow for an in-depth analysis of charging 

patterns, station performance, and geographic variations. 

To prepare the data for machine learning, several prepro-

cessing steps were applied. Time-related variables, such as 

startTime and endTime, were encoded using cyclical encod-

ing to handle the circular nature of time, ensuring smooth 

numerical relationships between times close to each other. A 

new feature, session duration, was derived to capture charging 

session length. 

Categorical variables like day of the week and platform 

used were transformed into one-hot encoded vectors for nu-

merical interpretation, while numerical features, including 

total kWh charged and charge duration, were standardized to 

maintain consistent scaling across all features. 

Station ID was retained for station-specific and geographic 

pattern analysis. Distance traveled was included to provide 

context on the vehicle's state of charge and urgency. Columns 

irrelevant to the analysis, such as session ID and user ID, were 

dropped to reduce noise. Missing data was handled using 

appropriate imputation techniques. 

This streamlined preprocessing approach ensured the da-

taset was well-prepared for machine learning, with cyclical 

encoding, one-hot encoding, and standardization enabling 

more accurate predictions and insights into EV charging be-

havior across locations. 

3.2. Model Architecture 

This study employed a stacked ensemble learning approach 
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to predict the total kilowatt-hours (kWh) consumed in each 

electric vehicle (EV) charging session. Initially, linear re-

gression was considered due to its simplicity and effective-

ness in modeling linear relationships between input features 

and output [21]. However, to improve predictive accuracy and 

capture potential non-linear interactions in the data, the final 

model used was an ensemble of machine learning algorithms. 

This method combines multiple models, each designed to 

capture different patterns within the data, resulting in a more 

robust prediction framework. 

The dataset, consisting of charging session data from 85 EV 

drivers across 105 charging stations at 25 different workplace 

sites, contained several key input features. These included the 

day of the week, platform used for charging initiation, 

charging session duration in hours, distance traveled prior to 

charging, and a unique identifier for each charging station. 

These features were carefully selected for their hypothesized 

impact on charging behavior and power demand, supported 

by previous research in the field of EV infrastructure opti-

mization. 

To preprocess the data, several steps were taken to ensure it 

was properly formatted for machine learning. Cyclical en-

coding was applied to time-related variables, such as start-

Time and endTime, to account for the circular nature of time. 

A new feature representing the session duration was also 

created. Numerical variables, such as total kWh charged and 

charge duration, were standardized to ensure all features 

contributed equally to the model. Categorical variables, such 

as the platform type and the day of the week, were one-hot 

encoded to allow for numerical interpretation. Irrelevant 

features like session ID and user ID were removed to reduce 

noise in the data. 

The stacked ensemble approach combined multiple base 

models, each capturing different aspects of the data [22-24]: 

1) Random Forest Regressor (RF): A robust non-linear 

model capable of capturing complex interactions be-

tween input features and output variables through deci-

sion trees. 

2) XGBoost Regressor (XGB): A gradient-boosting algo-

rithm known for its effectiveness in handling structured 

and time-dependent data. 

3) Neural Network (NN): A Multi-Layer Perceptron (MLP) 

model with two hidden layers, designed to capture 

non-linear relationships that might be missed by tradi-

tional machine learning models. 

The outputs from these three base models were then used as 

input features for a meta-model. This meta-model, another 

neural network, learned from the outputs of the base models to 

make more accurate predictions. By leveraging the strengths 

of each individual model, the ensemble approach improved 

the overall performance and generalizability of the prediction 

system. 

 

3.3. Preprocessing and Feature Engineering 

Prior to model training, comprehensive preprocessing and 

feature engineering steps were implemented to optimize the 

dataset for machine learning analysis. These steps were crit-

ical in transforming raw data into a format suitable for the 

prediction task and enhancing the model’s overall perfor-

mance. 

Categorical variables, such as the platform used for 

charging initiation and the day of the week, underwent 

one-hot encoding. This process transformed non-numeric 

categorical data into binary vectors, enabling the model to 

interpret these features effectively. For example, the 'day of 

the week' variable was expanded into seven binary columns, 

one for each day, with a value of 1 indicating the presence of 

that day and 0 otherwise. 

Time-related features, specifically the start and end times 

of charging sessions, underwent cyclical encoding to account 

for their repetitive nature. Since time follows a cyclical pat-

tern (e.g., 23:00 is close to 00:00), sine and cosine transfor-

mations were applied to these features, capturing this cyclic 

behavior. This transformation allowed the model to accurately 

interpret temporal data without introducing artificial discon-

tinuities. Additionally, we calculated the charging duration as 

a new feature, representing the total time spent charging 

during each session. 

Numerical variables, such as charge duration and distance 

traveled, were standardized to have a mean of zero and a 

standard deviation of one. This was essential to ensure con-

sistency across different scales, preventing variables with 

larger magnitudes from disproportionately influencing the 

model’s learning process. Standardization was especially 

crucial for the linear regression model, which assumes equal 

contribution from all features. 

Further feature extraction was conducted on datetime var-

iables, converting them into useful components such as hour 

of day and month. These components helped the model cap-

ture temporal patterns associated with specific times or days 

that may influence charging behavior and power consump-

tion. 

In an effort to reduce noise and simplify the model, several 

columns were eliminated from the dataset, including 'ses-

sionId', 'userId', and 'stationId'. These identifiers, while po-

tentially useful in other types of analyses, did not provide 

meaningful contributions to the prediction of kWh usage in 

this context. Their removal served to reduce model complex-

ity and minimize the risk of overfitting, allowing the model to 

generalize better to new data. 

Collectively, these preprocessing and feature engineering 

steps transformed the raw dataset into a machine learn-

ing-ready format. By encoding categorical variables, stand-

ardizing numerical features, applying cyclical encoding to 

time-related variables, and removing non-contributory col-

umns, the dataset was optimized for training the predictive 

model. These steps provided a solid foundation for develop-
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ing a robust machine learning model capable of accurately 

predicting power demand at EV charging stations. 

3.4. Model Training and Evaluation 

The model training and evaluation were conducted using a 

systematic approach to ensure optimal performance and gen-

eralizability. Initially, a linear regression model was consid-

ered due to its simplicity and effectiveness in handling linear 

relationships between input features and the output. However, 

to enhance predictive accuracy and account for potential 

non-linear interactions in the data, a stacked ensemble learn-

ing approach was ultimately employed. This ensemble ap-

proach combined multiple models to capture different aspects 

of the data, resulting in a more robust prediction framework. 

Key features such as the day of the week, platform used for 

charging initiation, charging session duration in hours, dis-

tance traveled prior to charging, and a unique identifier for 

each charging station were included in the model. These 

features were carefully selected based on their hypothesized 

impact on charging behavior and power demand, supported 

by prior research. Cyclical encoding was applied to 

time-related variables such as startTime and endTime to 

capture their repetitive nature. One-hot encoding was applied 

to categorical variables like platform type and day of the week. 

Numerical variables such as charge duration and distance 

traveled were standardized to ensure equal contribution from 

all features. These preprocessing steps helped optimize the 

data for machine learning. 

The predictions from these base models were then used as 

input for a meta-model, which was another neural network. 

This meta-model learned from the outputs of the base models 

to generate more accurate final predictions. By combining the 

strengths of each base model, the stacked ensemble approach 

improved the overall performance and generalization ability 

of the prediction system. 

An 80-20 train-test split was used, with 80% of the dataset 

allocated for training and 20% for testing. This ensured that 

enough data was available for training while allowing the 

model’s performance to be evaluated on unseen data. Mean 

Squared Error (MSE) was used as the primary evaluation 

metric. MSE quantifies the average squared difference be-

tween the predicted and actual kWh values, providing a 

comprehensive measure of the model’s accuracy. The opti-

mization process focused on minimizing MSE to enhance the 

predictive accuracy of the model. 

Initially, the linear regression model struggled with under-

fitting, as it was unable to capture the complexities of EV 

charging data. To address this, additional feature engineering 

steps were undertaken, such as creating interaction terms and 

applying polynomial transformations. However, it was ulti-

mately the ensemble learning approach that effectively cap-

tured both linear and non-linear relationships, leading to im-

proved model performance. 

4. Results and Analysis 

4.1. Model Performance 

The performance of the stacked ensemble model was rig-

orously evaluated using Mean Squared Error (MSE), a 

commonly used metric for regression tasks. MSE measures 

the average squared difference between the predicted and 

actual values, with lower values indicating better model per-

formance. This metric was particularly suited for the task of 

predicting the total kilowatt-hours (kWh) consumed during 

electric vehicle (EV) charging sessions, as it provides a 

comprehensive assessment of the prediction accuracy by 

penalizing larger errors more heavily than smaller ones. 

The stacked ensemble model employed in this study inte-

grated the predictions from three base models: Random Forest 

Regressor, XGBoost Regressor, and a Neural Network (Mul-

ti-Layer Perceptron). These models, each trained to capture 

different relationships and interactions within the dataset, 

provided input to a meta-model. The meta-model, a secondary 

neural network, combined the outputs of the base models to 

generate final predictions. 

The performance of the meta-model was evaluated on both 

the training and test datasets, yielding the following results: 

1) Meta-Model Train MSE: 0.1577 kWh 

2) Meta-Model Test MSE: 1.7875 kWh 

The relatively low train MSE indicates that the model 

successfully captured the underlying patterns in the training 

data. A value of 0.1577 kWh suggests that, on average, the 

model's predictions during training deviated only slightly 

from the actual kWh values, highlighting its ability to learn 

from the data effectively. However, the higher test MSE of 

1.7875 kWh reflects a notable gap in performance when ap-

plied to unseen data. 

This disparity between training and test MSE suggests the 

presence of overfitting, a condition where the model becomes 

too specialized in learning the idiosyncrasies of the training 

data, capturing noise or minor variations that do not general-

ize well to new datasets. Overfitting is a common challenge in 

machine learning, particularly when models are overly com-

plex or when the training data is not fully representative of 

future observations. 

The higher test MSE indicates that the stacked ensemble 

model, while effective on the training set, struggles to main-

tain the same level of accuracy on unseen data. This can be 

attributed to several factors. First, the use of multiple base 

models in the ensemble may have led to over-complexity, 

where the meta-model integrated minor variances from each 

base learner into the final predictions. Second, the dataset may 

contain certain noise or specific patterns that, although sig-

nificant during training, do not persist across the broader 

dataset. 

To mitigate overfitting, future iterations of the model could 

explore regularization techniques, such as L1 or L2 regulari-

zation, to penalize overly complex models and encourage 
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simpler, more generalizable patterns. Additionally, employ-

ing cross-validation techniques during training, such as k-fold 

cross-validation, could help ensure that the model is trained 

and validated on diverse subsets of the data, leading to better 

generalization to unseen data. Furthermore, simplifying the 

architecture of the meta-model or reducing the number of base 

models in the ensemble may also improve generalizability by 

reducing model complexity. 

While the current stacked ensemble model offers promising 

predictive accuracy, improvements can be made to enhance 

its robustness on test data. Future work could involve ex-

perimenting with alternative base models and adjusting hy-

perparameters to reduce overfitting. Moreover, augmenting 

the dataset with additional features or data points may help 

capture a more complete representation of the EV charging 

behavior, thereby improving model generalization. 

In addition, the potential to explore more advanced en-

semble techniques, such as blending or stacking with different 

algorithms, could further optimize performance. Exploring 

other loss functions beyond MSE, such as Mean Absolute 

Error (MAE), could offer additional insights into the model's 

predictive capabilities by evaluating errors in absolute terms 

rather than squared differences. 

In summary, while the stacked ensemble model demonstrated 

strong learning capabilities on the training data, its performance 

on the test set suggests that further refinement is necessary to 

improve its ability to generalize to unseen data. The insights 

gained from this analysis provide a strong foundation for future 

efforts to refine predictive models for EV charging behavior, 

with potential applications in optimizing energy consumption 

and improving the efficiency of charging infrastructure. 

4.2. Key Findings 

The ensemble approach provided several valuable insights 

into EV charging patterns, offering a deeper understanding of 

factors influencing charging behavior and demand. 

First, the duration of the charging session was found to be 

strongly correlated with the total kWh consumed, confirming 

the expected linear relationship between session length and 

power usage. This relationship is intuitive, as longer charging 

sessions naturally result in higher energy transfer. However, 

the ensemble model's ability to capture this correlation across 

varying conditions and stations reinforces the reliability of 

this variable as a key predictor of power consumption. 

Second, geographic disparities were observed in the data, 

with significant differences in charging station usage between 

urban and rural areas. Urban stations exhibited more con-

sistent usage patterns and higher demand, suggesting that 

charging infrastructure is better established and utilized in 

these regions. In contrast, rural stations saw lower and more 

sporadic demand, indicating that these areas may remain 

underserved by the current charging infrastructure. This 

finding points to the need for targeted expansion of charging 

networks in rural areas to meet growing EV adoption. 

Third, clear time-based patterns emerged from the analysis. 

Charging stations located at workplaces demonstrated peak 

usage during business hours, aligning with standard work 

schedules. This suggests that demand for charging infrastruc-

ture is highly influenced by temporal factors, and highlights the 

potential for dynamic optimization of charging station availa-

bility and capacity based on usage patterns throughout the day. 

For instance, increasing charging availability during peak 

business hours and reducing it during off-peak times could 

optimize resource allocation and improve station efficiency. 

Finally, the meta-model demonstrated the value of com-

bining the strengths of different machine learning algo-

rithms—specifically, Random Forest, XGBoost, and Neural 

Networks. Each of these models excels at capturing different 

relationships within the data: Random Forests handle com-

plex feature interactions, XGBoost effectively models 

time-dependent and structured data, and Neural Networks 

excel at identifying non-linear relationships. By integrating 

these diverse strengths, the meta-model achieved superior 

predictive accuracy compared to any single model alone. This 

ensemble approach highlights the importance of leveraging 

multiple perspectives in complex predictive tasks, allowing 

for a more comprehensive understanding of EV charging 

behavior. 

These insights have important implications for future in-

frastructure planning and optimization, indicating opportuni-

ties to improve charging availability and efficiency based on 

geographic, temporal, and behavioral factors. 

4.3. Limitations 

Despite the promising results of this study, several limita-

tions must be acknowledged. First, the disparity between the 

training and testing MSE suggests potential overfitting in the 

meta-model. This issue could be addressed in future research 

by fine-tuning hyperparameters, implementing regularization 

techniques, or employing cross-validation strategies to im-

prove the model’s ability to generalize to unseen data. 

Second, the dataset used, while informative, was relatively 

limited in both size and scope, consisting primarily of work-

place charging data. This homogeneity may limit the model's 

ability to generalize effectively to other charging contexts, 

such as residential or public charging stations. Future research 

should focus on incorporating more diverse datasets that 

capture a broader range of charging behaviors, which would 

enhance the model's robustness and applicability across dif-

ferent environments. 

Lastly, the model's predictive accuracy could potentially be 

improved by including additional features. Variables such as 

weather conditions, which can influence charging patterns, or 

traffic data, which may affect travel distances and charging 

needs, could be integrated into future iterations of the model. 

Exploring and incorporating such features could significantly 

refine the model's predictive capabilities and increase its 

overall explanatory power. 
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5. Discussion 

5.1. Contextualizing Through Prior Research 

This study contributes to the field of EV infrastructure op-

timization by employing a stacked ensemble learning model 

to predict power demand (kWh) per charging session, ad-

dressing challenges such as geographic disparities and effi-

cient resource allocation. Previous research has explored 

various approaches to charging demand prediction and infra-

structure planning. Wang et al. [6] and Yi et al. [7] demon-

strated the potential of machine learning for forecasting EV 

charging demand at station and commercial levels, using 

algorithms like linear regression and deep learning models. 

Koohfar et al. [9] further compared the performance of mul-

tiple machine learning algorithms, providing insights into 

their strengths and limitations. However, these studies often 

relied on single-model approaches that, while effective in 

capturing specific patterns, may fail to integrate the diverse 

relationships within EV charging data. 

Additionally, research by Hu et al. [14] and Ge et al. [12] 

examined infrastructure planning using optimization models 

that balance multiple objectives, including location and ca-

pacity considerations. Shahraki and Pantoš [15] highlighted 

the importance of data-driven approaches for determining 

optimal public charging station locations based on vehicle 

travel patterns. These works underscore the growing reliance 

on data analytics for EV infrastructure development but often 

lack the focus on combining multiple model strengths to ad-

dress non-linear and dynamic relationships. 

This study builds on these foundations by integrating 

Random Forest, XGBoost, and Neural Network models into a 

stacked ensemble, capturing both linear and non-linear rela-

tionships in the data. Unlike prior work, it also highlights 

geographic disparities by analyzing rural and urban utilization 

patterns and incorporating advanced preprocessing techniques 

like cyclical encoding and one-hot encoding. By situating 

itself within the broader context of machine learning-based 

infrastructure optimization, this research offers a compre-

hensive framework to enhance predictive accuracy and inform 

equitable infrastructure planning. 

5.2. Addressing Key Challenges 

The predictive efficacy of the ensemble model in this study 

underscores the advantages of integrating diverse machine 

learning algorithms to encapsulate the multifaceted nature of 

EV charging behaviors. However, the persistent challenge of 

overfitting, as evidenced by the disparity between training and 

testing MSE, necessitates further refinement. Future research 

should explore the implementation of regularization tech-

niques, such as Lasso or Ridge regression, or the adoption of 

cross-validation methodologies, like k-fold cross-validation, 

to enhance the model's capacity for generalization to previ-

ously unseen data. 

Furthermore, the exploration of more sophisticated 

non-linear models, including deep neural networks or gradient 

boosting machines, could potentially improve the model's 

ability to discern intricate interactions within the data, thereby 

mitigating the observed test MSE. Additionally, the incorpo-

ration of a more heterogeneous dataset encompassing a wider 

array of charging scenarios, such as public charging stations 

or residential charging, could augment the model's robustness 

and applicability across diverse contexts. 

5.3. Comparison to Existing Models 

In contrast to heuristic models or simplistic single-model 

approaches, such as standalone linear regression, the proposed 

stacked ensemble model exhibits markedly superior perfor-

mance in the intricate task of predicting kWh consumption at 

EV charging stations. This empirical superiority can be at-

tributed to the ensemble's inherent capacity to synthesize the 

predictive strengths of diverse machine learning algorithms, 

thereby capturing a broader spectrum of linear and non-linear 

relationships within the data. While the exploration of more 

intricate models, such as deep neural networks with elaborate 

architectures, holds promise for further performance gains, 

the current ensemble model strikes a judicious balance be-

tween predictive efficacy and interpretability, rendering it a 

pragmatic and insightful tool for real-world applications. 

Moreover, the model's relative computational efficiency, 

compared to more complex deep learning alternatives, en-

hances its feasibility for deployment in resource-constrained 

environments. 

5.4. Implications for Policy and Infrastructure 

Planning 

The insights from this model can guide policymakers in 

prioritizing infrastructure development in under-served 

areas, particularly rural regions where access to charging 

stations is limited. The model's ability to predict temporal 

demand patterns can help optimize station placement and 

energy distribution, reducing wait times and improving 

station utilization. 

Furthermore, the meta-model's predictions can support 

dynamic pricing strategies at charging stations, encouraging 

more efficient use of energy resources and aligning with smart 

grid technologies. The insights gleaned from this model can 

offer invaluable guidance to policymakers in strategically 

prioritizing the development of EV charging infrastructure in 

currently underserved regions, particularly in rural areas 

where access to such facilities remains limited. Furthermore, 

the model's capacity to accurately forecast temporal fluctua-

tions in charging demand can significantly contribute to the 

optimization of both station placement and energy distribution 

strategies, thereby mitigating wait times and enhancing over-

all station utilization. 

Moreover, the predictive capabilities of the meta-model can 
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serve as a robust foundation for the implementation of dy-

namic pricing mechanisms at charging stations, a measure 

that has the potential to incentivize more judicious and effi-

cient consumption of energy resources, aligning seamlessly 

with the broader objectives of smart grid technologies. 

6. Conclusion and Future Work 

This study establishes a robust framework for predicting 

power demand at EV charging stations using a stacked en-

semble model, demonstrating its potential to optimize infra-

structure and reduce wait times. The model integrates Ran-

dom Forest, XGBoost, and Neural Networks, effectively 

capturing the complex, non-linear relationships inherent in 

EV charging behavior. Key insights gleaned from the model 

include a strong correlation between charge duration and kWh 

consumption, the existence of geographic disparities in station 

utilization, and the identification of distinct temporal charging 

patterns. These insights can be leveraged to inform both in-

frastructure planning and policy decisions. 

The study acknowledges certain limitations, including the 

restricted size of the dataset and its primary focus on work-

place charging. Future research aims to address these limita-

tions by expanding and diversifying the dataset to encompass 

charging data from residential, public, and fleet charging 

stations, thereby enhancing the model's generalizability. 

Furthermore, the incorporation of additional variables, such as 

weather conditions, local events, traffic patterns, real-time 

grid conditions, and user demographics, is envisaged to im-

prove the model's predictive accuracy. The exploration of 

more advanced models, including deep learning architectures 

like Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), as well as hybrid models, is 

planned to capture intricate spatial and temporal patterns. 

Future research will also focus on integrating the model 

with smart grid technologies, enabling real-time monitoring, 

demand-response strategies, and vehicle-to-grid (V2G) inte-

gration for optimized energy management. Addressing ethical 

considerations, such as ensuring equitable access to charging 

infrastructure and mitigating potential biases in the model's 

predictions, will be a key priority. Additionally, efforts will be 

made to enhance the user experience by leveraging the mod-

el's insights for dynamic pricing mechanisms and us-

er-friendly interface design. 

In conclusion, this study lays a strong foundation for the 

utilization of ensemble-based models in the optimization of 

EV charging infrastructure. By addressing the outlined future 

research directions, the model can be further refined to sup-

port the development of a charging network that is not only 

reliable and efficient but also equitable, thereby facilitating 

the widespread adoption of electric vehicles and contributing 

to a more sustainable transportation future. 
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BEV Battery Electric Vehicle 

DC Direct Current 

kWh Kilowatt-Hour 
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