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Abstract 

Autonomously making a map, localizing within it, and planning with it are fundamental problems in mobile robotics. Every 

autonomous mobile robot system must include a solution to all three problems. These three problems are interconnected, with 

simultaneous localization and mapping (SLAM) being a well-known issue. However, there is indeed a growing and developing 

realization in the research field that path planning how a robot goes about mapping and finding an environment (and then 

operating in the environment such as starting to the destination point) can avoid degenerate conditions and greatly reduce SLAM 

complexity. In this paper, the implementation of an autonomous mobile robot system for indoor environments using open-source 

ROS packages and a combination of cartography algorithm and adaptive Monte Carlo localization (AMCL) algorithms has been 

implemented. The system addresses the challenge of developing three components such as mapping, localization, and path 

planning systems for indoor autonomous mobile robots. The mapping module creates a global map using the cartography ROS 

package and SLAM algorithm. The localization module estimates the robot's pose using the AMCL approach. The planning 

module generates collision-free trajectories and control commands using the moving base ROS package. The experimental 

results demonstrate the effectiveness of this approach and its valuable contribution to the robotics field. The cartography 

algorithm mapping algorithm generates accurate and reliable maps, while the localization algorithm successfully determines the 

robot's position with good performance. Additionally, the path planning algorithm effectively avoids both static and dynamic 

obstacles, ensuring smooth navigation in the environment. 
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1. Introduction 

In recent years, advancements in sensing, manufacturing, 

and control technologies have led to the emergence of various 

types of robots in our daily lives and workplaces [1]. These 

robots include unmanned aerial vehicles, robot vacuum 

cleaners, intelligent vehicles, autonomous disinfection robots, 

logistics delivery robots, and more. As a result, our society 

has been undergoing significant transformations. Autono-

mous mobile robots can do desired tasks and move around in 

their environment and carry out intelligent activities auton-

omously. For instance, amid the COVID-19 pandemic, there 

is a growing need to utilize robots for disinfection purposes in 

public spaces. This is due to the varying levels of risk in dif-
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ferent environments. For robots to safely and efficiently carry 

out the given tasks, they must also possess the capability of 

autonomous navigation. It is capable of navigating autono-

mously and has extensive realistic applications, including 

rescue works. A key to the robot is the ability to technology is 

simultaneous localization and mapping (SLAM). It allows the 

autonomous mobile robot to estimate its own position using 

onboard sensors and simultaneously build a map of the en-

vironment at the same time which is very important in robotic 

fields. This Simultaneous localization and mapping (SLAM) 

enable the robot to achieve such autonomy by providing in-

sights into the layout of its environment (mapping), where it is 

located, and its position within that environment (localization) 

as well as identifying a route from starting to destination 

through to get a goal (path planning). It is a computational 

problem of making and updating a map of an unknown en-

vironment and keeping the path of the robot’s location sim-

ultaneously at the same time [2-4]. 

Mapping and localization tasks are interconnected and 

cannot be solved independently. Therefore, SLAM is fre-

quently viewed in the realm of autonomous robotics as a 

“chicken and egg” problem: A good map is essential for 

navigation, while a precise localization pose estimate is re-

quired to build the map. It uses various sensor data based on 

the algorithm to succeed in this objective. There are many 

algorithms to solve this chicken-and-egg problem, such as 

particle filter (aka. Monte Carlo methods), extended Kalman 

filter, a critical rays self-adaptive particle filtering occupancy 

grid-based SLAM system, and Graph SLAM [5, 6]. Since 

mapping and localizing algorithms are limited to the available 

resources, the aim not at perfection, but at operational com-

pliance. For example, a range-based Simultaneous localiza-

tion and mapping uses LiDAR data to make the map and 

localize it in a map. 

In contrast, a vision-based SLAM [16] uses a camera sensor 

to acquire visual data, and, in some cases, combines odometry 

data from the wheel encoders to make the map. This mapping 

and localization are used for outdoor and indoor navigation in 

environments with sufficient landmarks, distinct features, and 

navigable terrain. SLAM’s process involves a robot simulta-

neously creating and updating real-time maps of its envi-

ronment while navigating the same and also locating its posi-

tion concerning the map. 

The SLAM hassle is to estimate the robotics’ pose and a 

map of the surroundings with the given sensor observation 

information over discrete time steps. Statistical strategies, 

which include Kalman filters and particle filters [17], estimate 

the posterior probability function for the localization of the 

robot and the parameters of the map. Set membership strate-

gies, which can be based on interval constraint propagation, 

offer a set that encloses the pose of the robotic and a set es-

timation of the map. Another approach is Maximum a poste-

riori estimation (MAP), which uses image information to 

jointly estimate poses and landmark positions to increase map 

constancy. It is the method used by Google’s ARCore. 

1.1. Mapping 

Mapping refers to the process of creating a desired com-

putational representation of the environment, which includes 

the terrain, objects, humans, machinery, and vegetation. Maps 

serve to inform the robot about feasible areas of motion within 

the environment and to define the spatial models of the objects 

in the scene. For a robot to plan its movement toward a goal, it 

must understand its environment, making mapping a vital task 

for autonomous robots. For the mapping process, various 

sensors can be can be utilized. In different research, the depth 

data from the Microsoft Kinect sensor has been employed, 

and to locate the robot's positional and orientation data, to 

determine its location in the environment [7]. When these two 

data are combined, mapping of the environment can be per-

formed autonomously but enhancing the quality of the map is 

needed to improve. 

1.2. Localization 

In the field of mobile robotics, localization is a critical as-

pect, particularly when an autonomous mobile robot is in-

volved in navigation tasks [8]. Localization refers to deter-

mining the pose and orientation of the robot on the map. 

Accurate robot pose estimation is critical to all frame-based 

vector measurements made from LiDAR, RADAR, sensors, 

and depth cameras. The robot's position, pose, and orientation 

are monitored using the particle filtering algorithm given the 

sensor information from the Kinect. As the robot moves 

around, each mapped point is translated into the global frame. 

The mapped points contribute to the formation of an occu-

pancy grid of the map. The map gets updated in real-time, thus 

mapping is done dynamically. The areas shaded in black 

represent the obstacles while the areas shaded in gray are 

unexplored regions of the environment these are the unknown 

areas. The parts of the map that are in white are explored areas 

free of obstacles where the robot is free to move, in this paper 

depicted in Figure 8. The robot's position, pose, and orienta-

tion on the map are determined using the particle filter algo-

rithm [8]. In this algorithm, multiple random variables or 

particles are initialized. Each particle or variable represents a 

copy of the robots. Each variable is associated with a weight 

that represents the accuracy of the particle’s location. Using 

the average weighted sum of these particles, an estimation of 

the robot's actual location can be achieved. This algorithm 

involves two main phases:  

a. Prediction: This phase involves predicting the location 

of each variable based on existing data. 

b. Update: In this phase, based on the latest information 

from the sensor the weights of the particles are adjusted. 

The particles with low weights are removed and the one 

with the highest weight is used to represent the robot's 

current location. If the particle’s information is closer to 

the sensor information, then more weight is given to 

that particle. 

As the robot continues to move, these particles keep ini-
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tializing to new locations, and the prediction and update 

process repeats. The locations of the particles converge as the 

weights keep adjusting. An illustration of the mapped envi-

ronment, showcasing the robot's positions, highlights several 

important aspects that can influence SLAM algorithms: 

a. Map: Maps are classified as topological maps, which 

represent the environment with topology, and grid maps 

which use arrays of discretized cell stores to present a 

topological world. 

b. Sensors: Laser scans can provide details of many points 

within the area, with tactile sensors only containing 

points very close to the agent. Most practical SLAM 

tasks fall between these two kinds of data. Optical sen-

sors can be one dimension or 2D, even 3D. 

c. Kinematics model: The kinematics model of the robot 

improves the estimation of sensing under conditions of 

inherent and ambient noise. 

d. Loop closure: It is the problem of recognizing a location 

that was visited previously and updating accordingly. 

Typical methods compute sensor measure similarity and 

reset the location priors when a match is found. 

Hence the resolution to the challenges of simultaneous 

mapping and localization can be very efficient in scenarios 

where global positioning measurements (GPS) are not acces-

sible [15], for example, when an autonomous mobile robot or 

agent is operating and functioning indoors. Similar to other 

sensor-related components, SLAM has inherent uncertainty. 

The precision of SLAM is primarily influenced by the 

following three factors:  

a. The nature of the environment. 

b. The accuracy of on-board sensors. 

c. The computational power necessary for processing. 

Among these factors, the computational power necessary 

for processing depends on the complexity of the algorithm 

and the amount of power that a user is prepared to spend on it. 

 
Figure 1. A task to be performed by a fully autonomous robot. 

Many SLAM algorithms are implemented in ROS library 

packages, such as mapping, Hector SLAM, and Cartographer, 

which work well with portable platforms and limited com-

putational resources [9]. In this paper, to be a fully autono-

mous robot, one must perform tasks, such as mapping, local-

ization, and path planning, as depicted in Figure 1. As previ-

ously described, SLAM is a technique that not only creates a 

map of an unknown area but also determines the robot's lo-

cation within that map. After the SLAM process, path plan-

ning is defined. Only if the map of the environment is gener-

ated can a robot plan a path autonomously. 

2. Framework of Software for  

Autonomous Mobile Robot 

2.1. Robot Operating System 

The Robot Operating System [10] is an open-source robot 

operating system software framework designed for develop-

ing applications that can be run on robotic hardware. It offers 

functionalities such as package management, communication 

between processes, and hardware abstraction.  

The principal components of ROS include: 

a. Roscore: this is the main process responsible for man-

aging all of the ROS (Robot Operating System) systems. 

b. Nodes: this is an executable that interacts with other 

nodes via ROS. They aid in the control of various func-

tions. 

c. Messages: its bits of information that nodes use to 

communicate with one another. Node communicates via 

messages. 

d. Messages in ROS are transmitted via Topics. 

Nodes can simultaneously send multiple messages to a 

topic and subscribe to a topic to receive messages. Typically, 

these nodes are used to process raw sensory information, such 

as that, from a lidar, motor encoders, distance sensors, etc. 

After processing the sensory information according to the 

needs of the desired application, it is published to a ROS topic 

in the form of messages. The ROS framework was selected 

because, in addition to facilitating straightforward sensor 

integration, it also includes many of the essential features, 

such as robotic control and SLAM algorithms. ROS allows for 

the easy utilization of software written in Python or C++. 

Furthermore, as the high-level control of the indoor autono-

mous mobile robot is implemented in ROS, this paper is built 

on the ROS platform. 

2.2. Gazebo 

The Gazebo [11] is a ROS-integrated simulation program 

that provides a 3D dynamic simulator of the real world. The 

latter allows us to test the activity of our robot efficiently in a 

complex dynamic and static indoor environment. The gazebo 

is commonly used to evaluate robotics algorithms and robot 

designs, as well as to test their execution in real-world sce-

narios. Gazebo allows a user to create complex environments 
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and simulate the robot in those environments. In Gazebo, the 

user can create a three-dimensional model of the robot and 

incorporate sensors. It is the simulation environment that 

offers various ROS APIs, allowing users to model robots and 

gather sensor data. A real-world environment can be easily 

constructed in Gazebo. It allows the user to manipulate the 

properties of the environment over ROS, as well as spawn and 

introspect on the state of models in the environment, by using 

the ROS API (Application Programming Interface). Several 

objects were randomly placed in this environment where the 

map was created along with the objects, as these objects were 

considered static obstacles. In the Gazebo, an indoor envi-

ronment map is created for the robot to move and map ac-

cordingly.  

2.3. Rviz 

Rviz is a 3D visualization application that makes it easy to 

view data from high-resolution cameras, 3D lasers, and Ki-

nect sensors. Rviz, in a nutshell, allows us to visualize the 

sensors and their output in a simulated environment. Rviz is 

serves as a 3D visualization tool for displaying sensor infor-

mation and the state of ROS. As create a map based on the 

laser scan data and use it for auto navigation. As access and 

graphically represent values in Rviz by using camera images, 

laser scans, and so on. In Rviz, coordinates are referred to as 

frames. We can choose from various displays to view in Rviz; 

they are data from various sensors. We can give any data to be 

displayed in Rviz by clicking the add button. The grid display 

will provide the ground or reference. The laser scanner dis-

play will show the results of the laser scanners. Sensor 

msgs/Laser scans display will be used for laser scans. The 

program's position will be displayed in the point cloud display. 

The reference point will be displayed on the axes display. The 

Rviz simulation is depicted in Figure 2. 

 
Figure 2. RVIZ simulation. 

3. Methods of Mapping Localizing & 

Path Planning  

3.1. Cartographer Algorithm 

Cartographer is a system that offers real-time and an 

open-source package for 2D and 3D graph-based Simulta-

neous localization and mapping that integrates seamlessly 

with the Robot Operating System (ROS). It generates both a 

2D occupancy grid map and a 3D point cloud map. The re-

usability of such an algorithm is dependent upon platform and 

sensor configurations. Cartographer algorithms can consist of 

two distinct linked subsystems. The first subsystem is known 

as Local SLAM. Which serves as the front end of Cartogra-

pher's. To generate sub-maps the Local SLAM gathers data 

and information from range sensors and other proprioceptive 

sensors including RPLIDAR A1, IMU, and wheel encoders to 

provide scaled-down representations of a portion of the map 

that an accurate overview of a specific area. The second 

subsystem is known as Global SLAM. Which serves as the 

back end of Cartographer. This subsystem focuses on the sole 

purpose of finding loop closure constraints. In this process, a 
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constraint-based weight parameter is added to Local SLAM, 

and parameters in Global SLAM are tuned to optimize loop 

closure detection. Detailed methods are depicted in Figure 3.  

 
Figure 3. An Overview of the Cartographer Method. 

In the Local SLAM, multiple scan-matching is performed 

against these recent sub-maps to accumulate pose estimation 

errors. Regular pose optimization is implemented to prevent 

the errors from accumulating. When a submap is completed, 

no additional laser scans are incorporated, and all completed 

sub-maps contribute to scan matching for loop closure (i.e., 

revisiting the same location on the map) [12, 14]. To find a 

laser scan, the scan matcher iterates automatically and sys-

tematically through the completed sub-maps. If a reasonably 

good match is found within a search window based on an 

estimated position in the sub-maps, it is included as a loop 

closure constraint in the optimization problem. Consequently, 

solving this optimization issue aids in immediately closing the 

loop when a location is encountered. The Cartographer's mo-

tion filter helps in down-sampling the raw points hit by the 

laser into fixed-size cubes while retaining the centroid of each 

cube. The cartographer utilizes an adaptive voxel filter as well. 

This filter seeks to determine the optimal voxel size (within a 

specified maximum width) to achieve a given number of 

points. The pose extrapolator block merges data from the 

other sensors, as well as the range finder, to predict where the 

next scan should be added to the submap. To avoid excessive 

scan insertions, it passes through the motion filter block to 

check if motion is detected between two scans. In the Global 

SLAM, the sparse pose adjustment (SPA) block runs and 

operates in the background, rearranging sub-maps to create a 

cohesive global map. At a higher level of abstraction, it can be 

summarized that the main function of Local SLAM is to 

generate excellent sub-maps, while the function of Global 

SLAM is to effectively bind these sub-maps together.  

3.2. Localization Method of Adaptive Monte 

Carlo Localization 

Monte Carlo Localization (MCL) is a widely utilized algo-

rithm in robotics that employs a particle filter for determining 

the localization (position and orientation) of a robot. Localiza-

tion entails estimating the robot's position and orientation, 

collectively known as its pose, as it moves and senses its sur-

roundings. In localization, each particle has its unique map of 

the environment as well as offers a potential estimate of the 

robot's location, i.e. to estimate where the robot is. The algo-

rithm typically initiates with a random distribution of particles 

across the pose space. When the robot moves, the particle shifts 

and attempts to predict its update. When the robot detects a 

recognizable feature, the weights of the particles surrounding 

that feature increase according to a Gaussian distribution pat-

tern. Upon movement of the robot, the particles are re-sampled 

with equal weights in accordance with recursive Bayesian 

estimation, ensuring that, the number of particles in the areas 

where the previous belief was high is greater than in the rest of 

the space. This process continues until the particles converge 

around the robot's actual pose. In this manner, the performance 

of each particle can be observed, and more particles from that 

neighborhood can be drawn when necessary. To maintain a 

consistent particle count, resampling is employed. However, 

because the correlation score for each particle must be calcu-

lated iteratively, this localization method is computationally 
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intensive. As a result, increasing the number of particles 

eventually increases computation time, while decreasing the 

number of particles may lead to poor localization. To enhance 

this type of localization, Adaptive Monte Carlo Localization 

(AMCL) [13] has emerged, which optimizes MCL by adap-

tively sampling the particles based on error estimates using the 

Kullback-Leibler divergence (KLD) and is increasingly em-

ployed to improve such a form of localization. It regulates the 

quantity of particles based on the odometry and the differences 

in particle-based position. The detail is shown in Figure 4. 

 

Figure 4. The software architecture of the method of three main modules i.e. mapping, localization, and planning. 

4. Experimental Results 

Mapping, localizing, and planning routes for autonomous 

mobile robots in indoor settings have been tested in simulated 

environments built on the simulation software and imple-

menting the autonomous mobile robot. The experiments were 

carried out in unstructured indoor environments in different 

scenarios. The gazebo was used as a simulator for creating the 

simulation environments due to its capability to efficiently 

and accurately simulate a wide range of robots in complex 

indoor environments. The experimental findings for the au-

tonomous mobile robots operating in indoor environments, 

where mapping, localization, and path planning are performed 

within the Gazebo simulator. Figure 6 shows the mapping 

process using the Gazebo simulation environments for au-

tonomous mobile robots, while Figure 7 shows Rviz visuali-

zation results for the localization process, and Figure 8 shows 

the path planning process. During the experiments in the 

Gazebo Simulator, an RPLIDAR scanner is used to create a 

global map of a given environment and estimate the auton-

omous mobile robot pose within the map, as well as path 

planning.  

The mapping process depicted in Figure 6, shows the process 

of mapping in ROS, during mapping by giving goal points the 

robot moves the same wise to make a map autonomously and 

saves by using a map saver as yaml and pgm file in the ROS. 

Pose, orientation, and localization are all part of the process of 

localization. In Figure 6 (no:1, no:2) Simulation in Rviz, the 

black dots and line represent obstacles through which the mo-

bile robot cannot pass; the white area represents a local cost 

map for obstacle avoidance with static and dynamic objects; In 

the map, the robot is red color and the green axes represent the 

mobile robot's current pose; that is, x-y-z axes; its particles used 

by the AMCL algorithm to estimate the mobile robot's pose. 

Figure 6 (no:3) shows the saved map and pgm/yaml infor-

mation. The autonomous mobile robot system can have multi-

ple broadcasters, with each one conveying information a dis-

tinct component of the robot of the robot. The different coor-

dinate frames defined in ROS and utilized in this paper: The 

first is Robot footprint: - This frame, referred to as the "robot's 

frame." is securely fastened at the center of the mobile base, 

positioned between the two wheels. The sensor is linked to the 

base link. This frame helps easily visualize the robot's location 

on a given map. The second is Odom: - The Odom frame is the 

frame that is located at the starting point of the robot's move-

ment. The third is Map: - The map frame, like the Odom frame, 

the map frame serves as a reference. However, with the only 

difference being that the pose of the robot, relative to the map 

frame remains relatively stable over time, unlike the odom 

frame. This frame is where the SLAM (Simultaneous Locali-
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zation and Mapping) process occurs. The fourth is sensor frame: 

- These frames are primarily defined by the type of sensors. The 

detail of the autonomous mobile robot and tree representation 

of coordinate frames defined in the robot operating system are 

depicted in Figure 5. 

 
Figure 5. Coordinate Robot and Tree representation of frames defined in ROS. 

Various applications of indoor autonomous mobile robots, including servicing in hotels, helping disabled people, cleaning, and more. 

 

 
Figure 6. Mapping Process. 
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Figure 7. Localization process. 

The simulation results of the AMCL in Ros are shown in 

Figure 7, in which number (1) shows particles cloud-dense 

because of high uncertainty, number (2) and number (3) show 

particle alignment once the AMR starts moving and number 

(4) shows that particles converged in a stable state. 

The planning module is mainly built on the move-based 

ROS package, which is a critical component of the navigation 

stack. The move base package includes a ROS interface for 

configuring, running, and interacting with the navigation 

stack, which consists of several inner components such as a 

global planner, local planner, global cost map, local cost map, 

and recovery behaviors. While such inner components are 

already implemented in the navigation stack, each robot 

platform requires the creation of components for a base con-

troller, an odometry source, sensor sources, and sensor 

transforms. These components are created in this paper, using 

the Autonomous mobile robot and the RPLIDAR scanner. As 

a result, the package can easily implement the functions re-

quired for autonomous navigation. To build a local cost map 

for collision avoidance, generate collision-free trajectories to 

reach the goal pose, and generate control commands to follow 

the trajectories. The package requires five data inputs: raw 

laser range data, frame transform data, prebuilt map data, 

estimated current pose data of the mobile robot, and goal pose 

data. The mapping and localization modules provide the 

prebuilt map and the estimated current pose of the mobile 

robot, respectively. As shown in Figure 8 (a), (b), (c), the 

mobile robot finally outputs trajectories and control com-

mands (x, y, and θ velocities). The blue line extending from 

the mobile robot's current pose represents the global path to a 

given goal pose while avoiding obstacles, and the short and 

bright green line located beneath or next to the global path 

represents the local path to follow the global path. 

 
a) Path planning moving from the right (current pose) to the left (goal pose) 
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b) Path planning moving from the left (current pose) to the right (goal pose) 

 
c) The robots reached their goal pose 

Figure 8. Path planning process. 

5. Conclusion 

The presented autonomous mobile robot system in a sim-

ulated indoor environment using open-source ROS packages 

to address the challenge of developing an indoor autonomous 

mobile robot mapping, localization, and path planning system. 

The presented system allows a mobile robot to map, locali-

zation, and plan indoor environments with both static and 

dynamic objects without colliding. To that end, the system is 

divided into three major components: mapping, localization, 

and planning. Using the cartography ROS package and the 

cartography SLAM algorithm, the mapping module creates a 

global map for an unknown environment. The localization 

module estimates the mobile robot's current pose within the 

prebuilt map using the AMCL approach. Using the moving 

base ROS package, the planning module creates a local cost 

map for collision avoidance, generates collision-free trajec-

tories to reach a goal pose, and generates control commands to 

follow the trajectories. The results of this experiments show 

that the presented system provides dependable performance 

for autonomous mobile robot indoor navigation, including 

collision avoidance with both static and dynamic objects. 

Abbreviations 

AMCL Adaptive Monte Carlo Localization 

AMR Autonomous Mobile Robot 

API Application Programming Interface 

2D Two Dimensional 

3D Three Dimensional 

GPS Global Positioning System 
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IMU Inertia Measurement Unit 

KLD Kullback-Leibler Divergence 

MCL Monte Carlo Localization 

Rviz ROS-Visualization 

ROS Robot Operating System 

SLAM Simultaneous Localization and Mapping 

SPA Sparse Pose Adjustment 
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