
Frontiers

2024, Vol. 4, No. 3, pp. 91-100

https://doi.org/10.11648/j.frontiers.20240403.13

*Corresponding author:

Received: 1 March 2024; Accepted: 4 September 2024; Published: 23 September 2024

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

Mapping and Localization of Autonomous Mobile Robots in

Simulated Indoor Environments

Tsegaye Alemu Tola
1

, Jing Mi
2, *

, Yanqiu Che
1

1
Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin, P. R. China

2
School of Vocational Education, Tianjin University of Technology and Education, Tianjin, P. R. China

Abstract

Autonomously making a map, localizing within it, and planning with it are fundamental problems in mobile robotics. Every

autonomous mobile robot system must include a solution to all three problems. These three problems are interconnected, with

simultaneous localization and mapping (SLAM) being a well-known issue. However, there is indeed a growing and developing

realization in the research field that path planning how a robot goes about mapping and finding an environment (and then

operating in the environment such as starting to the destination point) can avoid degenerate conditions and greatly reduce SLAM

complexity. In this paper, the implementation of an autonomous mobile robot system for indoor environments using open-source

ROS packages and a combination of cartography algorithm and adaptive Monte Carlo localization (AMCL) algorithms has been

implemented. The system addresses the challenge of developing three components such as mapping, localization, and path

planning systems for indoor autonomous mobile robots. The mapping module creates a global map using the cartography ROS

package and SLAM algorithm. The localization module estimates the robot's pose using the AMCL approach. The planning

module generates collision-free trajectories and control commands using the moving base ROS package. The experimental

results demonstrate the effectiveness of this approach and its valuable contribution to the robotics field. The cartography

algorithm mapping algorithm generates accurate and reliable maps, while the localization algorithm successfully determines the

robot's position with good performance. Additionally, the path planning algorithm effectively avoids both static and dynamic

obstacles, ensuring smooth navigation in the environment.

Keywords

Autonomous Mobile Robot, Mapping, Localization, Cartography, AMCL

1. Introduction

In recent years, advancements in sensing, manufacturing,

and control technologies have led to the emergence of various

types of robots in our daily lives and workplaces [1]. These

robots include unmanned aerial vehicles, robot vacuum

cleaners, intelligent vehicles, autonomous disinfection robots,

logistics delivery robots, and more. As a result, our society

has been undergoing significant transformations. Autono-

mous mobile robots can do desired tasks and move around in

their environment and carry out intelligent activities auton-

omously. For instance, amid the COVID-19 pandemic, there

is a growing need to utilize robots for disinfection purposes in

public spaces. This is due to the varying levels of risk in dif-

http://www.sciencepg.com/journal/frontiers
http://www.sciencepg.com/journal/636/archive/6360403
http://www.sciencepg.com/
https://orcid.org/0000-0002-2777-6330
https://orcid.org/0009-0004-8311-0834
https://orcid.org/0000-0002-2777-6330
https://orcid.org/0009-0004-8311-0834
https://orcid.org/0000-0002-2777-6330
https://orcid.org/0009-0004-8311-0834
https://orcid.org/0000-0002-2777-6330
https://orcid.org/0009-0004-8311-0834

Frontiers http://www.sciencepg.com/journal/frontiers

92

ferent environments. For robots to safely and efficiently carry

out the given tasks, they must also possess the capability of

autonomous navigation. It is capable of navigating autono-

mously and has extensive realistic applications, including

rescue works. A key to the robot is the ability to technology is

simultaneous localization and mapping (SLAM). It allows the

autonomous mobile robot to estimate its own position using

onboard sensors and simultaneously build a map of the en-

vironment at the same time which is very important in robotic

fields. This Simultaneous localization and mapping (SLAM)

enable the robot to achieve such autonomy by providing in-

sights into the layout of its environment (mapping), where it is

located, and its position within that environment (localization)

as well as identifying a route from starting to destination

through to get a goal (path planning). It is a computational

problem of making and updating a map of an unknown en-

vironment and keeping the path of the robot’s location sim-

ultaneously at the same time [2-4].

Mapping and localization tasks are interconnected and

cannot be solved independently. Therefore, SLAM is fre-

quently viewed in the realm of autonomous robotics as a

“chicken and egg” problem: A good map is essential for

navigation, while a precise localization pose estimate is re-

quired to build the map. It uses various sensor data based on

the algorithm to succeed in this objective. There are many

algorithms to solve this chicken-and-egg problem, such as

particle filter (aka. Monte Carlo methods), extended Kalman

filter, a critical rays self-adaptive particle filtering occupancy

grid-based SLAM system, and Graph SLAM [5, 6]. Since

mapping and localizing algorithms are limited to the available

resources, the aim not at perfection, but at operational com-

pliance. For example, a range-based Simultaneous localiza-

tion and mapping uses LiDAR data to make the map and

localize it in a map.

In contrast, a vision-based SLAM [16] uses a camera sensor

to acquire visual data, and, in some cases, combines odometry

data from the wheel encoders to make the map. This mapping

and localization are used for outdoor and indoor navigation in

environments with sufficient landmarks, distinct features, and

navigable terrain. SLAM’s process involves a robot simulta-

neously creating and updating real-time maps of its envi-

ronment while navigating the same and also locating its posi-

tion concerning the map.

The SLAM hassle is to estimate the robotics’ pose and a

map of the surroundings with the given sensor observation

information over discrete time steps. Statistical strategies,

which include Kalman filters and particle filters [17], estimate

the posterior probability function for the localization of the

robot and the parameters of the map. Set membership strate-

gies, which can be based on interval constraint propagation,

offer a set that encloses the pose of the robotic and a set es-

timation of the map. Another approach is Maximum a poste-

riori estimation (MAP), which uses image information to

jointly estimate poses and landmark positions to increase map

constancy. It is the method used by Google’s ARCore.

1.1. Mapping

Mapping refers to the process of creating a desired com-

putational representation of the environment, which includes

the terrain, objects, humans, machinery, and vegetation. Maps

serve to inform the robot about feasible areas of motion within

the environment and to define the spatial models of the objects

in the scene. For a robot to plan its movement toward a goal, it

must understand its environment, making mapping a vital task

for autonomous robots. For the mapping process, various

sensors can be can be utilized. In different research, the depth

data from the Microsoft Kinect sensor has been employed,

and to locate the robot's positional and orientation data, to

determine its location in the environment [7]. When these two

data are combined, mapping of the environment can be per-

formed autonomously but enhancing the quality of the map is

needed to improve.

1.2. Localization

In the field of mobile robotics, localization is a critical as-

pect, particularly when an autonomous mobile robot is in-

volved in navigation tasks [8]. Localization refers to deter-

mining the pose and orientation of the robot on the map.

Accurate robot pose estimation is critical to all frame-based

vector measurements made from LiDAR, RADAR, sensors,

and depth cameras. The robot's position, pose, and orientation

are monitored using the particle filtering algorithm given the

sensor information from the Kinect. As the robot moves

around, each mapped point is translated into the global frame.

The mapped points contribute to the formation of an occu-

pancy grid of the map. The map gets updated in real-time, thus

mapping is done dynamically. The areas shaded in black

represent the obstacles while the areas shaded in gray are

unexplored regions of the environment these are the unknown

areas. The parts of the map that are in white are explored areas

free of obstacles where the robot is free to move, in this paper

depicted in Figure 8. The robot's position, pose, and orienta-

tion on the map are determined using the particle filter algo-

rithm [8]. In this algorithm, multiple random variables or

particles are initialized. Each particle or variable represents a

copy of the robots. Each variable is associated with a weight

that represents the accuracy of the particle’s location. Using

the average weighted sum of these particles, an estimation of

the robot's actual location can be achieved. This algorithm

involves two main phases:

a. Prediction: This phase involves predicting the location

of each variable based on existing data.

b. Update: In this phase, based on the latest information

from the sensor the weights of the particles are adjusted.

The particles with low weights are removed and the one

with the highest weight is used to represent the robot's

current location. If the particle’s information is closer to

the sensor information, then more weight is given to

that particle.

As the robot continues to move, these particles keep ini-

http://www.sciencepg.com/journal/frontiers

Frontiers http://www.sciencepg.com/journal/frontiers

93

tializing to new locations, and the prediction and update

process repeats. The locations of the particles converge as the

weights keep adjusting. An illustration of the mapped envi-

ronment, showcasing the robot's positions, highlights several

important aspects that can influence SLAM algorithms:

a. Map: Maps are classified as topological maps, which

represent the environment with topology, and grid maps

which use arrays of discretized cell stores to present a

topological world.

b. Sensors: Laser scans can provide details of many points

within the area, with tactile sensors only containing

points very close to the agent. Most practical SLAM

tasks fall between these two kinds of data. Optical sen-

sors can be one dimension or 2D, even 3D.

c. Kinematics model: The kinematics model of the robot

improves the estimation of sensing under conditions of

inherent and ambient noise.

d. Loop closure: It is the problem of recognizing a location

that was visited previously and updating accordingly.

Typical methods compute sensor measure similarity and

reset the location priors when a match is found.

Hence the resolution to the challenges of simultaneous

mapping and localization can be very efficient in scenarios

where global positioning measurements (GPS) are not acces-

sible [15], for example, when an autonomous mobile robot or

agent is operating and functioning indoors. Similar to other

sensor-related components, SLAM has inherent uncertainty.

The precision of SLAM is primarily influenced by the

following three factors:

a. The nature of the environment.

b. The accuracy of on-board sensors.

c. The computational power necessary for processing.

Among these factors, the computational power necessary

for processing depends on the complexity of the algorithm

and the amount of power that a user is prepared to spend on it.

Figure 1. A task to be performed by a fully autonomous robot.

Many SLAM algorithms are implemented in ROS library

packages, such as mapping, Hector SLAM, and Cartographer,

which work well with portable platforms and limited com-

putational resources [9]. In this paper, to be a fully autono-

mous robot, one must perform tasks, such as mapping, local-

ization, and path planning, as depicted in Figure 1. As previ-

ously described, SLAM is a technique that not only creates a

map of an unknown area but also determines the robot's lo-

cation within that map. After the SLAM process, path plan-

ning is defined. Only if the map of the environment is gener-

ated can a robot plan a path autonomously.

2. Framework of Software for

Autonomous Mobile Robot

2.1. Robot Operating System

The Robot Operating System [10] is an open-source robot

operating system software framework designed for develop-

ing applications that can be run on robotic hardware. It offers

functionalities such as package management, communication

between processes, and hardware abstraction.

The principal components of ROS include:

a. Roscore: this is the main process responsible for man-

aging all of the ROS (Robot Operating System) systems.

b. Nodes: this is an executable that interacts with other

nodes via ROS. They aid in the control of various func-

tions.

c. Messages: its bits of information that nodes use to

communicate with one another. Node communicates via

messages.

d. Messages in ROS are transmitted via Topics.

Nodes can simultaneously send multiple messages to a

topic and subscribe to a topic to receive messages. Typically,

these nodes are used to process raw sensory information, such

as that, from a lidar, motor encoders, distance sensors, etc.

After processing the sensory information according to the

needs of the desired application, it is published to a ROS topic

in the form of messages. The ROS framework was selected

because, in addition to facilitating straightforward sensor

integration, it also includes many of the essential features,

such as robotic control and SLAM algorithms. ROS allows for

the easy utilization of software written in Python or C++.

Furthermore, as the high-level control of the indoor autono-

mous mobile robot is implemented in ROS, this paper is built

on the ROS platform.

2.2. Gazebo

The Gazebo [11] is a ROS-integrated simulation program

that provides a 3D dynamic simulator of the real world. The

latter allows us to test the activity of our robot efficiently in a

complex dynamic and static indoor environment. The gazebo

is commonly used to evaluate robotics algorithms and robot

designs, as well as to test their execution in real-world sce-

narios. Gazebo allows a user to create complex environments

http://www.sciencepg.com/journal/frontiers

Frontiers http://www.sciencepg.com/journal/frontiers

94

and simulate the robot in those environments. In Gazebo, the

user can create a three-dimensional model of the robot and

incorporate sensors. It is the simulation environment that

offers various ROS APIs, allowing users to model robots and

gather sensor data. A real-world environment can be easily

constructed in Gazebo. It allows the user to manipulate the

properties of the environment over ROS, as well as spawn and

introspect on the state of models in the environment, by using

the ROS API (Application Programming Interface). Several

objects were randomly placed in this environment where the

map was created along with the objects, as these objects were

considered static obstacles. In the Gazebo, an indoor envi-

ronment map is created for the robot to move and map ac-

cordingly.

2.3. Rviz

Rviz is a 3D visualization application that makes it easy to

view data from high-resolution cameras, 3D lasers, and Ki-

nect sensors. Rviz, in a nutshell, allows us to visualize the

sensors and their output in a simulated environment. Rviz is

serves as a 3D visualization tool for displaying sensor infor-

mation and the state of ROS. As create a map based on the

laser scan data and use it for auto navigation. As access and

graphically represent values in Rviz by using camera images,

laser scans, and so on. In Rviz, coordinates are referred to as

frames. We can choose from various displays to view in Rviz;

they are data from various sensors. We can give any data to be

displayed in Rviz by clicking the add button. The grid display

will provide the ground or reference. The laser scanner dis-

play will show the results of the laser scanners. Sensor

msgs/Laser scans display will be used for laser scans. The

program's position will be displayed in the point cloud display.

The reference point will be displayed on the axes display. The

Rviz simulation is depicted in Figure 2.

Figure 2. RVIZ simulation.

3. Methods of Mapping Localizing &

Path Planning

3.1. Cartographer Algorithm

Cartographer is a system that offers real-time and an

open-source package for 2D and 3D graph-based Simulta-

neous localization and mapping that integrates seamlessly

with the Robot Operating System (ROS). It generates both a

2D occupancy grid map and a 3D point cloud map. The re-

usability of such an algorithm is dependent upon platform and

sensor configurations. Cartographer algorithms can consist of

two distinct linked subsystems. The first subsystem is known

as Local SLAM. Which serves as the front end of Cartogra-

pher's. To generate sub-maps the Local SLAM gathers data

and information from range sensors and other proprioceptive

sensors including RPLIDAR A1, IMU, and wheel encoders to

provide scaled-down representations of a portion of the map

that an accurate overview of a specific area. The second

subsystem is known as Global SLAM. Which serves as the

back end of Cartographer. This subsystem focuses on the sole

purpose of finding loop closure constraints. In this process, a

http://www.sciencepg.com/journal/frontiers

Frontiers http://www.sciencepg.com/journal/frontiers

95

constraint-based weight parameter is added to Local SLAM,

and parameters in Global SLAM are tuned to optimize loop

closure detection. Detailed methods are depicted in Figure 3.

Figure 3. An Overview of the Cartographer Method.

In the Local SLAM, multiple scan-matching is performed

against these recent sub-maps to accumulate pose estimation

errors. Regular pose optimization is implemented to prevent

the errors from accumulating. When a submap is completed,

no additional laser scans are incorporated, and all completed

sub-maps contribute to scan matching for loop closure (i.e.,

revisiting the same location on the map) [12, 14]. To find a

laser scan, the scan matcher iterates automatically and sys-

tematically through the completed sub-maps. If a reasonably

good match is found within a search window based on an

estimated position in the sub-maps, it is included as a loop

closure constraint in the optimization problem. Consequently,

solving this optimization issue aids in immediately closing the

loop when a location is encountered. The Cartographer's mo-

tion filter helps in down-sampling the raw points hit by the

laser into fixed-size cubes while retaining the centroid of each

cube. The cartographer utilizes an adaptive voxel filter as well.

This filter seeks to determine the optimal voxel size (within a

specified maximum width) to achieve a given number of

points. The pose extrapolator block merges data from the

other sensors, as well as the range finder, to predict where the

next scan should be added to the submap. To avoid excessive

scan insertions, it passes through the motion filter block to

check if motion is detected between two scans. In the Global

SLAM, the sparse pose adjustment (SPA) block runs and

operates in the background, rearranging sub-maps to create a

cohesive global map. At a higher level of abstraction, it can be

summarized that the main function of Local SLAM is to

generate excellent sub-maps, while the function of Global

SLAM is to effectively bind these sub-maps together.

3.2. Localization Method of Adaptive Monte

Carlo Localization

Monte Carlo Localization (MCL) is a widely utilized algo-

rithm in robotics that employs a particle filter for determining

the localization (position and orientation) of a robot. Localiza-

tion entails estimating the robot's position and orientation,

collectively known as its pose, as it moves and senses its sur-

roundings. In localization, each particle has its unique map of

the environment as well as offers a potential estimate of the

robot's location, i.e. to estimate where the robot is. The algo-

rithm typically initiates with a random distribution of particles

across the pose space. When the robot moves, the particle shifts

and attempts to predict its update. When the robot detects a

recognizable feature, the weights of the particles surrounding

that feature increase according to a Gaussian distribution pat-

tern. Upon movement of the robot, the particles are re-sampled

with equal weights in accordance with recursive Bayesian

estimation, ensuring that, the number of particles in the areas

where the previous belief was high is greater than in the rest of

the space. This process continues until the particles converge

around the robot's actual pose. In this manner, the performance

of each particle can be observed, and more particles from that

neighborhood can be drawn when necessary. To maintain a

consistent particle count, resampling is employed. However,

because the correlation score for each particle must be calcu-

lated iteratively, this localization method is computationally

http://www.sciencepg.com/journal/frontiers

Frontiers http://www.sciencepg.com/journal/frontiers

96

intensive. As a result, increasing the number of particles

eventually increases computation time, while decreasing the

number of particles may lead to poor localization. To enhance

this type of localization, Adaptive Monte Carlo Localization

(AMCL) [13] has emerged, which optimizes MCL by adap-

tively sampling the particles based on error estimates using the

Kullback-Leibler divergence (KLD) and is increasingly em-

ployed to improve such a form of localization. It regulates the

quantity of particles based on the odometry and the differences

in particle-based position. The detail is shown in Figure 4.

Figure 4. The software architecture of the method of three main modules i.e. mapping, localization, and planning.

4. Experimental Results

Mapping, localizing, and planning routes for autonomous

mobile robots in indoor settings have been tested in simulated

environments built on the simulation software and imple-

menting the autonomous mobile robot. The experiments were

carried out in unstructured indoor environments in different

scenarios. The gazebo was used as a simulator for creating the

simulation environments due to its capability to efficiently

and accurately simulate a wide range of robots in complex

indoor environments. The experimental findings for the au-

tonomous mobile robots operating in indoor environments,

where mapping, localization, and path planning are performed

within the Gazebo simulator. Figure 6 shows the mapping

process using the Gazebo simulation environments for au-

tonomous mobile robots, while Figure 7 shows Rviz visuali-

zation results for the localization process, and Figure 8 shows

the path planning process. During the experiments in the

Gazebo Simulator, an RPLIDAR scanner is used to create a

global map of a given environment and estimate the auton-

omous mobile robot pose within the map, as well as path

planning.

The mapping process depicted in Figure 6, shows the process

of mapping in ROS, during mapping by giving goal points the

robot moves the same wise to make a map autonomously and

saves by using a map saver as yaml and pgm file in the ROS.

Pose, orientation, and localization are all part of the process of

localization. In Figure 6 (no:1, no:2) Simulation in Rviz, the

black dots and line represent obstacles through which the mo-

bile robot cannot pass; the white area represents a local cost

map for obstacle avoidance with static and dynamic objects; In

the map, the robot is red color and the green axes represent the

mobile robot's current pose; that is, x-y-z axes; its particles used

by the AMCL algorithm to estimate the mobile robot's pose.

Figure 6 (no:3) shows the saved map and pgm/yaml infor-

mation. The autonomous mobile robot system can have multi-

ple broadcasters, with each one conveying information a dis-

tinct component of the robot of the robot. The different coor-

dinate frames defined in ROS and utilized in this paper: The

first is Robot footprint: - This frame, referred to as the "robot's

frame." is securely fastened at the center of the mobile base,

positioned between the two wheels. The sensor is linked to the

base link. This frame helps easily visualize the robot's location

on a given map. The second is Odom: - The Odom frame is the

frame that is located at the starting point of the robot's move-

ment. The third is Map: - The map frame, like the Odom frame,

the map frame serves as a reference. However, with the only

difference being that the pose of the robot, relative to the map

frame remains relatively stable over time, unlike the odom

frame. This frame is where the SLAM (Simultaneous Locali-

http://www.sciencepg.com/journal/frontiers

Frontiers http://www.sciencepg.com/journal/frontiers

97

zation and Mapping) process occurs. The fourth is sensor frame:

- These frames are primarily defined by the type of sensors. The

detail of the autonomous mobile robot and tree representation

of coordinate frames defined in the robot operating system are

depicted in Figure 5.

Figure 5. Coordinate Robot and Tree representation of frames defined in ROS.

Various applications of indoor autonomous mobile robots, including servicing in hotels, helping disabled people, cleaning, and more.

Figure 6. Mapping Process.

http://www.sciencepg.com/journal/frontiers

Frontiers http://www.sciencepg.com/journal/frontiers

98

Figure 7. Localization process.

The simulation results of the AMCL in Ros are shown in

Figure 7, in which number (1) shows particles cloud-dense

because of high uncertainty, number (2) and number (3) show

particle alignment once the AMR starts moving and number

(4) shows that particles converged in a stable state.

The planning module is mainly built on the move-based

ROS package, which is a critical component of the navigation

stack. The move base package includes a ROS interface for

configuring, running, and interacting with the navigation

stack, which consists of several inner components such as a

global planner, local planner, global cost map, local cost map,

and recovery behaviors. While such inner components are

already implemented in the navigation stack, each robot

platform requires the creation of components for a base con-

troller, an odometry source, sensor sources, and sensor

transforms. These components are created in this paper, using

the Autonomous mobile robot and the RPLIDAR scanner. As

a result, the package can easily implement the functions re-

quired for autonomous navigation. To build a local cost map

for collision avoidance, generate collision-free trajectories to

reach the goal pose, and generate control commands to follow

the trajectories. The package requires five data inputs: raw

laser range data, frame transform data, prebuilt map data,

estimated current pose data of the mobile robot, and goal pose

data. The mapping and localization modules provide the

prebuilt map and the estimated current pose of the mobile

robot, respectively. As shown in Figure 8 (a), (b), (c), the

mobile robot finally outputs trajectories and control com-

mands (x, y, and θ velocities). The blue line extending from

the mobile robot's current pose represents the global path to a

given goal pose while avoiding obstacles, and the short and

bright green line located beneath or next to the global path

represents the local path to follow the global path.

a) Path planning moving from the right (current pose) to the left (goal pose)

http://www.sciencepg.com/journal/frontiers

Frontiers http://www.sciencepg.com/journal/frontiers

99

b) Path planning moving from the left (current pose) to the right (goal pose)

c) The robots reached their goal pose

Figure 8. Path planning process.

5. Conclusion

The presented autonomous mobile robot system in a sim-

ulated indoor environment using open-source ROS packages

to address the challenge of developing an indoor autonomous

mobile robot mapping, localization, and path planning system.

The presented system allows a mobile robot to map, locali-

zation, and plan indoor environments with both static and

dynamic objects without colliding. To that end, the system is

divided into three major components: mapping, localization,

and planning. Using the cartography ROS package and the

cartography SLAM algorithm, the mapping module creates a

global map for an unknown environment. The localization

module estimates the mobile robot's current pose within the

prebuilt map using the AMCL approach. Using the moving

base ROS package, the planning module creates a local cost

map for collision avoidance, generates collision-free trajec-

tories to reach a goal pose, and generates control commands to

follow the trajectories. The results of this experiments show

that the presented system provides dependable performance

for autonomous mobile robot indoor navigation, including

collision avoidance with both static and dynamic objects.

Abbreviations

AMCL Adaptive Monte Carlo Localization

AMR Autonomous Mobile Robot

API Application Programming Interface

2D Two Dimensional

3D Three Dimensional

GPS Global Positioning System

http://www.sciencepg.com/journal/frontiers

Frontiers http://www.sciencepg.com/journal/frontiers

100

IMU Inertia Measurement Unit

KLD Kullback-Leibler Divergence

MCL Monte Carlo Localization

Rviz ROS-Visualization

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping

SPA Sparse Pose Adjustment

Author Contributions

Tsegaye Alemu Tola: Conceptualization, Resources, Data

curation, Software, Formal Analysis, Validation, Writ-

ing-original draft, Methodology, Visualization, Writing -

review& editing

Jing Mi: Supervision, Funding acquisition, Visualization,

Project administration

Yanqiu Che: Supervision

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Xiang, Guofei, Songyi Dian, Ning Zhao, and Guodong Wang.

2023. "Semantic-Structure-Aware Multi-Level Information

Fusion for Robust Global Orientation Optimization of Au-

tonomous Mobile Robots" Sensors, vol. 23, no. 3, pp. 1125.

https://doi.org/10.3390/s23031125

[2] H. Durrant-Whyte and T. Bailey, "Simultaneous localization

and mapping: part I," in IEEE Robotics & Automation Maga-

zine, vol. 13, no. 2, pp. 99-110, June 2006,

https://doi.org/10.1109/MRA.2006.1638022

[3] T. Bailey and H. Durrant-Whyte, "Simultaneous localization

and mapping (SLAM): part II," in IEEE Robotics & Automa-

tion Magazine, vol. 13, no. 3, pp. 108-117, Sept. 2006,

https://doi.org/10.1109/MRA.2006.1678144

[4] C. Cadena et al., "Past, Present, and Future of Simultaneous

Localization and Mapping: Toward the Robust-Perception

Age," in IEEE Transactions on Robotics, vol. 32, no. 6, pp.

1309-1332, Dec. 2016,

https://doi.org/10.1109/TRO.2016.2624754

[5] Ceriani, S., Marzorati, D., Matteucci, M. et al. "Single and

Multi-Camera Simultaneous Localization and Mapping Using

the Extended Kalman Filter," J Math Model Algor vol. 13, pp.

23–57 (2014). https://doi.org/10.1007/s10852-013-9219-7

[6] Song, W., Yang, Y., Fu, M. et al. "Critical Rays Self-Adaptive

Particle Filtering SLAM," J Intell Robot Syst vol. 92, pp. 107–

124 (2018). https://doi.org/10.1007/s10846-017-0742-z

[7] Namitha, N. & S. M., Vaitheeswaran & Jayasree, V. K. &

Bharat, M. K. "Point Cloud Mapping Measurements Using

Kinect RGB-D Sensor and Kinect Fusion for Visual Odome-

try," Procedia Computer Science. vol. 89, pp. 209-212,

https://doi.org/10.1016/j.procs.2016.06.044

[8] Navigation ROS stack [Online]. Available:

http://wiki.ros.org/navigation; (accessed June. 8, 2024).

[9] Sobczak, Ł., Filus, K., Domańska, J. et al. "Finding the best

hardware configuration for 2D SLAM in indoor environments

via simulation based on Google Cartographer," Sci Rep 12, no.

18815 (2022), https://doi.org/10.1038/s41598-022-22938-y

[10] ROS. [Online]. Available: http://www.ros.org/ (accessed June

21, 2024)

[11] Gazebo simulator [Online]. Available: http://gazebosim.org

(accessed June 1, 2024).

[12] Turner, Lisa, and Chris Sherlock. “An Introduction to Particle

Filtering.” (2013).

https://www.semanticscholar.org/paper/An-Introduction-to-Pa

rtcle-Filtering-Turner-Sherlock/a0edd717357da69987222faa0

3fc5e0f3aff1c91#citing-papers. Retrieved: July 10, 2024.

[13] AMCL ROS Package [online]: Available:

http://wiki.ros.org/amcl (accessed July 4, 2024)

[14] Hess, Wolfgang, Damon Kohler, Holger Rapp, and Daniel

Andor. "Real-time loop closure in 2D LIDAR SLAM." In 2016

IEEE International Conference on Robotics and Automation

(ICRA), pp. 1271-1278. IEEE, 2016.

https://doi.org/10.1109/ICRA.2016.7487258

[15] Kiss-Illés, Dániel, Cristina Barrado, and Esther Salamí. 2019.

"GPS-SLAM: An Augmentation of the ORB-SLAM Algo-

rithm" Sensors vol. 19, no. 22: 4973.

https://doi.org/10.3390/s19224973

[16] Chen, Weifeng, Guangtao Shang, Aihong Ji, Chengjun Zhou,

Xiyang Wang, Chonghui Xu, Zhenxiong Li, and Kai Hu. 2022.

"An Overview on Visual SLAM: From Tradition to Semantic"

Remote Sensing 14, no. 13: 3010.

https://doi.org/10.3390/rs14133010

[17] Mahmoud, Imbaby & Salama, May & Tawab, Asmaa. (2014).

Particle / Kalman Filter for Efficient Robot Localization. In-

ternational Journal of Computer Applications. 106. 20-27.

https://doi.org/10.5120/18492-9554

http://www.sciencepg.com/journal/frontiers

