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Abstract 

Current status data occurs when failure time of subjects in a survival study is only known to be either less or greater than the 

censoring time. Thus, the failure time is either left – or right – censored. Analyzing data of this structure under the Cox 

Proportional Hazards model with dependent censoring assumption can be challenging. To address this, a Penalized Maximum 

Likelihood Estimation (PMLE) approach was proposed. The unknown baseline cumulative hazard functions for both the 

failure time and the censoring time were estimated using splines. The advantage of penalized approach over unpenalized 

method is that that the desired smoothness level of the functions are controlled by their respective penalty terms. The possible 

dependence between the failure and censoring times was accounted for using the gamma-frailty model. An easy to implement 

hybrid computational algorithm is proposed to estimate the PMLEs and the Bayesian technique was employed for the 

estimation of the variances of the parameters. Extensive simulation studies were conducted to assess the statistical properties of 

the PMLEs. It was observed that the realized estimators were not only consistent, asymptotically normal and efficient, but also, 

were robust to the number of knots chosen, the proportion of dependent censoring used and the frailty distribution employed. 

The proposed PMLE method was further applied to real data obtained from tumorigenicity experiment. 
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1. Introduction 

Current status data also known as interval-censored case I 

occurs when the failure time 𝑇𝑖  is not exactly observed but 

only known to be less or greater than the examination time 𝐶𝑖. 

Thus, 𝑇𝑖  is either left-censored or right-censored at 𝐶𝑖. This 

type of data is encountered in many areas of studies especially 

in animal carcinogenicity experiments (see [10]), where an-

imals are examined for the presence or absence of the event 

under study at their death or sacrifice times 𝐶𝑖 after exposing 

them to cancerous environment. If 𝐶𝑖 and 𝑇𝑖  are assumed to 

be independent, then the censoring is said to be noninforma-

tive otherwise, it is informative. Many authors have proposed 

methods of analyzing noninformative current status data (see 
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[4, 8, 17]). However, the assumption of noninformative cen-

soring may be violated in some circumstances and therefore, 

analyzing such data using methods developed for nonin-

formative censoring can lead to bias inferences. A number of 

authors have also developed procedures for the analysis of 

informative current status data (see [7, 10]). However, these 

authors did so in a restrictive context of animal tumorigenic-

ity experiments, where observation time is either at death or 

random sacrifice times. If an animal dies naturally, this death 

may have something to do with both the onset of the tumor 

and the treatment it is exposed to. These authors estimated 

the baseline cumulative hazard functions (CHFs) using tran-

sition functions and adopted expectation maximization (EM) 

algorithm for estimation after using the piecewise constant 

modeling approach to approximate those transition functions. 

These procedures are not only computationally cumbersome 

but also provides a highly restrictive application in practice. 

The concept of frailty (see [15]) has been the most common-

ly used approach in literature to account for the informative 

censoring with current status data. 

For unrestrictive procedure, Zhang et al. (see [19]) pro-

posed a novel method by cleverly merging the hazards for 𝑇𝑖 , 

assumed to follow additive hazards frailty model and the 

hazards for 𝐶𝑖 , assumed to follow proportional hazards 

frailty model, into a form of an additive hazards model. This 

approach though easy to implement, estimates only the re-

gression parameters and avoids the estimation of the baseline 

hazard function as well as the frailty parameter. Chen et al. 

(see [1]) also proposed a class of semiparametric models and 

proposed a novel EM algorithm for the estimation, but ap-

proximated the baseline functions using piecewise constant 

approximation. Lu and Li (see [8]) also discussed sieve EM 

approach for the fitting but used splines to approximate the 

baseline cumulative hazard function (CHF) for the 𝑇𝑖  and 

piece-wise constant for 𝐶𝑖 . The major limitation of EM 

based on piece-wise constant approach is that, it does not 

produce the required smooth curves for a clearer trend of 

how the hazard of the event changes with time. In addition, if 

the piecewise constant assumption of the baseline CHFs is 

not the case in reality, then the accuracy of the corresponding 

inferences will be in doubt. Moreover, the EM based on sieve 

methods of estimation is not only complex in its approach, 

but also often has slow convergence if the initial values are 

not correctly chosen. Furthermore, separate computation is 

needed for the variance estimates. These difficulties moti-

vated this study. Thus, in this work, an extension of the ar-

guments of the authors (see [1, 9, 11]) to the environment of 

penalized likelihood estimation is made. The main goal of 

this paper therefore, is to propose a Penalized Maximum 

Likelihood Estimation (PMLE) procedure for the Propor-

tional Hazard model under informative current status data, 

where the baseline CHFs for the 𝑇𝑖  and 𝐶𝑖  are approxi-

mated using splines (see [14]) and the informative censoring 

is accounted for using gamma frailty variable. 

The paper is organized as follows: Section 2 presents the 

Materials and Methods whiles Section 3 contains the Results 

and Discussions whiles section 4 contains the concluding 

remarks. 

2. Materials and Methods 

2.1. Notations, Models and Penalized 

Log-Likelihood Function Construction 

Suppose in a survival study, there exists one of two poten-

tial observation times for each individual: either at a 

pre-specified time 𝐶𝑖
∗  or random time 𝐶𝑖  to ascertain 

whether or not the event of interest has occurred. Thus, the 

observation time is 𝐶̃𝑖 = 𝑚𝑖𝑛( 𝐶𝑖 , 𝐶𝑖
∗). If 𝐶̃𝑖 = 𝐶𝑖, it is con-

sidered informative with an indicator ∆𝑖= 1 and survival 

function 𝑆𝐶  and if 𝐶̃𝑖 = 𝐶𝑖
∗, it is considered noninformative 

with indicator ∆𝑖= 0. For the failure times 𝑇𝑖  with the sur-

vival function 𝑆𝑇, we define the indicator 𝛿𝑖 = 1 if 𝑇𝑖 ≤ 𝐶̃𝑖 

and 𝛿𝑖 = 0  if otherwise. If 𝑍 denotes time-independent 

p-covariates and the possible correlation between 𝑇𝑖  and 𝐶̃𝑖 

is accounted for by the individual’s frailty 𝑏𝑖. Then the cur-

rent status data consist of the set 𝑋𝑖 = (𝐶̃𝑖 , 𝛿𝑖, 𝛥𝑖 , 𝑍𝑖 , 𝑏𝑖 , 𝑖 =

1,2, … , 𝑛). Therefore, evaluating the effects of 𝑍 on 𝑇𝑖  and 

on 𝐶𝑖 using the Cox frailty model can be expressed as; 

𝛬𝑇(𝑡𝑖|𝑍𝑖, 𝑏𝑖) = 𝑏𝑖𝛬0𝑡(𝑡𝑖) 𝑒𝑥𝑝( 𝛽
𝑇𝑍𝑖)        (1) 

𝛬𝐶(𝑐𝑖|𝑍𝑖, 𝑏𝑖) = 𝑏𝑖𝛬0𝑐(𝑐𝑖) 𝑒𝑥𝑝( 𝛾
𝑇𝑍𝑖)        (2) 

where 𝛬0𝑡(𝑡𝑖) and Λ0𝑐(𝑐𝑖) are unspecified baseline CHFs 

of 𝑇𝑖  and 𝐶𝑖  respectively; 𝛽  and 𝛾  denote the corre-

sponding regression parameters of 𝑍. The 𝑏𝑖 can obey any 

distribution with strictly positive support. However, the 

gamma distribution has been widely used for modeling de-

pendence in multivariate survival time (see [5]), because of 

the possibility of obtaining a closed form expression of mar-

ginal likelihood functions using Laplace transform (see [6]) 

defined as 

𝐿𝑏(𝑠) = 𝐸(𝑒
−𝑠𝑏) = ∫ 𝑒−𝑠𝑏𝑔(𝑏; 𝜃)𝑑𝑏𝑖

∞

0
= (1 + 𝜃𝑠)−

1

𝜃  (3) 

where 𝑔(𝑏𝑖; 𝜃) =
𝑏𝑖
.
1
𝜃
−1/

𝑒𝑥𝑝.−
𝑏𝑖
𝜃
/

𝜃
1
𝜃𝛤.

1

𝜃
/

 is the gamma distribution 

with mean 1 and variance 𝜃. High value of 𝜃 indicates a 

stronger correlation between the 𝑇𝑖  and 𝐶̃𝑖 and vice-versa. 

It can be seen that the likelihood function for the complete 

current status dataset would consist of four cases depending 

on the categories defined by 𝛥𝑖 and 𝛿𝑖. If 𝑇𝑖  and 𝐶̃𝑖 are 

assumed to be independent only when 𝑏𝑖 and 𝑍𝑖 are given, 

then the joint conditional likelihood function associated with 

these categories labeled A to D are as follows; 
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(A) This category comprises of individuals with right-censored failure times at non-informative observation times 

𝐿1(𝜃1, 𝜃2|𝑍𝑖 , 𝑏𝑖) = 𝑃(𝛿𝑖 = 0, 𝛥𝑖 = 0|𝑍𝑖 , 𝑏𝑖) = 𝑃(𝑇𝑖 > 𝐶̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑃(𝐶𝑖 > 𝐶̃𝑖|𝑍𝑖 , 𝑏𝑖) = 𝑆𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 

= 𝑒𝑥𝑝(−𝑏𝑖𝛬0𝑡(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛽
𝑇𝑍𝑖)) 𝑒𝑥𝑝(−𝑏𝑖𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖)) = 𝑒𝑥𝑝*−𝑏𝑖(𝛬0𝑡(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛽
𝑇𝑍𝑖) + 𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖))+  (4) 

Integrating out 𝑏𝑖 in (4) using the concept in (3), we obtain the unconditional likelihood as 

𝐿1 = 𝐿1(𝛷|𝑍𝑖) = ∫ 𝑒𝑥𝑝*−𝑏𝑖(𝛬0𝑡(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛽
𝑇𝑍𝑖) + 𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖))+ 𝑔(𝑏𝑖 , 𝜃)
∞

0
𝑑𝑏𝑖  

= *1 + 𝜃(𝛬0𝑡(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛽
𝑇𝑍𝑖) + 𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖))+
−
1

𝜃                                   (5) 

where 𝛷 = (𝜃1, 𝜃2, 𝜃) with 𝜃1 = (𝛽, 𝛬0𝑡(⋅)) and 𝜃2 = (𝛾, 𝛬0𝑐(⋅)) are the parameters to be estimated. 

(B) This category comprises of individuals with left-censored failure times at non-informative observation times 

𝐿2(𝜃1, 𝜃2|𝑍𝑖 , 𝑏𝑖) = 𝑃(𝛿𝑖 = 1, 𝛥𝑖 = 0|𝑍𝑖 , 𝑏𝑖) = 𝑃(𝑇𝑖 ≤ 𝐶̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑃(𝐶𝑖 > 𝐶̃𝑖|𝑍𝑖 , 𝑏𝑖) 

= 𝐹𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) = ,1 − 𝑆𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)-𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) = 𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) − 𝑆𝑇(𝑐̃𝑖|𝑍𝑖, 𝑏𝑖)𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 

The unconditional joint likelihood can be obtained by; 

𝐿2 = 𝐿2(𝛷|𝑍𝑖) = ∫ 𝑆𝐶(𝑐̃𝑖|𝑍𝑖, 𝑏𝑖)𝑔(𝑏𝑖 , 𝜃)𝑑𝑏𝑖 − ∫ 𝑆𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)
∞

0
𝑔(𝑏𝑖 , 𝜃)

∞

0
𝑑𝑏𝑖  

= [∫ 𝑒𝑥𝑝*−𝑏𝑖(𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾
𝑇𝑍𝑖))+ 𝑔(𝑏𝑖 , 𝜃)

∞

0
𝑑𝑏𝑖] − 𝐿1 = (1 + 𝜃(𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖)))
−
1

𝜃 − 𝐿1       (6) 

(C) This category comprises of individuals with right-censored failure times at the informative observation times 

𝐿3(𝜃1, 𝜃2|𝑍𝑖 , 𝑏𝑖) = 𝑃(𝛿𝑖 = 0, 𝛥𝑖 = 1|𝑍𝑖 , 𝑏𝑖) = 𝑃(𝑇𝑖 > 𝐶̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑃(𝐶𝑖 = 𝐶̃𝑖|𝑍𝑖 , 𝑏𝑖) 

= 𝑆𝑇(𝑐̃𝑖|𝑍𝑖, 𝑏𝑖) 𝑓𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) = 𝑆𝑇(𝑐̃𝑖|𝑍𝑖, 𝑏𝑖) λ𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 

The unconditional likelihood is therefore 

𝐿3 = 𝐿3(𝛷|𝑍𝑖) = ∫ 𝑆𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) λ𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)
∞

0
𝑔(𝑏𝑖 , 𝜃)𝑑𝑏𝑖  

= ∫ 𝜆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 𝑆𝐶(𝑐̃𝑖|𝑍𝑖, 𝑏𝑖)
∞

0
𝑆𝑇(𝑐̃𝑖|𝑍𝑖, 𝑏𝑖)𝑔(𝑏𝑖 , 𝜃)𝑑𝑏𝑖  

= ∫ 𝑏𝑖 λ0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾
𝑇𝑍𝑖)

∞

0
𝑒𝑥𝑝(−𝑏𝑖𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖)) 𝑒𝑥𝑝(−𝑏𝑖𝛬0𝑡(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛽
𝑇𝑍𝑖)) 𝑔(𝑏𝑖; 𝜃)𝑑𝑏𝑖  

= −∫
𝑑

𝑑𝛬0𝑐
*𝑒𝑥𝑝(−𝑏𝑖𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖))+ 𝑒𝑥𝑝(−𝑏𝑖𝛬0𝑡(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛽
𝑇𝑍𝑖)) 𝑔(𝑏𝑖; 𝜃)𝑑𝑏𝑖

∞

0
  

= −
𝑑

𝑑𝛬0𝑐
[∫ 𝑒𝑥𝑝(−𝑏𝑖(𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖) + 𝛬0𝑡(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛽
𝑇𝑍𝑖))) 𝑔(𝑏𝑖 ; 𝜃)𝑑𝑏𝑖

∞

0
]  

= −
𝑑

𝑑𝛬0𝑐
[(1 + 𝜃(𝛬0𝑡(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛽

𝑇𝑍𝑖) + 𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾
𝑇𝑍𝑖)))

−
1

𝜃]  

= 𝜆0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾
𝑇𝑍𝑖)(1 + 𝜃(𝛬0𝑡(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛽

𝑇𝑍𝑖) + 𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾
𝑇𝑍𝑖)))

−
1

𝜃
−1               (7) 

(D) This category comprises of individuals with left-censored failure times at the informative observation times 

𝐿4(𝜃1, 𝜃2|𝑍𝑖 , 𝑏𝑖) = 𝑃(𝛿𝑖 = 1, 𝛥𝑖 = 1|𝑍𝑖 , 𝑏𝑖) = 𝑃(𝑇𝑖 ≤ 𝐶̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑃(𝐶𝑖 = 𝐶̃𝑖|𝑍𝑖 , 𝑏𝑖)  = 𝐹𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 𝑓𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) =

𝐹𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) λ𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) = ,1 − 𝑆𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)- λ𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)  
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= 𝜆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) − 𝑆𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)𝜆𝐶(𝑐̃𝑖|𝑍𝑖, 𝑏𝑖) 𝑆𝐶(𝑐̃𝑖|𝑍𝑖, 𝑏𝑖)  

The unconditional likelihood is therefore  

𝐿4 = 𝐿4(𝛷|𝑍𝑖) = ∫ 𝜆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑔(𝑏𝑖 ; 𝜃)𝑑𝑏
∞

0
− ∫ 𝑆𝑇(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)𝜆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖)𝑆𝐶(𝑐̃𝑖|𝑍𝑖, 𝑏𝑖)𝑔(𝑏𝑖; 𝜃)𝑑𝑏𝑖

∞

0
  

= [∫ 𝜆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 𝑆𝐶(𝑐̃𝑖|𝑍𝑖 , 𝑏𝑖) 𝑔(𝑏𝑖; 𝜃)𝑑𝑏
∞

0
] − 𝐿3  

= [∫ 𝑏𝑖𝜆0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝(𝛾
𝑇𝑍𝑖) 𝑒𝑥𝑝(−𝑏𝑖𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖)) 𝑔(𝑏𝑖; 𝜃)𝑑𝑏𝑖
∞

0
] − 𝐿3  

= 0−∫
𝑑

𝑑𝛬0𝑐
*𝑒𝑥𝑝(−𝑏𝑖𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖))+𝑔(𝑏𝑖; 𝜃)𝑑𝑏𝑖
∞

0
1 − 𝐿3  

= −
𝑑

𝑑𝛬0𝑐
[∫ *𝑒𝑥𝑝(−𝑏𝑖𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖))+𝑔(𝑏𝑖; 𝜃)𝑑𝑏𝑖
∞

0
] − 𝐿3  

= −
𝑑

𝑑𝛬0𝑐
0(1 + 𝜃𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖))
−
1

𝜃1 − 𝐿3  

= 𝜆0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾
𝑇𝑍𝑖)(1 + 𝜃𝛬0𝑐(𝑐̃𝑖) 𝑒𝑥𝑝( 𝛾

𝑇𝑍𝑖))
−
1

𝜃
−1 − 𝐿3                       (8) 

he full likelihood and its log-likelihood function therefore can be written respectively as 

𝐿𝑓(𝛷) = ∏ [(𝐿1)
(1−𝛿𝑖)(1−𝛥𝑖)(𝐿2)

𝛿𝑖(1−𝛥𝑖)(𝐿3)
(1−𝛿𝑖)𝛥𝑖(𝐿4)

𝛿𝑖𝛥𝑖]𝑛
𝑖=1                       (9) 

𝑙(𝛷) = ∑ ,(1 − 𝛿𝑖)(1 − 𝛥𝑖) 𝑙𝑜𝑔 𝐿1 + 𝛿𝑖(1 − 𝛥𝑖) 𝑙𝑜𝑔 𝐿2 + (1 − 𝛿𝑖)𝛥𝑖 𝑙𝑜𝑔 𝐿3 + 𝛿𝑖𝛥𝑖 𝑙𝑜𝑔 𝐿4-
𝑛
𝑖=1       (10) 

In reality, 𝛬0𝑡 and 𝛬0𝑐 are expected to be smooth so that its trend of changing hazard over time can be clearly observed. 

Therefore, to control their possible roughness, each was penalized by subtracting their respective penalty terms from the func-

tion in (10) to obtain 

𝑝𝑙(𝛷) = 𝑙(𝛷) −
𝜅1

2
∫𝛬0𝑡

′′ 2(𝑡)𝑑𝑡 −
𝜅2

2
∫𝛬0𝑐

′′ 2(𝑡)𝑑𝑡                              (11) 

where 𝜅1 ≥ 0 and 𝜅2 ≥ 0 are the smoothing parameters that control the smoothness level of 𝛬0𝑡(𝑡) and 𝛬0𝑐(𝑡) respec-

tively. Maximizing (11) for given 𝜅1 and 𝜅2 gives us the PMLE 𝛷. 

2.2. Modeling Baseline CHFs 𝜦𝟎𝒕(⋅) and 𝜦𝟎𝒄(⋅) With Splines 

The 𝛬0𝑡(⋅) and 𝛬0𝑐(⋅) were estimated using the integrated spline functions. This approach does not only allow flexible 

shapes of the function but also ensures a significant reduction in the number of required parameters to estimate. One can refer 

to [2] for details on splines. Thus, each baseline function is approximated as (see [17]); 

𝛬̂0𝑡(𝑡) ≈ ∑ 𝛼̂𝑗𝐼𝑗(𝑡)
𝑚
𝑗=1

𝛬̂0𝑐(𝑡) ≈ ∑ 𝜂̂𝑗𝐼𝑗(𝑡)
𝑚
𝑗=1

}                                         (12) 

where 𝛼𝑗 and 𝜂𝑗 are the spline coefficients that are constraint to be positive using the square transformation; 𝑚 = 𝑞𝑛 + 𝑘 is 

the required number of spline basis functions; 𝑞𝑛 is the number of knots and 𝐼𝑗(𝑡) is the integrated spline basis of degree 𝑘 

defined as (see [14]); 

𝐼𝑗(𝑥; 𝑘) = ∫ 𝑀(𝑢, 𝑘)𝑑𝑢
𝑥

0
                                         (13) 

where 𝑀(𝑥, 𝑘) is the monotone spline calculated recursively by the formula as; 

http://www.sciencepg.com/journal/bsi


Biomedical Statistics and Informatics http://www.sciencepg.com/journal/bsi 

 

43 

𝑀𝑗(𝑥; 𝑘) = {

𝑘[(𝑥−𝑡𝑗)𝑀𝐽(𝑥;𝑘−1)+(𝑡𝑗+𝑘−𝑥)𝑀𝐽+1(𝑥;𝑘−1)]

(𝑘−1)(𝑡𝑗+𝑘−𝑡𝑗)
 ,               𝑡𝑗 ≤ 𝑥 < 𝑡𝑗+𝑘 

0,                                                                             𝑒𝑙𝑠𝑒𝑤𝑕𝑒𝑟𝑒  
                   (14) 

with 𝑀𝑗(𝑥; 1) = {

1

(𝑡𝑗+𝑘−𝑡𝑗)
 ,     𝑡𝑗 ≤ 𝑥 < 𝑡𝑗+1 

0,                  𝑒𝑙𝑠𝑒𝑤𝑕𝑒𝑟𝑒  
                                 (15) 

where 𝑡1, 𝑡2, . . . , 𝑡𝑚 is a sequence of increasing knots in the interval [𝐶̃𝑚𝑖𝑛 , 𝐶̃𝑚𝑎𝑥]. In this study, 𝑞𝑛 is determined using the 

relation 𝑞𝑛 = ⌊𝑛
1

3⌋, where ⌊𝑛
1

3⌋ is the integer part of 𝑛
1

3 and then position the knots using the quantile method. These spline 

basis functions can easily be computed using the R package ‘splines2’ developed by [18]. 

To further reduce the computational burden of (11), the roughness penalty terms for 𝛬0𝑡(⋅) and 𝛬0𝑐(⋅) was approximated 

in terms of splines using the argument of [3] as; 

𝜅1

2
∫𝛬″0𝑡

2
(𝑡)𝑑𝑡 ≈

𝜅1

2
∑ (𝛥2𝛼𝑗)

2 =𝑚
𝑗=3

𝜅1

2
∑ (𝛼𝑗 − 2𝛼𝑗−1 + 𝛼𝑗−2)

2𝑚
𝑗=3 =

𝜅1

2
𝛼𝑇𝐴𝑇𝐴𝛼 =

𝜅1

2
𝛼𝑇𝑅1𝛼         (16) 

𝜅2

2
∫𝛬″0𝑐

2
(𝑡)𝑑𝑡 ≈

𝜅2

2
∑ (𝛥2𝜂𝑗)

2 =𝑚
𝑗=3

𝜅2

2
∑ (𝜂𝑗 − 2𝜂𝑗−1 + 𝜂𝑗−2)

2𝑚
𝑗=3 =

𝜅2

2
𝜂𝑇𝐶𝑇𝐶𝜂 =

𝜅2

2
𝜂𝑇𝑅2𝜂         (17) 

where 𝐴 = 𝐶 are suitably defined penalty matrices each of size (𝑚 − 2) × 𝑚 based on the second-order difference operator 

𝛥2. Therefore, (11) can be re-written as; 

𝑝𝑙(𝛷) = 𝑙(𝛷) −
𝜅1

2
𝛼𝑇𝑅1𝛼 −

𝜅2

2
𝜂𝑇𝑅2𝜂                              (18) 

Given 𝜅1 and 𝜅2, we can obtain the PMLE, 𝛷̂ = (𝛽̂, 𝛾, 𝛼̂, 𝜂̂, 𝜃̂)𝑇 by maximizing (18). 

2.3. Selection of the Smoothing Parameters 𝜿𝟏 and 𝜿𝟐 

O’Sullivan (see [13]) proposed an approximated cross validation score (CVS) for the determination of optimal 𝜅1 and 𝜅2, 

which is herein adapted, and is given by 

𝐶𝑉𝑆(𝜅𝑕) = −
1

𝑛
𝑙(𝛷̂𝜅ℎ) +

1

𝑛
𝑡𝑟𝑎𝑐𝑒 0(𝐻̂𝑝𝑙(𝛷̂𝜅ℎ))

−1
𝐻̂𝑙(𝛷̂𝜅ℎ)1                         (19) 

where 𝑙(𝛷̂𝜅ℎ) is defined in (10), 𝐻̂𝑝𝑙(𝛷̂𝜅ℎ) and 𝐻̂𝑙(𝛷̂𝜅ℎ) are respectively the Hessian matrices of (18) and (10). A search for 

the value of 𝜅𝑕, which maximizes (19) using the grid search is then carried out. But simultaneous determination of 𝜅1 and 𝜅2 

may pose computational challenges. For that matter, a proposal to maximize their respective penalized log-likelihood under the 

assumption of noninformative observation times was made. Thus, to choose 𝜅1, the data (𝐶̃𝑖 , 𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶̃𝑖), 𝑍𝑖) is used and 

the log-likelihood and penalized functions can be written respectively as; 

𝑙(𝜃1) = ∑ (𝛿𝑖 𝑙𝑜𝑔(1 − 𝑒𝑥𝑝(−∑ 𝛼𝑗𝐼𝑗
𝑚
𝑗=1 (𝑡) 𝑒𝑥𝑝( 𝛽𝑇𝑍𝑖))) − (1 − 𝛿𝑖) ∑ 𝛼𝑗𝐼𝑗

𝑚
𝑗=1 (𝑡) 𝑒𝑥𝑝( 𝛽𝑇𝑍𝑖))

𝑛
𝑖=1           (20) 

𝑝𝑙(𝜃1) = 𝑙(𝜃1) −
𝜅1

2
𝛼𝑇𝑅1𝛼                                   (21) 

where 𝜃1 = (𝛽1, . . . , 𝛽𝑝, 𝛼1, … , 𝛼𝑚)
𝑇. 

The approximate CVS for (21) is 

𝐶𝑉𝑆(𝜅1) = −
1

𝑛
𝑙(𝜃̂𝜅1) +

1

𝑛
𝑡𝑟𝑎𝑐𝑒 0(𝐻̂𝑝𝑙(𝜃̂𝜅1))

−1
𝐻̂𝑙(𝜃̂𝜅1)1  (22) 

where 𝑙(⋅) is defined in (20), 𝐻̂𝑝𝑙(𝜃̂𝜅1) and 𝐻̂𝑙(𝜃̂𝜅1) are 

the Hessian matrices of (21) and (20) computed at 𝜃̂𝜅1, 𝑅1 

is as defined previously. Then (22) is optimized using grid 

search to obtain 𝜅1 and a good initial guess of the vector 𝜃̂1. 

Similarly, to choose 𝜅2, we treated the data set  

(𝐶̃𝑖 , 𝛥𝑖 = 𝐼(𝐶𝑖 ≤ 𝐶𝑖
∗), 𝑍𝑖)  as right-censored data where 

𝐶̃𝑖 = 𝑚𝑖𝑛(𝐶𝑖 , 𝐶𝑖
∗) with indicator function 𝛥𝑖 = 𝐼(𝐶𝑖 ≤ 𝐶𝑖

∗). 

Therefore, the appropriate log-likelihood and penalized func-

tions respectively; 

𝑙(𝜃2) = ∑ (𝛥𝑖 𝑙𝑜𝑔(∑ 𝜂𝑗𝑀𝑗
𝑚
𝑗=1 (𝑡) 𝑒𝑥𝑝( 𝛾𝑇𝑍𝑖)) −

𝑛
𝑖=1

∑ 𝜂𝑗𝐼𝑗
𝑚
𝑗=1 (𝑡) 𝑒𝑥𝑝( 𝛾𝑇𝑍𝑖))            (23) 

𝑝𝑙(𝜃2) = 𝑙(𝜃2) −
𝜅2

2
𝜂𝑇𝑅2𝜂        (24) 
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where 𝜃2 = (𝛾1, . . . , 𝛾𝑝, 𝜂1, … , 𝜂𝑚)
𝑇. 

The approximate CVS of (24) can be written as; 

𝐶𝑉𝑆(𝜅2) = −
1

𝑛
𝑙(𝜃𝜅2) +

1

𝑛
𝑡𝑟𝑎𝑐𝑒 0(𝐻̂𝑝𝑙(𝜃𝜅2))

−1
𝐻̂𝑙(𝜃𝜅2)1 (25) 

where 𝑙(⋅)is defined in (23); 𝐻̂𝑝𝑙(𝜃̂𝜅2) and 𝐻̂𝑙(𝜃̂𝜅2) respec-

tively represent the Hessian matrix of (24) and (23) evaluat-

ed at 𝜃̂𝜅2, 𝑅2 is as defined previously. We then optimize (25) 

using the grid search to obtain 𝜅2 and a good initial guess of 

the vector 𝜃̂2. In this study, 50 grid values of 𝜅𝑕, 𝑕 = 1,2 

was chosen, equally spaced between 0.001 and 1.5 in both 

the simulation and practical data analyses. 

2.4. Proposed Computational Algorithm 

To maximize (19), the following computing algorithm is 

proposed; 

Step 1: Choose a set of 50 grid points for 𝜏, equally 

spaced from 0.001 to 1.5 and let 𝑖 = 1 

Step 2: With 𝜏𝑖, obtain the PMLEs 𝜃̂𝜏𝑖, of equation (22) 

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Optim 

function in R. Refer to [12] for details. 

Step 3: Compute the CVS, 𝐶𝑉𝑆(𝜏𝑖) using equation (22), 

let 𝑖 = 𝑖 + 1 

Step 4: Iterate between steps 2 and 3 until all the 50 grid 

points are exhausted move to step 5 

Step 5: Select the value 𝜏 that resulted in largest value of 

𝐶𝑉𝑆(𝜏) from step 4  

Step 6: Compute the optimal 𝜅1 parameter using the ex-

pression 𝜅1 = 𝜏 × 𝑛
−
1

3  

Step 7: Recall step 1 and with 𝜏𝑖, obtain the PMLEs 𝜃̂𝜏𝑖  

of equation (24) using the BFGS optim in R 

Step 8: Compute the CVS, 𝐶𝑉𝑆(𝜏𝑖) using equation (25), 

let 𝑖 = 𝑖 + 1 

Step 9: iterate between steps 7 and 8 until all the 50 grid 

points are exhausted and move to step 10 

Step 10: Select the value 𝜏 that resulted in largest value 

of 𝐶𝑉𝑆(𝜏) from step 9 

Step 11: Compute the optimal 𝜅2 parameter using the ex-

pression 𝜅2 = 𝜏 × 𝑛
−
1

3 

Step 12: Using the initial values 𝛷̂(0) = (𝜃̂𝜅1 , 𝜃̂𝜅2 , 𝜃̂)
𝑇 , 

where 𝜃̂𝜅1and 𝜃̂𝜅2  are as obtained in steps 5 and 10 respec-

tively and 𝜃̂ = 1. Maximize (18) again using the BFGS op-

tim in R to obtain the final PMLEs, 𝛷̂ = (𝜃̂1, 𝜃̂2, 𝜃̂)
𝑇. 

Step 13: obtain the estimates of 𝛬0𝑡(𝑡) and 𝛬0𝑐(𝑡) and 

using equation (12) appropriately. 

2.5. Asymptotic Properties of the PMLEs 𝜱̂ 

To assess the asymptotic properties of the PMLEs, we 

employed the Bayesian technique proposed by Wahba (1983). 

Thus, 𝛷 is treated as random variable with 𝜅𝑕𝐽𝑕(𝛷) as its 

prior log-likelihood and 𝑝𝑙(𝛷)  as the posterior 

log-likelihood. Since the posterior distribution is conditional 

upon observing the sample, its distribution is used to make 

statements about this random quantity 𝛷 

Theorem: If conditions (A1) – (A8) below are met, then as 

𝑛 → ∞, the PMLE 𝛷̂ asymptotically follows a multivariate 

posterior Gaussian distribution with mean 𝛷0 and variance – 

covariance matrix as 𝑉𝑎𝑟(𝛷̂) = 𝐼(𝛷0)
−1. That is  

√𝑛(𝛷̂𝑛 − 𝛷0) → 𝑁(0, (𝐼(𝛷0))
−1) where 𝐼(𝛷0) is the ef-

ficient information for 𝛷. 

(A1) the observed data 𝐴 = *𝑦𝑖 : 𝑝(𝑦𝑖|𝛷); 𝑖 = 1,2, … , 𝑛+, 

are independently and identically distributed and does not 

depend on 𝛷. 

(A2) The censoring time and the true unobserved failure time 

are conditionally independent given the covariates and frailties. 

(A3) 𝑙𝑖𝑚
𝑛→∞

(𝑛−1∑ 𝑙𝑖(𝛷)
𝑛
𝑖=1 ) exists and has a unique maxi-

mum at 𝛷 = 𝛷0, which belongs to the interior of the com-

pact (parameter) space 𝛩. 

(A4) 𝜇𝑛 = 𝑜(𝑛
−
1

2) and 𝜔𝑛 = 𝑜(𝑛
−
1

2) 

(A5) There exists a measurable function 𝑔(𝑦𝑖) =

𝑔(𝐶̃𝑖 , 𝛿𝑖, 𝛥𝑖 , 𝑍𝑖)  with 𝐸(𝑔(𝑦𝑖)) < ∞  which satisfies 

|𝑙𝑜𝑔 𝑝 (𝑦𝑖|𝛷)| ≤ 𝑔(𝑦𝑖) for all 𝛷 ∈ 𝛩.  

(A6) 𝑙(𝛷) is two times continuously differentiable in a 

neighborhood of 𝛷0 such that 𝐸𝛷0(𝑙𝑖
′(𝛷)) = 0 and 

𝑉𝑎𝑟𝛷0 .𝑙𝑖
′(𝛷)/ = 𝐸𝛷0(𝑙𝑖

′(𝛷))
2
= 𝐸𝛷0(𝑙𝑖

′(𝛷)𝑙𝑖
′(𝛷)𝑇) =

−𝐸𝛷0 .𝑙𝑖
′′(𝛷)/ = 𝐼(𝛷0)  

(A7) The penalty function 𝐽𝑡(𝛷)  is continuous and 

bounded over 𝛩 where both derivatives 𝐽𝑡
′ (𝛷) and 𝐽𝑡

′′(𝛷) 

exist for all 𝛷 ∈ 𝛩, and 𝐽𝑡
′′(𝛷) is bounded in a neighbor-

hood of 𝛷0. 

(A8) The penalty function 𝐽𝑐(𝛷)  is continuous and 

bounded over 𝛩  and both derivatives 𝐽𝑐
′ (𝛷)  and 𝐽𝑐

′′(𝛷) 

exist for all 𝛷 ∈ 𝛩, and 𝐽𝑐
′′(𝛷) is bounded in a neighbor-

hood of 𝛷0. 

Proof of the Theorem 

In order to prove this Bayesian estimator, the asymptotic 

proof was restricted to the assumption that the number of 

basis functions are fixed but large and with fixed 𝜅1 and 𝜅2. 

The parameters 𝛷 = (𝛽′, 𝛾 ′, 𝛼 ′, 𝜂′, 𝜃)  has a length of 

𝑟 = 2𝑝 + 2𝑚 + 1. If we let 𝛷0 = (𝛽0
′ , 𝛾0

′ , 𝛼0
′ , 𝜂0

′ , 𝜃0) be the 

true value of 𝛷 and denote the observed data for the 𝑖𝑡𝑕 

individual as 𝑦𝑖 = (𝐶̃𝑖 , 𝛿𝑖, 𝛥𝑖 , 𝑍𝑖)  with 𝐶̃𝑖 = 𝑚𝑖𝑛( 𝐶𝑖 , 𝐶𝑖
∗) , 

𝛥𝑖 = 𝐼(𝐶̃𝑖 = 𝐶𝑖) and 𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶̃𝑖). Given the 𝑏𝑖 for this 

𝑖𝑡𝑕 individual at the observation time 𝐶̃𝑖 = 𝑐̃𝑖, then the un-

conditional joint density function can be written as; 
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𝑝(𝑦𝑖|𝛷) = ∫ [
{,𝐹𝑇(𝑐̃𝑖)𝑓𝐶(𝑐̃𝑖)-

𝛿𝑖,𝑆𝑇(𝑐̃𝑖)𝑓𝐶(𝑐̃𝑖)-
(1−𝛿𝑖)}

𝛥𝑖

× {,𝐹𝑇(𝑐̃𝑖)𝑆𝐶(𝑐̃𝑖)-
𝛿𝑖,𝑆𝑇(𝑐̃𝑖)𝑆𝐶(𝑐̃𝑖)-

(1−𝛿𝑖)}
(1−𝛥𝑖)𝑔(𝑏𝑖 , 𝜃)𝑑𝑏𝑖

]
∞

0
.                    (26) 

where 𝐹𝑇(𝑐̃𝑖) and 𝑆𝑇(𝑐̃𝑖) represent the cumulative distribution and survival functions of 𝑇𝑖  given 𝑍𝑖 and 𝑏𝑖 respectively, 

whiles 𝑆𝐶(𝑐̃𝑖) and 𝑓𝐶(𝑐̃𝑖) are respectively survival and density functions of 𝐶̃𝑖 given 𝑍𝑖 and 𝑏𝑖. The sample log-likelihood 

and penalized functions can be written as; 

𝑙(𝛷) = 𝑙𝑜𝑔 𝐿 (𝛷) = 𝑙𝑜𝑔(∏ 𝑝(𝑦𝑖|𝛷)
𝑛
𝑖=1 ) = ∑ 𝑙𝑜𝑔 𝑝 (𝑦𝑖|𝛷)

𝑛
𝑖=1 = ∑ 𝑙𝑖(𝛷)

𝑛
𝑖=1                    (27) 

𝑝𝑙(𝛷) = 𝑙(𝛷) −
𝜅1

2
𝐽𝑡(𝛷) −

𝜅2

2
𝐽𝑐(𝛷) = ∑ 𝑙𝑖(𝛷)

𝑛
𝑖=1 −

𝜅1

2
𝐽𝑡(𝛷) −

𝜅2

2
𝐽𝑐(𝛷)                  (28) 

where 𝐽𝑡(𝛷) = 𝐽𝑡(𝛼) and 𝐽𝑐(𝛷) = 𝐽𝑐(𝜂). As per A6, A7 and A8, let the first two derivatives of (28) be 𝑝𝑙′(𝛷) and 𝑝𝑙′′(𝛷). 

If 𝛷̂ is the PMLE for 𝛷, then it is a fact that 𝑝𝑙′(𝛷̂) = 0. The second-order Taylor series expansion of (28) around the true 

𝛷0 gives 

0 = 𝑝𝑙′(𝛷̂) = 𝑝𝑙′(𝛷0 ) + (𝛷̂𝑛 −𝛷0)𝑝𝑙
′′(𝛷𝑛

∗ ) ⟹ (𝛷̂𝑛 − 𝛷0) = −
𝑝𝑙′(𝛷0 )

𝑝𝑙′′(𝛷𝑛
∗  )

                  (29) 

where 𝛷𝑛
∗ is a vector between 𝛷̂𝑛 and 𝛷0. Multiplying both sides of (29) by √𝑛, we get 

√𝑛(𝛷̂𝑛 −𝛷0) = √𝑛 .−
𝑝𝑙′(𝛷0 )

𝑝𝑙′′(𝛷𝑛
∗  )
/ = −

1

√𝑛
1

𝑛

𝑝𝑙′(𝛷0 )

𝑝𝑙′′(𝛷𝑛
∗  )

                        (30) 

Next, it should be shown that as 𝑛 → ∞, the numerator and the denominator of (30) respectively behave as:  

(a) 
1

√𝑛
𝑝𝑙′(𝛷0)

  𝑑    
→  𝑁(0, 𝐼(𝛷0)) and (b) 

1

𝑛
𝑝𝑙′′(𝛷𝑛

∗ )   
     𝑝     
→   𝐼(𝛷0)  

To prove (a), it can be written that 

1

√𝑛
𝑝𝑙′(𝛷0) =

1

√𝑛
0𝑙′(𝛷) −

𝜅1

2
𝐽𝑡
′(𝛷) −

𝜅2

2
𝐽𝑐
′(𝛷)1 =

𝑙′(𝛷)

√𝑛
−

𝜅1

2√𝑛
𝐽𝑡
′(𝛷) −

𝜅2

2√𝑛
𝐽𝑐
′(𝛷) = 𝑛−

1

2∑ 𝑙𝑖
′(𝛷)𝑛

𝑖=1 −
𝜇𝑛

2
𝐽𝑡
′(𝛷) −

𝜔𝑛

2
𝐽𝑐
′(𝛷) (31) 

where 𝜇𝑛 =
𝜅1 

√𝑛
, 𝜔𝑛 =

𝜅2 

√𝑛
 and ∑ 𝑙𝑖

′ (𝛷)𝑛
𝑖=1  can be seen as adding 𝑛 independent and identically distributed (iid) gradient vec-

tors of (27) with 𝑙𝑖
′(𝛷) =

𝜕 𝑙𝑜𝑔 𝑝(𝑦𝑖|𝛷)

𝜕𝛷
, 𝑖 = 1,2,… , 𝑛. As for the second and third terms, they tend to zero as 𝑛 → ∞. Therefore, 

(31) can be re-written as; 

1

√𝑛
𝑝𝑙′(𝛷0) = 𝑛

−
1

2∑ 𝑙𝑖
′(𝛷)𝑛

𝑖=1 =
∑ 𝑙𝑖

′(𝛷)𝑛
𝑖=1

√𝑛
                             (32) 

Therefore, under condition (A6), the expectation (mean) can be found as 

𝐸𝛷0 .
1

√𝑛
𝑝𝑙′(𝛷0)/ = 𝐸𝛷0 .

∑ 𝑙𝑖
′(𝛷)𝑛

𝑖=1

√𝑛
/ =

1

√𝑛
∑ 𝐸𝛷0(𝑙𝑖

′(𝛷))𝑛
𝑖=1 = 0  

For the variance, it is found as follows; 

𝑉𝑎𝑟𝛷0 (
1

√𝑛
𝑝𝑙′(𝛷0)) = 𝑉𝑎𝑟𝛷0 .

1

√𝑛
∑ 𝑙𝑖

′(𝛷)𝑛
𝑖=1 / =

1

𝑛
∑ 𝑉𝑎𝑟𝛷0(𝑙𝑖

′(𝛷))𝑛
𝑖=1 =

1

𝑛
(𝑛𝐼(𝛷0)) = 𝐼(𝛷0)  

Therefore, by the Central Limit Theorem (CLT), 
1

√𝑛
𝑝𝑙′(𝛷0)

    𝑑      
→   𝑁(0, 𝐼(𝛷0)) and therefore (a) is proven. For the (b), it can 

be written that 

1

𝑛
𝑝𝑙′′(𝛷𝑛

∗ ) =
1

𝑛
0𝑙′′(𝛷) −

𝜅1

2
𝐽𝑡
′′(𝛷) −

𝜅2

2
𝐽𝑐
′′(𝛷)1 =

1

𝑛
𝑙′′(𝛷) −

𝜅1

2𝑛
𝐽𝑡
′′(𝛷) −

𝜅2

2𝑛
𝐽𝑐
′′(𝛷) =

1

𝑛
∑ 𝑙𝑖

′′(𝛷)𝑛
𝑖=1 −

𝜇𝑛

2
𝐽𝑡
′′(𝛷) −

𝜔𝑛

2
𝐽𝑐
′′(𝛷)  (33) 

Where 𝜇𝑛 =
𝜅1

𝑛
, 𝜔𝑛 =

𝜅2

𝑛
 and the ∑ 𝑙𝑖

′′(𝛷)𝑛
𝑖=1  can be seen as the sum of 𝑛 i.i.d. Hessian matrix of the (27). Again, the se-
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cond and third terms tend to zero as 𝑛 → ∞. Therefore, (33) can be re-written as; 

1

𝑛
𝑝𝑙′′(𝛷𝑛

∗ ) =
1

𝑛
∑ 𝑙𝑖

′′(𝛷)𝑛
𝑖=1 = 𝑛−1∑

𝜕2 log𝑝(𝑦𝑖|𝛷𝑛
∗ )

𝜕𝛷𝜕𝛷′
𝑛
𝑖=1                       (34) 

Applying the weak law of large numbers (WLLN), (34) can be rewritten as 

2

1
0

1 1

log ( Φ )1 1
(Φ ) (Φ) (Φ )

Φ Φ

n n
i n

n i p
i i

p y
pl l n I

n n



 

 


   

 
   

Hence (b) is proven. 

Finally, the asymptotic behavior of the distribution √𝑛(𝛷̂𝑛 − 𝛷0) can be seen as; 

𝐸(√𝑛(𝛷̂𝑛 − 𝛷0)) = 𝐸 4

1

√𝑛
𝑝𝑙′(𝛷0)

1

𝑛
𝑝𝑙′′(𝛷𝑛

∗  )
5 = 2−

1

𝑛
𝑝𝑙′′(𝛷𝑛

∗ )3
−1

𝐸 (
1

√𝑛
𝑝𝑙′(𝛷0)) = 0  

𝑉𝑎𝑟(√𝑛(𝛷̂𝑛 − 𝛷0)) = 𝑉𝑎𝑟 4

1

√𝑛
𝑝𝑙′(𝛷0)

1

𝑛
𝑝𝑙′′(𝛷𝑛

∗  )
5 = 2

1

𝑛
𝑝𝑙′′(𝛷𝑛

∗ )3
−1

𝑉𝑎𝑟 (
1

√𝑛
𝑝𝑙′(𝛷0)) 2

1

𝑛
𝑝𝑙′′(𝛷𝑛

∗ )3
−1

 

=*𝐼(𝛷0)+
−1𝐼(𝛷0)*𝐼(𝛷0)+

−1=*𝐼(𝛷0)+
−1 

 1
0 0

ˆ(Φ Φ ) 0, (Φ )n d
n N I     as required in the stated theorem. 

If 

1
ββ

1
γγ

1 1
αα

1
ηη

1

ˆ(Φ) (Φ)

H

H

Var I H

H

H





 





    
 
    
 
      
 
    
 
    
 

, then by [16] an approximate 95% credible interval for the parameters 

𝛽𝑗, 𝛾𝑗, 𝜃, 𝛬0𝑡(𝑡) and 𝛬0𝑐(𝑡) are estimated as follows; 

𝛽̂𝑗 ± 1.96𝑆𝐸(𝛽̂𝑗) ⇒ 𝛽̂𝑗 ± 1.96√𝐻𝛽𝛽,𝑗
−1

𝛾𝑗 ± 1.96𝑆𝐸(𝛾𝑗) ⇒ 𝛾𝑗 ± 1.96√𝐻𝛾𝛾,𝑗
−1

𝜃̂ ± 1.96𝑆𝐸(𝜃̂) ⇒ 𝜃̂ ± 1.96√𝐻𝜃𝜃
−1

}
  
 

  
 

                               (35) 

𝛬̂0𝑡(𝑡) ± 1.96𝑆𝐸(𝛬̂0𝑡(𝑡)) ⇒ ∑ 𝛼̂𝑗𝐼𝑗(𝑡)
𝑚
𝑗=1 ± 1.96√𝑉𝑎𝑟(∑ 𝛼̂𝑗𝐼𝑗(𝑡)

𝑚
𝑗=1 ) ⇒ 𝐼𝑇(𝑡)𝛼 ± 1.96√𝐼𝑇(𝑡)𝐻̂𝛼𝛼

−1𝐼(𝑡)

𝛬̂0𝑐(𝑡) ± 1.96𝑆𝐸(𝛬̂0𝑐(𝑡)) ⇒ ∑ 𝜂̂𝑗𝐼𝑗(𝑡)
𝑚
𝑗=1 ± 1.96√𝑉𝑎𝑟(∑ 𝜂̂𝑗𝐼𝑗(𝑡)

𝑚
𝑗=1 ) ⇒ 𝐼𝑇(𝑡)𝜂 ± 1.96√𝐼𝑇(𝑡)𝐻̂𝜂𝜂

−1𝐼(𝑡)
}
 

 

     (36) 

where 𝐼𝑇(𝑡) = (𝐼1(𝑡), 𝐼2(𝑡), … , 𝐼𝑚(𝑡)) is the spline vector in 

𝑡, 𝑆𝐸(𝛽̂𝑗) and 𝑆𝐸(𝛾𝑗) denote the square root of the 𝑗𝑡𝑕  di-

agonal value of the matrices 𝐻𝛽𝛽
−1 and 𝐻𝛾𝛾

−1 respectively. 

3. Results and Discussions 

3.1. Simulation Studies 

To gain a better understanding of the empirical properties 

of the proposed PMLEs, Monte Carlo simulations using 

samples of sizes 𝑛 = 100, 500 and 1000 with two different 

dependent censoring proportions 𝜋𝑐 = 20% and 50%  for 

each 𝑛 were carried out. The frailty variable 𝑏𝑖 was gener-

ated from Gamma with 𝜃 = 0.5 and the failure times 𝑇𝑖  

from 𝛬𝑇(𝑡|𝑍𝑖 , 𝑏𝑖) = 𝑏𝑖𝛬0(𝑡𝑖) 𝑒𝑥𝑝( 𝛽1𝑍𝑖1 + 𝛽2𝑍𝑖2)  with 

𝛬0𝑡(𝑡) = 𝑡𝑖, 𝛽1 = 1 and𝛽2 = 0.6. The observation time 𝐶𝑖
∗ 

were generated from an exponential distribution on the in-

terval [0, 2] with an appropriately chosen exponential pa-

rameter 𝜆 to yield the desired informative censoring propor-
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tions. We generated an exponential informative observation 

time 𝐶𝑖  using 𝛬𝐶(𝑐𝑖|𝑍𝑖 , 𝑏𝑖) = 𝑏𝑖𝛬0(𝑐𝑖) 𝑒𝑥𝑝( 𝛾1𝑍𝑖1 + 𝛾2𝑍𝑖2) 

with 𝛬0𝑐(𝑐𝑖) = 0.5𝑐𝑖 , 𝛾1 = 1 and 𝛾2 = 0.5. Two covari-

ates were generated from 𝑍𝑖1~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5)  and 

𝑍𝑖2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1). Therefore, the observed data for the 𝑖𝑡𝑕 

individual is obtained as follows; 

(i) Generate 𝑇𝑖 , 𝐶𝑖  and 𝐶𝑖
∗ from their distributions and 

define 𝐶̃𝑖 = 𝑚𝑖𝑛( 𝐶𝑖 , 𝐶𝑖
∗). 

(ii) If ∆𝑖= 0 
and 𝑇𝑖 > 𝐶̃𝑖, then set 𝛿𝑖 = 0 ⇒

(𝐶̃𝑖, 0,0, 𝑍𝑖1, 𝑍𝑖2) 

(iii) If ∆𝑖= 1 
and 𝑇𝑖 > 𝐶̃𝑖, then set 𝛿𝑖 = 0 ⇒

(𝐶̃𝑖, 0,1, 𝑍𝑖1, 𝑍𝑖2) 

(iv) If ∆𝑖= 0 
and 𝑇𝑖 ≤ 𝐶̃𝑖, then 

𝛿𝑖 = 1 ⇒ (𝐶̃𝑖 , 1,0, 𝑍𝑖1, 𝑍𝑖2) 

(v) If ∆𝑖= 1 
and 𝑇𝑖 ≤ 𝐶̃𝑖, then set 𝛿𝑖 = 1 ⇒

(𝐶̃𝑖, 1,1, 𝑍𝑖1, 𝑍𝑖2) 

Cubic I-splines with knots determined based on the sug-

gested approach was employed. The knots were placed at 

quantiles within min max,C C 
 

. To estimate 𝜅1 and 𝜅2, for 

the first replicate of each simulation setting, 𝜅𝑕 is estimated 

using the cross-validation method and this 𝜅𝑕 is fixed to 

generate the remaining 499 datasets. For each 𝑛 and 𝜋𝑐 , 

simulations with 500 replications were conducted. Table 1 

displays the results. It can be observed that (i) for a fixed 𝜋𝑐, 

the sample standard deviations (SSD), average estimated 

standard errors (AESE), mean square error (MSE) and abso-

lute value of BIAS decreases with increasing 𝑛. This phe-

nomenon supports the assumption that the PMLEs are con-

sistent. (ii) Comparison of values between SSD and AESE 

are almost equal, demonstrating that the proposed approach 

to estimating the variance of the PMLEs is generally accu-

rate. (iii) the 95% coverage probabilities (CP) are reasonable 

since the estimates agree very well with the nominal value of 

0.95 under the different 𝑛′𝑠 and 𝜋𝑐 ′𝑠. (iv) The mean inte-

grated square error (MISE) of 𝛬̂0𝑡(⋅) and 𝛬̂0𝑐(⋅) generally 

shows small values, which indicates that the proposed meth-

od of estimation is generally satisfactory. 

Table 1. Simulation results on the Regression Parameters and baseline cumulative hazards of T and C for the proposed PMLE method based 

on 500 replications. 

 

Interior 

knot 

Dependent cen-

soring rate 

True Param-

eters 
AEST BIAS SSD AESE MSE CP (%) MISE 

100 4 20% 

1
1   1.161 0.161 0.606 0.557 0.393 94.6 

 

2
0.6   0.716 0.116 0.915 0.865 0.851 95.3 

1
1   1.105 0.105 0.592 0.541 0.362 94.4 

2
0.5   0.612 0.112 0.860 0.852 0.972 93.7 

0.5   0.636 0.137 0.689 0.548 0.493 97.5 

0
( )

t
t   94.4 1.487 

0
( )

c
t   95.5 0.801 

500 7 20% 

1
1   1.029 0.029 0.240 0.224 0.059 94.5 

 

2
0.6   0.627 0.027 0.338 0.346 0.115 96.2 

1
1   0.992 - 0.008 0.221 0.224 0.049 94.6 

2
0.5   0.497 - 0.003 0.383 0.363 0.147 94.8 

0.5   0.495 - 0.005 0.274 0.214 0.075 97.6 

0 ( )t t   94.7 1.622 

0 ( )c t   95.8 0.988 

1000 10 20% 

1 1   1.021 0.021 0.161 0.158 0.026 96.0 

 2
0.6   0.616 0.016 0.239 0.243 0.057 94.8 

1
1   1.014 0.014 0.155 0.157 0.024 96.4 

n
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Interior 

knot 

Dependent cen-

soring rate 

True Param-

eters 
AEST BIAS SSD AESE MSE CP (%) MISE 

2
0.5   0.507 0.007 0.257 0.254 0.066 94.8 

0.5   0.508 0.008 0.197 0.135 0.039 96.8 

0
( )

t
t   95.0 1.811 

0
( )

c
t   96.8 1.058 

100 4 50% 

1
1   1.143 0.143 0.602 0.502 0.383 95.4 

 

2
0.6   0.727 0.127 0.850 0.731 0.739 95.4 

1
1   1.043 0.043 0.405 0.392 0.165 95.8 

2
0.5   0.565 0.065 0.646 0.628 0.422 95.6 

0.5   0.584 0.084 0.514 0.404 0.272 94.4 

0
( )

t
t   95.3 1.798 

0
( )

c
t   95.2 1.665 

500 7 50% 

1
1   1.036 0.036 0.227 0.210 0.053 96.6 

 

2
0.6   0.606 0.006 0.308 0.302 0.095 95.0 

1
1   1.003 0.003 0.172 0.167 0.029 94.4 

2
0.5   0.528 0.028 0.282 0.267 0.080 94.6 

0.5   0.522 0.022 0.199 0.140 0.040 94.7 

0
( )

t
t   95.4 1.987 

0
( )

c
t   93.6 1.866 

1000 10 50% 

1
1   1.016 0.016 0.150 0.147 0.023 94.8 

 

2
0.6   0.620 0.020 0.215 0.211 0.047 94.4 

1
1   1.014 0.014 0.112 0.117 0.013 96.0 

2
0.5   0.514 0.014 0.180 0.187 0.032 95.4 

0.5   0.508 0.008 0.140 0.097 0.020 94.6 

0
( )

t
t   97.5 2.027 

0
( )

c
t

  94.2 2.033 

 

Also, Figure 1 below presents a sample of histograms of 

parameters under the different 𝑛′𝑠  and 𝜋𝑐 ′𝑠  which 

clearly exhibit the normality distribution. In addition, it 

can observed in Figure 2 below that (i) the plots of the 

estimated and the true 𝛬0𝑡(⋅) and 𝛬0𝑐(⋅) are very close 

to each other under the different 𝑛′𝑠 and 𝜋𝑐 ′𝑠. (ii) the 

bounds of the 95% pointwise credible intervals for each 

curve contains the true curve and close to it as well, indi-

cating the existence, if any, of small bias. Furthermore, it 

is observed from Tables 2-4 below that the estimated val-

ues obtained from varying number of knots chosen as 3, 5 

and 8 are not significantly different from each other, re-

vealing that the proposed method is robust to the choice of 

number of knots. Moreover, Table 5 displays the results of 

a misspecified frailty variable from the log-normal distri-

bution with 𝜃 = 0.5 and it can be noticed that the esti-

mated parameters obtained from the misspecified distribu-

tion are very much similar to those realized from the cor-

n
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rectly specified gamma frailty distribution. This suggest 

that the PMLE method proposed is robust to misspecifica-

tion of the distribution of the frailty variable. 

 

 

 
Figure 1. Plots of Histogram for the PMLEs of the regression and frailty parameters for 𝑛 = 500 with 𝑞𝑛 = 7 and 𝜋𝑐 = 20% based on 500 

replications. 

 
Figure 2. Plots of true 𝛬0𝑡(𝑡) and 𝛬0𝑐(𝑡) (red solids), the PMLEs (black dashes) and 95% PWCI (green dotted), for 𝑛 = 100 and 

𝜋𝑐 = 50% based on 500 replications. 
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Table 2. Simulation results on the Regression Parameters of T and C with different knots for n=100 based on 500 replications. 

Interior knot 
Dependent censor-

ing rate 
True Parameters AEST BIAS SSD AESE MSE CP (%) 

3 20% 

1
1   1.180 0.180 0.716 0.552 0.545 94.3 

2
0.6   0.867 0.267 0.972 0.855 1.016 94.4 

1
1   1.128 0.128 0.576 0.543 0.348 95.9 

2
0.5   0.628 0.128 0.822 0.848 0.693 96.4 

0.5   0.616 0.116 0.688 0.566 0.486 94.0 

5 20% 

1
1   1.183 0.183 0.584 0.556 0.374 95.6 

2
0.6   0.779 0.179 0.987 0.866 1.006 94.6 

1
1   1.098 0.098 0.592 0.538 0.360 95.1 

2
0.5   0.627 0.127 0.948 0.861 0.915 94.8 

0.5   0.643 0.143 0.705 0.556 0.518 93.9 

8 20% 

1
1   1.162 0.162 0.671 0.564 0.477 95.0 

2
0.6   0.829 0.229 1.015 0.872 1.082 94.5 

1
1   1.107 0.107 0.587 0.550 0.356 94.7 

2
0.5   0.651 0.151 0.954 0.859 0.933 95.7 

0.5   0.681 0.181 0.814 0.569 0.696 94.8 

3 50% 

1
1   1.150 0.150 0.527 0.497 0.300 94.7 

2
0.6   0.794 0.194 0.778 0.734 0.643 95.2 

1
1   1.062 0.062 0.408 0.391 0.170 95.8 

2
0.5   0.605 0.105 0.671 0.624 0.462 95.3 

0.5   0.572 0.072 0.458 0.391 0.215 94.1 

5 50% 

1
1   1.178 0.178 0.547 0.507 0.330 95.4 

2
0.6   0.800 0.200 0.784 0.739 0.656 94.6 

1
1   1.053 0.053 0.408 0.393 0.169 95.2 

2
0.5   0.587 0.087 0.658 0.626 0.441 96.0 

0.5   0.575 0.075 0.447 0.381 0.205 93.7 

8 50% 

1
1   1.227 0.227 0.569 0.528 0.375 95.4 

2
0.6   0.767 0.167 0.835 0.756 0.725 96.2 

1
1   1.103 0.103 0.408 0.403 0.177 96.0 

2
0.5   0.587 0.087 0.673 0.632 0.460 95.0 

0.5   0.606 0.106 0.448 0.366 0.212 92.8 
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Table 3. Simulation results on the Regression Parameters of T and C with different knots for 𝑛 = 500 based on 500 replications. 

Interior 

knot 

Dependent cen-

soring rate 
True Parameters AEST BIAS SSD AESE MSE 

CP 

(%) 

3 20% 

1
1   1.035 0.035 0.226 0.225 0.052 96.2 

2
0.6   0.623 0.023 0.346 0.348 0.120 95.6 

1
1   1.010 0.010 0.223 0.224 0.050 95.2 

2
0.5   0.545 0.045 0.366 0.363 0.136 94.5 

0.5   0.530 0.030 0.270 0.202 0.074 93.2 

5 20% 

1
1   1.024 0.024 0.220 0.224 0.049 95.0 

2
0.6   0.629 0.029 0.338 0.346 0.115 95.8 

1
1   1.010 0.010 0.216 0.223 0.047 95.4 

2
0.5   0.511 0.011 0.348 0.362 0.121 96.6 

0.5   0.527 0.027 0.255 0.199 0.066 92.8 

8 20% 

1
1   1.041 0.041 0.239 0.226 0.059 94.8 

2
0.6   0.622 0.022 0.349 0.349 0.122 95.2 

1 1   1.036 0.036 0.231 0.225 0.054 94.6 

2 0.5   0.534 0.034 0.357 0.364 0.128 95.8 

0.5   0.507 0.007 0.254 0.207 0.0064 93.6 

3 50% 

1
1   1.029 0.029 0.205 0.209 0.043 96.4 

2
0.6   0.640 0.040 0.323 0.301 0.106 94.6 

1
1   1.013 0.013 0.170 0.167 0.029 95.8 

2
0.5   0.507 0.007 0.280 0.266 0.078 94.6 

0.5   0.512 0.012 0.197 0.142 0.039 93.2 

5 50% 

1
1   1.029 0.029 0.204 0.209 0.042 94.8 

2
0.6   0.621 0.021 0.294 0.301 0.087 96.0 

1 1   1.015 0.015 0.172 0.167 0.030 95.2 

2 0.5   0.528 0.028 0.268 0.267 0.073 95.8 

0.5   0.515 0.015 0.186 0.139 0.035 92.8 

8 50% 

1
1   1.006 0.006 0.157 0.157 0.025 95.0 

2
0.6   0.612 0.012 0.245 0.242 0.060 95.6 

1
1   0.992 - 0.008 0.146 0.157 0.021 96.0 

2
0.5   0.512 0.012 0.255 0.255 0.065 95.0 

0.5   0.513 0.013 0.191 0.136 0.036 94.8 
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Table 4. Simulation results on the Regression Parameters of T and C with different knots for 𝑛 = 1000 based on 500 replications. 

Interior 

knot 

Dependent cen-

soring rate 
True Parameters AEST BIAS SSD AESE MSE CP (%) 

3 20% 

1
1   1.006 0.006 0.166 0.157 0.0028 94.6 

2
0.6   0.615 0.015 0.250 0.243 0.063 94.8 

1
1   1.016 0.016 0.163 0.158 0.027 94.5 

2 0.5   0.496 -0.004 0.266 0.255 0.071 94.6 

0.5   0.525 0.025 0.190 0.135 0.037 93.2 

5 20% 

1
1   1.018 0.018 0.159 0.157 0.026 94.7 

2 0.6   0.606 0.006 0.236 0.242 0.056 95.8 

1
1   1.004 0.004 0.148 0.157 0.022 96.0 

2
0.5   0.504 0.004 0.258 0.254 0.067 94.6 

0.5   0.501 0.001 0.186 0.136 0.035 92.8 

8 20% 

1
1   1.006 0.006 0.157 0.157 0.025 95.0 

2
0.6   0.612 0.012 0.245 0.242 0.060 95.6 

1
1   0.992 -0.008 0.146 0.157 0.021 96.0 

2
0.5   0.512 0.012 0.255 0.255 0.065 95.0 

0.5   0.513 0.013 0.191 0.136 0.036 94.8 

3 50% 

1
1   1.026 0.026 0.149 0.147 0.023 94.8 

2
0.6   0.600 0.000 0.214 0.210 0.046 94.5 

1
1   1.008 0.008 0.114 0.117 0.013 96.2 

2
0.5   0.517 0.017 0.192 0.187 0.037 95.0 

0.5   0.507 0.007 0.134 0.097 0.018 93.6 

5 50% 

1
1   1.009 0.009 0.136 0.146 0.019 96.4 

2
0.6   0.600 0.000 0.211 0.210 0.045 95.2 

1
1   1.009 0.009 0.120 0.117 0.014 95.2 

2
0.5   0.494 -0.006 0.188 0.187 0.036 95.2 

0.5   0.510 0.010 0.140 0.097 0.020 94.0 

8 50% 

1
1   1.011 0.011 0.151 0.147 0.023 93.6 

2
0.6   0.617 0.017 0.208 0.210 0.044 95.0 

1
1   1.012 0.012 0.114 0.118 0.013 95.8 

2
0.5   0.507 0.007 0.191 0.188 0.036 95.2 

0.5   0.514 0.014 0.143 0.097 0.021 93.8 
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Table 5. Simulation results on the frailty and regression parameters of T and C with misspecified frailty distribution based on 500 replica-

tions. 

True parame-

ter 

Statistical 

quantities 

n=100 n=500 n=1000 

Dependent censoring rate of 20% 

qn=4 qn=7 qn=10 

Frailty distribution Gamma L-Normal Gamma L-Normal Gamma L-Normal 

 

AEST 1.161 1.194 1.029 1.026 1.019 1.025 

BIAS 0.161 0.194 0.029 0.026 0.019 0.025 

SSD 0.606 0.641 0.240 0.204 0.155 0.150 

AESE 0.557 0.542 0.224 0.218 0.157 0.152 

MSE 0.393 0.448 0.059 0.042 0.025 0.023 

CP (%) 94.0 93.0 95.4 95.1 96.8 96.0 

 

AEST 0.716 0.670 0.627 0.633 0.614 0.598 

BIAS 0.116 0.070 0.027 0.033 0.014 -0.002 

SSD 0.915 0.827 0.338 0.331 0.238 0.237 

AESE 0.865 0.821 0.346 0.335 0.243 0.233 

MSE 0.851 0.690 0.115 0.110 0.057 0.056 

CP (%) 94.3 93.6 96.2 95.8 95.8 94.8 

 

AEST 1.105 1.140 0.992 1.033 1.012 0.999 

BIAS 0.105 0.140 -0.008 0.033 0.012 -0.001 

SSD 0.592 0.635 0.221 0.238 0.157 0.156 

AESE 0.541 0.543 0.224 0.227 0.158 0.159 

MSE 0.362 0.422 0.049 0.058 0.025 0.024 

CP (%) 94.4 95.4 94.6 94.2 95.6 94.4 

 

AEST 0.612 0.582 0.497 0.496 0.509 0.510 

BIAS 0.112 0.082 -0.003 -0.004 0.009 0.010 

SSD 98.0 0.927 0.383 0.384 0.258 0.260 

AESE 0.852 0.836 0.363 0.362 0.255 0.255 

MSE 0.972 0.866 0.147 0.147 0.067 0.068 

CP (%) 94.2 94.3 94.8 93.5 94.2 97.2 

 

AEST 0.636 0.404 0.495 0.262 0.510 0.236 

BIAS 0.137 -0.096 -0.005 -0.238 0.010 -0.264 

SSD 0.689 0.566 0.274 0.208 0.177 0.161 

AESE 0.548 0.652 0.214 0.348 0.134 0.215 

MSE 0.493 0.330 0.075 0.100 0.031 0.095 

CP (%) 92.5 91.5 97.6 97.2 94.5 97.6 

Dependent censoring rate of 50% 

 
AEST 1.143 1.127 1.036 1.020 1.016 1.008 

1 1 

2 0.6 

1 1 

2 0.5 

0.5 

1 1 
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True parame-

ter 

Statistical 

quantities 

n=100 n=500 n=1000 

Dependent censoring rate of 20% 

qn=4 qn=7 qn=10 

Frailty distribution Gamma L-Normal Gamma L-Normal Gamma L-Normal 

BIAS 0.143 0.127 0.036 0.020 0.016 0.008 

SSD 0.602 0.499 0.227 0.199 0.150 0.132 

AESE 0.502 0.463 0.210 0.196 0.147 0.137 

MSE 0.383 0.265 0.053 0.040 0.023 0.017 

CP (%) 95.4 94.8 93.6 95.4 94.8 96.4 

 

AEST 0.727 0.702 0.606 0.632 0.620 0.619 

BIAS 0.127 0.102 0.006 0.032 0.020 0.019 

SSD 0.850 0.752 0.308 0.281 0.215 0.199 

AESE 0.731 0.675 0.302 0.277 0.211 0.194 

MSE 0.739 0.577 0.095 0.080 0.047 0.040 

CP (%) 95.4 94.4 95.0 94.6 95.4 95.6 

 

AEST 1.043 1.056 1.003 0.991 1.014 0.993 

BIAS 0.043 0.056 0.003 -0.009 0.014 -0.007 

SSD 0.405 0.350 0.172 0.147 0.112 0.113 

AESE 0.392 0.352 0.167 0.154 0.117 0.108 

MSE 0.165 0.126 0.029 0.022 0.013 0.013 

CP (%) 95.8 94.3 94.4 96.0 96.0 94.8 

 

AEST 0.565 0.580 0.528 0.494 0.514 0.502 

BIAS 0.065 0.080 0.028 -0.006 0.014 0.002 

SSD 0.646 0.575 0.282 0.248 0.180 0.172 

AESE 0.628 0.549 0.267 0.244 0.187 0.172 

MSE 0.422 0.336 0.080 0.062 0.032 0.030 

CP (%) 95.6 94.4 93.6 94.0 95.4 94.4 

 

AEST 0.584 0.260 0.522 0.218 0.508 0.212 

BIAS 0.084 -0.240 0.022 -0.282 0.008 -0.288 

SSD 0.514 0.312 0.199 0.140 0.140 0.105 

AESE 0.404 0.493 0.140 0.202 0.097 0.128 

MSE 0.272 0.155 0.040 0.099 0.020 0.094 

CP (%) 93.4 93.6 92.7 92.0 93.0 92.4 

 

3.2. Practical Illustration 

The proposed PMLE procedure was applied to the tumor-

igenicity experiment (see [10]) that involves bladder and lung 

tumors of 671 female mice. The objective of the experiment is 

to ascertain whether exposure of mice to suspected agents 

accelerates the development of lung and bladder tumors in 

them. The mice were assigned randomly to either a control 

2 0.6 

1 1 

2 0.5 

0.5 
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group or High-dose group (carcinogen 2 – acetyl amino fluo-

rine). Each animal was examined at either natural death or 

sacrifice times to ascertain the current state of the two tumors. 

Presence of the tumor(s) means that the onset time(s) is/are left 

censored and right censored if otherwise. At the end of the 33 

months of follow-up study period, 121 mice had left censored 

lung tumor onset times (69 under the control group and 52 

under the high-dose group). For bladder tumors data, 124 mice 

had left-censored onset times (13 under the control group and 

111 under the high-dose group). 

Define the examination time (in months) as 𝐶̃𝑖 =

𝑚𝑖𝑛( 𝐶𝑖 , 𝐶𝑖
∗), where 𝐶𝑖  denotes natural death time and as-

sumed informative and 𝐶𝑖
∗ denotes the terminal or random 

sacrifice time and assumed noninformative. Consider a single 

binary covariate 𝑍𝑖  (treatment group), where 𝑍𝑖 = 0  for 

mice assigned to the control group and 𝑍𝑖 = 1 for those as-

signed to the high-dose group. The analysis of the lung tumor 

dataset and the bladder tumor datasets were carried out sepa-

rately since univariate current status data is what is being dealt 

with. To estimate 𝛬0𝑡(. ) and 𝛬0𝑐(. ), the cubic I – splines 

was used with 8 interior knots placed at quantiles of 𝐶̃𝑖. The 

𝜅1 and 𝜅2 were determined using the CVS. Table 6 below 

presents the results. It can be observed that the PMLE of the 

effect of environment on growth of lung tumor gave a p-value 

of 0.107, revealing that the high-dose treatment has no signif-

icant effect on lung tumor development. However, for bladder 

tumor onset time, the p-value is 0.0001, suggesting that the 

high-dose treatment has a significant effect on bladder tumor 

onset time. For the death hazard function accompanying the 

lung tumors, the PMLE gives a p-value of 0.006, suggesting 

that death rate among mice under the high-dose group is high-

er than those under the control group. Similarly, the PMLE for 

the hazard of death accompanying the bladder tumor gave a 

p-value of 0.0001 indicating that death rate among mice under 

the high-dose group is higher than those under the control 

group. In addition, the frailty parameter for lung and bladder 

tumors onset times are all significant with p-values respec-

tively as 0.034 and 0.0001, indicating that the time of death of 

mice has a stronger correlation with the appearance of bladder 

than that of the lung tumors. 

Table 6. Results of parameter estimates of carcinogen 2-acetylaminofluorence effect on lung and bladder tumors onset times based on a 

Gamma frailty. 

Statistics 

Lung tumor 

Regression and frailty parameters 

β γ θ 

Estimate 0.326 0.690 0.375 

SE 0.202 0.252 0.177 

95% CI (-0.070, 0.722) (0.196, 1.184) (0.028, 0.722) 

t - value 1.612 2.737 2.120 

p – value 0.107 0.006 0.034 

Bladder tumor 

Estimate 3.855 0.761 0.627 

SE 0.436 0.257 0.162 

95% CI (3.000, 4.710) (0.257, 1.265) (0.308, 0.945) 

t - value 8.838 2.960 3.860 

p – value < 0.0001 0.003 0.0001 

 

Also, the 95% credible intervals for the baseline CHFs of 

the lungs tumor is shown in Figure 3 below. It can be seen in 

the top plot that the estimated curve lies within the interval, 

and that the hazard of developing lung tumor is virtually 

nonexistent in the first 20 months. Same observation can be 

seen in the hazard of dying from the lung tumor curve (bot-

tom plot). After the 20
th

 month, the hazard of developing the 

lung tumor and dying from it began to increase with time. 
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Figure 3. Plots of estimates for lung tumor data, top is 𝛬0𝑡(𝑡) and 

bottom is 𝛬0𝑐(𝑡) and 95% pointwise credible interval (PWCI). 

Furthermore, Figure 4 below displays the baseline CHFs 

showing the effects of the treatment on lung tumor onset and 

death times. For the lung tumor onset plot (top), it can be seen 

that the baseline CHF for the mice in the control group is lying 

below that of the function for mice in the high-dose group. 

This means that the mice in the control group had lower haz-

ard of developing lung tumor than those in the high-dose 

group. It can also be seen that the hazard of developing lung 

tumor for mice under the high-dose group increases with time 

whiles that of those under the control group virtually remains 

constant. For the hazard of death plot (bottom), it can be ob-

served that the hazard of dying for mice in either the control 

group or high-dose group is virtually not possible within the 

first 20 months. However, after the 20
th

 month, whiles the 

hazard of dying for mice in the control group continue to 

exhibit constant hazard, that of those under the high-dose 

group began to increase sharply with time. Similar observa-

tion was seen for the bladder tumor study (though not shown 

here). 

 

 
Figure 4. Plots of baseline CHF for lung tumor onset time 𝛬0𝑡(𝑡) 

(top plot) and that of the death time 𝛬0𝐶(𝑡) (bottom plot), indicat-

ing treatment effect. 

4. Conclusion 

In this paper, a PMLE approach was proposed for analyzing 

informative current status data under the Cox gamma-frailty 

PH model, where the frailty variable was used to model the 

possible dependence between the failure and the observation 

times. To obtain the PMLEs, we proposed an 

easy-to-implement algorithm that utilizes BFGS Qua-

si-Newton algorithm. The baseline CHFs for the failure and 

censoring times were approximated using the cubic I-splines 

and smooth curves were actually realized. This made the trend 

of the changing hazard curves clearer for easy interpretation. 

The proposed method of optimal selection of knots and 

smoothing parameters proved to be satisfactory and therefore 

can be adopted by other investigators. It was also observed 

from the simulation studies that the PMLEs were consistent, 

asymptotically normal and efficient. In addition, our estima-

tors were robust to the choice of knots, level of dependent 

censoring and the type of frailty distribution used. The pro-

posed PMLE was applied to real data on tumorigenicity ex-

periment and the findings coincide very well with previous 

findings (see [10]). Even though this proposed approach per-

formed satisfactorily, some extensions can still be made in 
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future works. In developing the PMLE method, it was as-

sumed the covariates to time-independent but this assumption 

may be violated in some survival data sets. It is however, pos-

sible to extend this proposed method to take care of 

time-dependent covariates. 
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