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Abstract : In this paper, we consider the nonparametric recursive kernel density estimator on a compact ensemble when
observations are censored and β-mixing. In this type of model, it is widely recognized that the traditional empirical distribution
does not allow the densities F and G to be efficiently evaluated. Thus, Kaplan and Meier suggested a consistent estimator ofGn to
properly estimate G. Let {Tk, k ≥ 1} be a strictly stationary sequence of random variables distributed as T . We aims to establish
a strong uniform consistency on a compact set with a rate of recursive kernel estimator of the underlying density function f when
the random variable of interest T is right censored by another C variable. In censoring, the observation is only partially known,
which means that there are only the n pairs (Yi, δi), Yi = min(Ti, Ci) and δi = I{Ti≤Ci}, where IA, where the indicator function
for event A. Firstly, we propose the uniform convergence of this recursive estimator towards the density f . Then, we showed the
veracity of our results by establishing all the necessary proofs. In other words we will prove our main result by establishing three
lemmas. And finally we validated our theoretical results with a simulation study.

Keywords : Censored Data, Kernel Estimator, Density Function, Sure Convergence, β-mixing

1. Introduction
Let be {Tn, n ≥ 1} a sequence of positive and continuous

random variables (lifetime) defined on a common probability
space (Ω,F ,P). It refers to the time spent until the occurrence
of a specific event, commonly referred to as ”death”, which
corresponds to a statutory change (usually a change from
”alive” to ”deceased”)). In probability theory, most of the
conclusions we have about random variables are generally
only applicable to autonomous random variables. However,
numerous concrete cases demonstrate that this postulate of

independence would not be realistic. For example, if we look
at air pollution in the city of Saint Louis, the pollution rate
observed during the month will be significantly lower.

This information therefore induces a certain form of
dependence, illustrated in mathematics by dependent data.
The study of weak dependence, which is modeled by various
notions, notably includes the notion of β mixture. Volkonskii
and Rozanov [19] introduced it as a dependence structure,
mainly for pragmatic motivations.

For any two σ-fields A and B ⊂ F define the following
measure of dependence :

β(A,B) = sup

{
1

2

I∑
i=1

J∑
i=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|

}
(1)
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see [1]
where the latter supremum is taken over all pairs of finite
partitions (A1, A2, ..., AI) and (B1, B2, ..., BJ) of ? such that
Ai ∈ A for each i and Bj ∈ B for each j.

Now suppose T := (Tk, k ∈ Z) is a strictly stationary
sequence of random variables on (Ω,F ,P). For the given
random sequence T , for any positive integer n, define the
dependence coefficient, define the dependence coefficient.

β(n) = β(T, n) = sup
j∈Z

β(F j−∞,F∞j+n) (2)

We say that the sequence (Tk) is β mixing if the mixing
coefficient β(n)→ 0 when n→∞.

Currently, attention has become more focused on the
specification of nonparametric estimates, models where
the predictor does not come in a pre-established form,
but is developed from information gleaned from the
data. Parzen [15] and Rosenblatt [14] introduced kernel
density estimators (KDE), which are frequently found in
various scientific applications, especially in the medical
field Reviews, epidemiology, decision-making theory and
forecasting, genetics as an instrument of exploration.

In many cases, the full T1, . . . , Tn data are not available
because we do not have all the information. Suppose that
the censoring instants C1 . . . Cn are independent identically
distributed (i.i.d.) and independent of Ti; i = 1; 2; . . . ;n
of distribution function G unknown. Among the various
forms of data where there is partial information, mainly
on censorship and truncation. Right censoring is the most
commonly observed case in survival analysis and has appeared
extensively in the literature ([4, 7]), [6].

In censoring, the observation is only partially known, which
means that there are only the n pairs (Yi, δi), Yi = min(Ti, Ci)

and δi = 1{Ti≤Ci}, where 1A, where the indicator function
for event A. For a long time, statisticians were wondering how
to identify non-parametric estimation and inference techniques
for f and its mode θ within the n actually observed pairs
(Yi, δi) ? We know that in this type of model, the traditional
empirical distribution does not make it possible to effectively
evaluate the densitie G. Therefore, Kaplan and Meier[9]
proposed consistent estimator Gn for G (see (4)).

Their work presents important results regarding the
estimation of the nonparametric survival function for right-
censored random variables.

This paper looks at the almost sure uniform convergence of a
non-parametric density function estimator based on a recursive
kernel estimator with censored data and β-mixing. Thus,
the estimator can be updated with each additional additional
observation. These recursive characteristics present multiple
storage benefits : their application, their interpretation, their
calculation do not require a considerable amount of data. In
certain specific circumstances, they also appear to perform
better than traditional methods.

We design a stochastic algorithm that approximates the
function f at a specific point t, while determining the zero of
the function g : y → f(t) − y. According to the Robbins-
Monro model (see [13]), we set f̂0(t) ∈ R and for all n ≥ 1,
f̂n(t) = f̂n−1(t) + γnWn(t) where γn is not random positive
sequence tending towards zero when n tends towards infinity.

To determine Wn at a point t, we follow [16–18]. Going
in this direction we refer to the reader [2, 3, 5, 8, 10, 11].
We integrate the kernel K (i.e. a function which satisfies∫
RK(x)dx = 1) and the bandwidth hn (i.e. say a sequence of

positive real numbers which lie towards zero). Based on [18],
we substitute π̂−1

n with Ḡ−1
n and we obtain.

Wn = h−1
n δnḠ

−1
n K(h−1

h (t− Yn))− fn−1(t) (3)

Where Ḡn = 1−Gn and Gn is the Kaplan-Meier estimator associated with it has the expression :

Gn(t) =


∏n
i=1

[
1−

1− δ(i)
n− i+ 1

]I{Y(i)≤t}
, if t < Y(n)

0 if t ≥ Y(n)

(4)

Subsequently, we consider in this article the recursive estimator of the function f at the point t indicated by the following
relation

f̂n(t) = (1− γn)f̂n−1(t) + γnδnḠ
−1
n K

(
h−1
n (t− Yn)

)
. (5)

We assume that f̃0(x) = 0 and Qn =
∏n
j (1− γj). We suggest examining the following estimator of f at the point.(see[18])

f̂n(t) = Qn

n∑
k=1

Q−1
k γkδkh

−1
k Ḡ−1

n (Yk)K

(
t− Yk
hk

)
. (6)

When G is known, the recursive pseudo-estimator f̃n of f estimates the common density well lifespans.

f̃n(t) = Qn

n∑
k=1

Q−1
k γkδkh

−1
k Ḡ−1(Yk)K

(
t− Yk
hk

)
. (7)
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2. Hypotheses and Main Results

To establish our results we will need these classic
hypotheses :
M1. {Ti, i ≥ 1} is a strictly stationary sequence of random

variable β- mixing with a common distribution function F
which has a probability density function f , admitting finite
second moments.
M2. The censoring times {Ci, 1 ≤ i ≤ n} are i.i.d with

distribution function G, and are independent of {Ti, i ≥ 1}.
K. K is a Lipshitz density with true compact support

satisfying
∫
uK(u)du = 0.

D1. The density f(.) is twice continuously differentiable on
[0, τ ], where τ < τF = inf {t, F (t) = 1}

D2. The coefficient of β-mixture of Ti verifies β(n) =
O(n−ν) for all ν > 4 :
H. The smoothing parameter h = hn is such that h → 0,

nhn →∞, n3/2−νh−3/2 → 0 and n1/2−νh−3/2 → 0
i)γn ∈ GS(−α) with α ∈ (1/2, 1]
ii)hn ∈ GS(−a) with a ∈ (0, 1)

we recall that a sequence (v)n is said to have regular variation
and we note (vn) ∈ GS(γ) if

lim
n→∞

n

[
1− vn−1

vn

]
= γ

To facilitate monitoring of the main results presented in this
document, we highlight that under hypotheses i) and ii), we
have

Qn

n∑
k=1

Q−1
k γk = 1 + o(1), Qn

n∑
k=1

Q−1
k γkh

2
k = O

(
h2
n

)
et Q2

n

n∑
k=1

Q−2
k γ2

kh
−1
k = O

(
γnh

−1
n

)
The uniform convergence p.s from f̂n to f is given by the following theorem.

Theorem 2.1. Under slighty restrictive hypothesis on the mixing coefficient, the kernel K and the density f M1,M2,K,D1

and D2 and H

sup
t∈[0,τ ]

|f̂n(t)− f(t)| = O

{
max

(√
log n

nhn
, h2
n

)}
a.s as n→∞ (8)

The proof of Theorem 2.1 is based on the following lemmas, before enoucing those lemma, let’s give this proposition, This
propisition is an adaptation of the Noureddine Rhomari [12] theorem in the case where Y1....Yn are in R and p = 1, we will use
it for established the follow lemma 2.1.

Proposition 2.1. Let Yt, 1 ≤ t ≤ n be a sequence of real centered random variables, with coefficient β − mixing, and for
n ≥ 2, 1 ≤ i ≤ 2r, |Yi| < M and E(|Ui|)2) ≤ σ2

i = Q−2
i γ2

iO(h−1
i ) we have

P

(
n∑
t=1

|Yt| > ε

)
≤ 4exp

(
− ε2

4[2σ̃2
r + εM/3]

)
+ (n+ 2)β(1) (9)

where
σ̃2
r = max

(∑r
i=1 σ

2
2i,
∑r
i=1 σ

2
2i−1

)
and r = rn is a sequence of positive numbers, defined by

r =
[n

2

]
+ 1

[.] being the whole part.
Lemma 2.1. Under Assumptions K, D1 et H

sup
t∈[0,τ ]

∣∣∣Ef̃n(t)− f(t)
∣∣∣ = O

(
h2
n

)
(10)

Lemma 2.2. Under Assumptions K,D1 and H

sup
t∈[0,τ ]

|f̃n(t)− Ef̃n(t)| = O

(√
log n

nhn

)
a.s whenn→∞ (11)

Lemma 2.3. Under Assumptions D1, D2, K et H

sup
t∈[0,τ ]

|f̂n(t)− f̃n(t)| = O

(√
log log n

n
h2
n

)
a.s (12)
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3. Proofs

3.1. Proof of Lemma 2.1

Ef̃n(t) = E

[
Qn

n∑
k=1

Q−1
k γkδkh

−1
k Ḡ−1(Yk)K

(
t− Yk
hk

)]

= Qn

n∑
k=1

Q−1
k γkE

[
δkḠ

−1(Yk)h−1
k K

(
t− Tk
hk

)]
with

E
[
Ḡ−1(Yk)δkh

−1
k K

(
t− Yk
hk

)]
= h−1

k E
[
E
(
Ḡ−1(Yk)δkK

(
t− Y1

hk

)
|Tk
)]

= h−1
k E

[
E
(
1{Tk≤Ck}Ḡ

−1(Yk)K

(
t− Y1

hk

))
|Tk
]

= h−1
k E

[
Ḡ−1(Tk)K

(
t− T1

hk

)
E
(
1{Tk≤Ck}|T1

)]
= h−1

k E
[
Ḡ−1(Tk)K

(
t− T1

hk

)
P (Tk ≤ Ck)

]
= h−1

k E
[
Ḡ−1(Tk)K

(
t− T1

hk

)
Ḡ(Tk)

]
= h−1

k

∫
K

(
t− t1
hk

)
f(t1)dt1

=

∫
K(z)f(t− hkz)dz

By setting z =
t− t1
h

. We use a Taylor expansion to order 2 so Taylor to order 2 so.

If D1 is verified and (t∗ being between t and t− hu) then,

f(t− hkz) = f(t)− hkzf ′(t) +
h2
k

2
z2f ′′(t∗)

therefore

E
[
Ḡ−1(Yk)δkh

−1
k K

(
t− Yk
hk

)]
=

∫
K(z)

[
f(t)− hkzf ′(t) +

h2z2

2
f ′′(t∗)

]
dz

=

∫
K(z)f(t)dz − hkf ′(t)

∫
zK(z)dz +

h2
kf
′′(t∗)

2

∫
z2K(z)dz

≤ f(t) +
h2
kF (τ)

2
sup
t∈[0,τ ]

|f ′′(t)|
∫
z2K(z)dz

≤ f(t) +
h2
k

2
sup
t∈[0,τ ]

|f ′′(t)|
∫
z2K(z)dz

≤ f(t) + Ch2
k with C =

F (τ)

2
sup
t∈[0,τ ]

|f ′′(t)|
∫
z2K(z)dz

Thus

E
[
Ḡ−1(Yk)δkh

−1
k K

(
t− Yk
hk

)]
≤ f(t) + Ch2

k
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Under the hypotheses H, we have

Ef̃n(t) = Qn

n∑
k=1

Q−1
k γkE

[
Ḡ−1(Yk)δkh

−1
k K

(
x− Yk
hk

)]

≤ Qn

n∑
k=1

Q−1
k γk

(
f(t) + Ch2

k

)
≤ Qn

n∑
k=1

Q−1
k γkf(t) +Qn

n∑
k=1

Q−1
k γkCh

2
k

≤ (1 + o(1))f(t) +O
(
h2
k

)
≤ f(t) +O

(
h2
k

)
Then

Ef̃n(t)− f(t) = O
(
h2
k

)
3.2. Proof Lemma 2.2

To establishe the convergence of f̃n(t)− Ef̃n(t) let’s calculate first

f̃n(t)− Ef̃n(t) = Qn

n∑
k=1

Q−1
k γk (Zk(x)− E [Zk(x)])

where Zk(x) = h−1
k Ḡ−1(Yn)δkK

(
x− Yn
hk

)
Let [0, τ ] be compact, it can be covered by a finite number qn of intervals Ij of center t∗j ;1 ≤ j ≤ qn, and half length

an =

√
h3

n
, soit Ij =

[
t∗j −

√
h3

n
; t∗j +

√
h3

n

]
.

[0, τ ] being bounded, there exists a constant c1 > 0 such that qn ≤ c1
√

n

h3
(Indeed,

l([0, τ ]) = 2qnan = 2qn

√
h3

n
≤ 2c1

√
n

h3

√
h3

n
= 2c1)

by posing
Mk(t) = Q−1

k γk (Zk(x)− E [Zk(x)])

we have

f̃n(t)− Ef̃n(t) = Qn

n∑
k=1

Mk(t),

which we break down as follows

Qn

n∑
k=1

Mk(t) =
{[
f̃n(t)− f̃n(t∗j )

]
−
[
Ef̃n(t)− Ef̃n(t∗j )

]}
+
[
f̃n(t∗j )− Ef̃n(t∗j )

]
= Qn

n∑
k=1

M̃k(t) +Qn

n∑
k=1

M̃k(t∗j )

Then

sup
t∈[0,τ ]

∣∣∣∣∣Qn
n∑
k=1

Mk(t)

∣∣∣∣∣ ≤ max
1≤j≤qn

sup
t∈Ij

∣∣∣∣∣Qn
n∑
k=1

M̃k(t)

∣∣∣∣∣+ max
1≤j≤qn

∣∣∣∣∣Qn
n∑
k=1

M̃k(t∗j )

∣∣∣∣∣ = A1 +A2
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On the other hand∣∣∣∣∣Qn
n∑
k=1

M̃k(t)

∣∣∣∣∣ =
∣∣∣f̃n(t)− f̃n(t∗j )− E

[
f̃n(t)− f̃n(t∗j )

]∣∣∣
≤ Qn

n∑
k=1

Q−1
k δkḠ

−1(Yk)γkh
−1
k

∣∣∣∣K ( t− Yihk

)
−K

(
t∗j − Yi
hk

)∣∣∣∣
+ E

[
Qn

n∑
k=1

Q−1
k δkḠ

−1(Yk)γkh
−1
k

∣∣∣∣K ( t− Yihk

)
−K

(
t∗j − Yi
hk

)∣∣∣∣
]

≤ Qn

n∑
k=1

Q−1
k δkḠ

−1(Yk)γkh
−1
k

∣∣∣∣K ( t− Yihk

)
−K

(
t∗j − Yi
hk

)∣∣∣∣
+ Qn

n∑
k=1

Q−1
k h−1

k γkE
[
δkḠ

−1(Yk)

∣∣∣∣K ( t− Ykhk

)
−K

(
t∗j − Yi
hk

)∣∣∣∣]
≤ B1(t) +B2(t)

with

sup
t∈Ij

B1(t) = sup
t∈Ij

Qn

n∑
k=1

Q−1
k h−1

k Ḡ−1(Yn)γk

∣∣∣∣K ( t− Yihk

)
−K

(
t∗j − Yi
hk

)∣∣∣∣
= Qn

n∑
k=1

Q−1
k h−1

k sup
t∈Ij

δkγkḠ
−1(Yn)

∣∣∣∣K ( t− Yihk

)
−K

(
t∗j − Yi
hk

)∣∣∣∣
≤ 1

Ḡ(τ)
Qn

n∑
i=1

Q−1
k h−1

k γk sup
t∈Ij

∣∣∣∣K ( t− Yihk

)
−K

(
t∗j − Yi
hk

)∣∣∣∣
≤ 1

Ḡ(τ)
Qn

n∑
k=1

Q−1
k h−1

k γk
λ|t− t∗j |
hk

K being lipschitzian .Moreover t ∈ Ij ⇒ |t− t∗j | ≤ 2an

≤ 2λan
Ḡ(τ)

Qn

n∑
k=1

Q−1
k h−2

k γk

=
2λ

Ḡ(τ)

√
h3
n

n
Qn

n∑
k=1

Q−1
k h−2

k γk

=
2λ

Ḡ(τ)
√
nh−3

n

Qn

n∑
k=1

Q−1
k h−2

k γk

≤ 2λ

Ḡ(τ)
√
nh−3

n

Qn

n∑
k=1

Q−1
k h2

kγk

≤ 2λ

Ḡ(τ)
√
nh−3

n

O
(
h2
n

)
≤ C

(
1√
nh−7

)
with C =

2λc

Ḡ(τ)
and λ being the Lipschitz constant

= O
(

1√
nh−7

)
Then

sup
t∈Ij

B1(t) = O
(

1√
nh−7

)
In the same way arguments similar to the above give :
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sup
t∈Ij

B2(t) = O
(

1√
nh−7

)
Which leads to

A1(t) = max
1≤j≤qn

sup
t∈Ij

∣∣∣∣∣Qn
n∑
k=1

M̃k(t)

∣∣∣∣∣ = O
(

1√
nh−7

)
For the study of A2, we will use the technique developed in [6].
For t ∈ [0, τ ], we apply proposition 2.1 to this sequence of random variables {Ui, i ∈ N}, with coefficient β-mixing, checking

for everything n ∈ N, |Ui| < M, 1 ≤ i ≤ n.
Let’s put

Ui(t
∗
k) = Q−1

i γi (Zi(t
∗
k)− E[Zi(t

∗
k)]) and Zi(t

∗
k) = δiḠ

−1(Yi)h
−1
i K

(
t∗k − Yi
hi

)

E(|Uk|)2) = E
(
Q−1
k γk (Zk(t∗k)− E[Zk(t∗k)])

)2
= Q−2

k γ2
kE ((Zk(t∗k)− E[Zk(t∗k)]))

2

= Q−2
k γ2

kE
(
Zk(t∗k)2 + E[Zk(t∗k)]2 − 2Zk(t∗k)E[Zk(t∗k)]

)
= Q−2

k γ2
k

(
E(Zk(t∗k)2) + E[Zk(t∗k)]2 − 2E(Zk(t∗k)E[Zk(t∗k)])

)
= Q−2

k γ2
k

(
E(Zk(t∗k)2)− E[Zk(t∗k)]2

)
= Q−2

k γ2
kV ar(Zk(t∗k))

V ar(Zk(t∗k)) = E[Zk(t∗k)]2 − E2[Zk(t∗k)]

≤ E[Zk(t∗k)]2

≤ E
[
δkḠ

−1(Yk)h−1
k K

(
t∗k − Yk
hk

)]2

≤ h−2
k E

[
E

[(
K

(
t∗k − Yk
hk

) 1{Tk≤Ck}

Ḡ−1(Yk)

)2

|Tk

]]

≤ h−2
k E

[(
K

(
t∗k − Tk
hk

)
1

Ḡ(Tk)

)2

E
[
1{Tk≤Ck}|Tk

]]

≤ h−2
k E

[(
K

(
t∗k − Tk
hk

)
1

Ḡ(Tk)

)2

P(Tk ≤ Ck)

]

≤ h−2
k E

[(
K

(
t∗k − Tk
hk

)
1

Ḡ(Tk)

)2

P(Tk ≤ Ck)

]

≤ h−2
k E

[(
K

(
t∗k − Tk
hk

))2
1

Ḡ(Tk)

]

≤ h−2
k G(τ)−1E

[
K2

(
t∗k − Tk
hk

)]
≤ h−1

k Ḡ(τ)−1

∫
K2(z)f(t− hkz)dz

= O(h−1
k )

thus

E(|Uk|)2) = Q−2
k γ2

kO(h−1
k )

≤ CQ−2
k γ2

kh
−1
k = σ2

k
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P
(
|f̃n(t∗k)− Ef̃n(t∗k)| > ε

)
= P

(∣∣∣∣∣Qn
n∑
t=1

Q−1
t γt (Zt(t

∗
k)− E[Zt(t

∗
k)]

∣∣∣∣∣ > ε

)

= P

(∣∣∣∣∣Qn
n∑
t=1

Ut

∣∣∣∣∣ > ε

)

≤ P

(
n∑
t=1

|Ut| > εQ−1
n

)

≤ 4exp

(
− ε2Q−2

n

4[2σ̃2
r + εQ−1

n M/3]

)
+ (n+ 2)β(1)

P
(

max
1≤k≤qn

∣∣∣f̃n(t∗k)− Ef̃n(t∗k)
∣∣∣ > ε

)
≤

qn∑
k=1

P

(∣∣∣∣∣
n∑
t=1

Ut(t
∗
k)

∣∣∣∣∣ > εQ−1
n

)

≤ 4qnexp

(
− ε2Q−2

n

4[2σ̃2
r + εQ−1

n M/3]

)
+ qn(n+ 2)β(1)

Let ε = ε0

√
log n

nh
then 4qnexp

− ε2
0

logn
nh Q

−2
n

4[2σ̃2
r + ε0

√
log n

nh
Q−1
n M/3]



qnexp

− ε2
0

logn
nh Q

−2
n

4[2σ̃2
r + ε0

√
log n

nh
Q−1
n M/3]

 = qnexp

(
− ε2

0 log nQ−2
n

8σ̃2
rnh+ 4ε0(log n)1/2(nh)1/2Q−1

n M/3]

)

= qnexp

(
− ε2

0 log nQ−2
n

8σ̃2
rnh+ 4ε0(n log n)1/2h1/2Q−1

n M/3]

)
= qnexp

(
− ε2

0Q
−2
n

8σ̃2
r(log n)−1nh+ 4ε0(n log n)−1/2h1/2Q−1

n M/3]

)
= qnexp

(
− ε2

0Q
−2
n

8σ̃2
r( logn

n )−1h+ 4ε0(n log n)−1/2h1/2Q−1
n M/3]

)
→ 0

So

4qnexp

− ε2
0

logn
nh Q

2
n

4[2σ̃2
r + ε0

√
log n

nh
QnM/3]

→ 0 when n −→∞ (13)

We will look at the case where σ2
2i ≥ σ2

2i−1, by framing
∑r
i=1 σ

2
2i ≥

∑r
i=1 σ

2
2i−1 and

σ̃2
r = max

(
r∑
i=1

σ2
2i,

r∑
i=1

σ2
2i−1

)
=

r∑
i=1

σ2
2i =

r∑
i=1

Q−2
2i γ

2
2iO(h−1

2i )

=

r∑
j=2

Q−2
j γ2

jO(h−1
j ) = Q−2

r Q2
r

r∑
j=2

Q−2
j γ2

jO(h−1
j )

≤ cQ−2
r Q2

r

n∑
j=1

Q−2
j γ2

j h
−1
j = cQ−2

r O(γrh
−1
r )

= O(γrh
−1
r )



American Journal of Theoretical and Applied Statistics 2024; 13(6): 255-265 263

If σ2
2i ≤ σ2

2i−1, by framing
∑r
i=1 σ

2
2i ≤

∑r
i=1 σ

2
2i−1 and

σ̃2
r = max

(
r∑
i=1

σ2
2i,

r∑
i=1

σ2
2i−1

)
=

r∑
i=1

σ2
2i−1 =

r∑
i=1

Q−2
2i−1γ

2
2i−1O(h−1

2i−1)

=

r∑
j=1

Q−2
j γ1

jO(h−1
j ) = Q−2

r Q2
r

r∑
j=1

Q−2
j γ2

jO(h−1
j )

≤ cQ−2
r Q2

r

r∑
j=1

Q−2
j γ2

j h
−1
j = cQ−2

r O(γrh
−1
r )

= O(γrh
−1
r )

In conclusion

σ̃2
r = O(γnh

−1
r )

The nonincreasing of β allows us

qn(n+ 2)β(1) ≤ qn(n+ 2)β(n) ≤ c1
√

n

h3
(n+ 2)β(n)

≤ c1c2
n1/2

h3/2
(n+2)n−ν ≤ c1c2(n3/2−νh−3/2+2n1/2−νh−3/2)→ 0

(14)
Considering the fact 13 et 14, we obtain

A2 = max
1≤j≤qn

∣∣∣∣∣Qn
n∑
k=1

M̃k(t∗j )

∣∣∣∣∣ = O

(√
log n

nhn

)
.

In conclusion

sup
t∈[0,τ ]

|f̃n(t)− Ef̃n(t)| = O

(√
log n

nhn

)

3.3. Proof of Lemma 2.3

|f̂n(t)− f̃n(t)| = Qn

n∑
k=1

Q−1
k δkγkh

−1
k K

(
t− Yk
hk

)(
1

Ḡk(Yk)
− 1

Ḡ(Yk)

)

≤ Qn

n∑
k=1

Q−1
k γkh

−1
k K

(
t− Yk
hk

)
|Ḡk(Yi)− Ḡ(Yi)|
Ḡk(Yi)Ḡ(Yi)

≤
supy∈[0,τ ] |Ḡn(y)− Ḡ(y)|

Ḡk(τ)Ḡ(τ)
Qn

n∑
k=1

Q−1
k γkh

−1
k K

(
t− Yk
hk

)

≤
supy∈[0,τ ] |Ḡn(y)− Ḡ(y)|

Ḡk(τ)Ḡ(τ)
Qn

n∑
k=1

Q−1
k γkh

2
kK

(
t− Yk
hk

)

≤ c1c2

√
log log n

n
h2
n

= O

(√
log log n

n
h2
n

)
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Indeed

sup
y∈[0,τ ]

|Ḡn(y)− Ḡ(y)| = O

(√
log log n

n

)
p.s

According to the law of iterated logarithm (LIL) for censored data, in the case i.i.d. (see Deheuvels and Einmahl (2000)) and

since K is a bounded function⇒ K

(
t− Yk
hk

)
≤M

Qn

n∑
k=1

Q−1
k γkh

2
kK

(
t− Yk
hk

)
≤ MQn

n∑
k=1

Q−1
k γkh

2
k

≤ Mch2
n

≤ c2h
2
n with c2 = Mc

3.4. Proof of Theorem 1

The proof of the Theorem is based on the lemmas above and the triangular inequality allows us to write :

sup
t∈Ω

∣∣∣f̂n(t)− f(t)
∣∣∣ ≤ sup

t∈Ω

∣∣∣f̂n(t)− f̃(t)
∣∣∣+ sup

t∈Ω

∣∣∣f̃n(t)− E
(
f̃n(t)

)∣∣∣+ sup
t∈Ω

∣∣∣E(f̃n(t)
)
− f(t)

∣∣∣
= S1 + S2 + S3

where

f̃n(t) = Qn

n∑
k=1

Q−1
k γkδkh

−1
k Ḡ−1(Yk)K

(
t− Yk
hk

)

By applying these three lemmas, we obtain the result.
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