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Abstract 

Effective model evaluation is crucial for robust machine learning, and cross-validation techniques play a significant role. This 

study compares Repeated k-folds Cross Validation, k-folds Cross Validation, and Leave-One-Out Cross Validation (LOOCV) on 

imbalanced and balanced datasets across four models: Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), Random 

Forest (RF), and Bagging, both with and without parameter tuning. On imbalanced data without parameter tuning, Repeated 

k-folds cross-validation demonstrated strong performance for SVM with a sensitivity of 0.541 and balanced accuracy of 0.764. 

K-folds Cross Validation showed a higher sensitivity of 0.784 for RF and a balanced accuracy of 0.884. In contrast, LOOCV 

achieved notable sensitivity for RF and Bagging at 0.787 and 0.784, respectively, but at the cost of lower precision and higher 

variance, as detailed in Table 1. When parameter tuning was applied to balanced data, the performance metrics improved. 

Sensitivity for SVM reached 0.893 with LOOCV and balanced accuracy for Bagging increased to 0.895. Stratified k-folds 

provided enhanced precision and F1-Score for SVM and RF. Notably, processing times varied significantly, with k-folds being 

the most efficient with SVM taking 21.480 seconds and Repeated k-folds showing higher computational demands where RF took 

approximately 1986.570 seconds in model processing, as shown in Table 4. This analysis underscores that while k-folds and 

repeated k-folds are generally efficient, LOOCV and balanced approaches offer enhanced accuracy for specific models but 

require greater computational resources. The choice of cross-validation technique should thus be tailored to the dataset 

characteristics and computational constraints to ensure optimal model evaluation. 

Keywords 

Cross-Validation, Balanced Data, Imbalanced Data, Parameter Tuning, Hyperparameter Optimization 

 

1. Introduction 

Cross-validation is a technique in machine learning and sta-

tistical modeling, primarily used for assessing how the results 

of a statistical analysis will generalize to an independent data 

set [1]. This process is fundamental for model validation and 

selection, ensuring that models perform well on unseen data. 

The concept of cross-validation dates back to the early 20th 

century, with initial applications in statistics and experimental 

design [2]. The formalization and popularization of 
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cross-validation methods, however, occurred in the latter half 

of the 20th century, paralleling the rise of computational sta-

tistics and machine learning. Early works by Lachenbruch and 

Mickey (1968) on Leave One-Out Cross Validation (LOOCV) 

and K-folds Cross-Validation laid the foundation for contem-

porary validation practices [3, 4]. Recent advancements in 

computational power and the proliferation of large datasets 

have further driven the evolution of cross-validation techniques 

[5]. The development of ensemble methods and the integration 

of cross-validation within automated machine learning (Au-

toML) frameworks exemplify the ongoing innovations in this 

field [6]. Among the various cross-validation techniques, 

LOOCV, k-folds Cross-Validation, and Repeated k-folds 

Cross-Validation are commonly used methods, each with 

unique advantages and limitations. Cross-validation techniques 

are employed to mitigate the problem of overfitting, which 

occurs when a model is excessively complex and captures the 

noise along with the underlying data pattern. By partitioning 

the data into training and testing sets, cross-validation helps in 

achieving a balance between bias and variance, leading to more 

robust model performance [7]. 

LOOCV can be considered as an example of k-folds 

Cross-Validation with the specific choice of k equal to the 

number of observations in the dataset [8]. Here, a single obser-

vation is used for validation while the rest of the data forms the 

training data set. This process is repeated further such that each 

observation in the whole dataset is used only once for validation. 

Hence, LOOCV offers nearly unbiased error estimation, but it is 

time-consuming especially when applied to large datasets, and 

may trigger high variance as well [9]. K-folds cross-validation, 

on the other hand, is a technique in which the whole data set is 

divided into k-folds sets of equal sizes. The model is built from 

the k−1 folds and validated on the remaining fold. In this process, 

data is partitioned k number of times with every fold in turn used 

once for testing. The results are then added to come up with a 

single estimation which is the index estimation. This method is 

computationally cheaper and has low variation compared with 

LOOCV making it fit for use in large datasets [10]. When k-folds 

cross-validation is done several times with different splits of the 

data, it is known as repeated k-folds cross-validation. This 

method gives a better approximation of the performance of the 

model since all the k-folds cross-validation runs are averaged out 

hence reducing variance as opposed to running only one k-folds 

cross-validation [11]. Random sampling is most important when 

k-folds cross-validation has to be repeated especially when the 

data set is small and variance reduction is a big concern. 

From the discussion above, the selection of the 

cross-validation technique may affect the performance as-

sessment of a given machine learning model. As much as 

LOOCV is accurate, and provides nearly unbiased error es-

timation, its variance as well as computing intensity could be 

higher. With regard to other types of techniques, k-folds 

cross-validation, with the usual default choice of k=10, has a 

comparatively smaller value of both bias and variance; how-

ever, slightly unstable as well. The repeated k-folds 

cross-validation enhances the reliability by providing the 

average of several results, but at the same time raises the 

computational cost and time [7]. For this reason, the choice of 

which method of cross-validation to apply in practice is made 

based on certain parameters such as the size of the dataset, 

computational possibilities and time, and other requirements 

of the modeling problem. The disadvantages and benefits of 

each approach are essential knowledge to build sound and 

transferable machine learning applications. 

Cross-validation techniques are employed in many study 

fields, such as bioinformatics, finance, and social sciences. For 

instance, in the field of bioinformatics, cross-validation is used 

for assessing the ability to predict models employed in ge-

nomics and proteomics [12]. In finance, cross-validation is 

used in validating the risk models and a few algorithmic trading 

strategies [13]. The sophistication of and the range of applica-

tions for machine learning is the reason why there is a need to 

choose the right cross-validation methods. With regard to time 

series analysis, ordinary cross-validation may not be applicable 

because of the temporal dependencies in the data, necessitating 

adaptations of techniques such as rolling-origin 

cross-validation [14]. However, it is important to note that the 

future of cross-validation is inscribed in the capacity to deal 

with the difficulties arising from big data as well as high di-

mensional spaces. Currently, researchers have proposed other 

techniques such as stratified cross-validation and nested 

cross-validation in a bid to enhance the reliability of the mod-

el’s evaluation. Furthermore, cross-validation in combination 

with increasing data volume and as part of a Scalable and Dis-

tributed Computing Environment is going to become essential 

for large-scale machine learning tasks [15]. The other inter-

esting line of research is the use of adaptive cross-validations 

that depend on the data characteristics and modeling needs. 

Such methods could provide ways for more efficient and ef-

fective validation in case validation that may be performed in 

the frame of real-time as well as online learning [16]. 

Cross-validation is still considered to be one of the essential 

methods for model validation and selection in the ma-

chine-learning field [17]. The main objective of this paper is 

to compare the performance of the machine learning model 

developed from the three cross-validation techniques; 

LOOCV, k-folds cross-validation, and repeated k-folds 

cross-validation, with the focus on coming up with an under-

standing of how each of these techniques should be used. 

Thus, machine learning continues to evolve, and the ongoing 

refinement and innovation of cross-validation methods will be 

essential for advancing the field and achieving robust and 

reliable predictive modeling. This paper is therefore based on 

the following three research objectives. 

1) To Evaluate the Performance and Computational Effi-

ciency of Different Cross-Validation Techniques 

2) To Analyze the Impact of Cross-Validation Techniques 

on Model Selection and Generalization 

3) To Provide Practical Recommendations for Selecting 

Appropriate Cross-Validation Methods 
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2. Methods and Materials 

2.1. Research Design 

The current study employs a cross-sectional research ap-

proach in an attempt to assess and contrast the efficacy and the 

computational effectiveness of the three cross-validation 

techniques; LOOCV, k-folds CV, and Repeated k-folds CV. 

The cross-sectional approach allows for the simultaneous 

analysis of these methods across different machine learning 

models and datasets at a single point in time. Thus, the study 

compared the three models to evaluate the influence of each 

cross-validation technique on the accuracy of the models. The 

use of cross-sectional design is informed by the view to 

compare the performance of techniques in terms of execution 

time and other performance metrics and to get a direct im-

pression of which methods are superior for specific applica-

tions or require less computations, which is helpful for prac-

titioners and researchers in the ML field [18]. 

2.2. Data Collection 

The dataset used in this study was obtained from an 

open-access database; Kenya National Data Archive (Ke-

NADA) The database contains data commonly used in machine 

learning studies for various domains including but not limited 

to; health care, finance, and social sciences. The dataset used in 

this study was deemed suitable for the assessment of the 

cross-validation techniques; with an emphasis on the number of 

cases, classes’ distribution, and the feature space. For this study, 

the dataset considered contained predictors of malaria preva-

lence in Kenya with features labeled as Q1-Q13. Missing val-

ues were addressed and feature scales were normalized before 

model development and comparison. The data was split based 

on the need for the various cross-validation techniques under 

analysis to enhance consistency in the evaluation. 

2.3. Data Analysis 

In this study, the analysis focused on evaluating the per-

formance of four machine learning models—K-Nearest 

Neighbors (K-NN), Support Vector Machine (SVM), Ran-

dom Forest, and Tree bagging—using three different 

cross-validation techniques; Leave-One-Out 

Cross-Validation (LOOCV), K-folds Cross-Validation, and 

Repeated K-folds Cross Validation. The four ma-

chine-learning algorithms were estimated and evaluated for 

each of the three cross-validation techniques. As discussed 

earlier, in the case of LOOCV, each of the data is used once to 

test the model while the rest of the data (N-1) is used for 

training, while k-folds Cross-Validation, requires splitting the 

data into ten different folds, where each fold was used as the 

testing set, and the remaining folds used as the training set. 

The Repeated k-folds Cross-Validation, on the other hand, 

was done taking several iterations of k-folds Cross-Validation 

using different random partitions of data; thus, providing a 

more accurate estimation of the performance. 

2.3.1. Cross Validation Techniques 

1) Leave One-Out Cross Validation 

LOOCV approach takes every observation in the data set 

as the validation set and N-1 as the training set. This is done 

for the entire sample size (N) [19]. 

In this method, assume that we have the dataset D, where; 

𝐷 = *(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … , (𝑥𝑛 , 𝑦𝑛)+   (1) 

In this approach, 𝑥  represents the features and the 𝑦 1 

represents the corresponding label for the outcome for each 

observation i. Iterations are done from   to 𝑛. Model train-

ing is done on the N-1 number of observations and only one 

observation is used as a validation set, giving the classifica-

tion error with the mathematical equation 2 

𝐿𝑂𝑂𝐶𝑉 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
∑ 𝐿(𝑦 , 𝑦̂ )
𝑛
 =1        (2) 

Where L is the loss function. The common loss function is 

the Mean Squared Error (MSE) expressed as shown in equa-

tion 3. 

𝐿(𝑦 , 𝑦̂ ) = (𝑦 , 𝑦̂ )
2             (3) 

Graphical representation of LOOCV is shown Figure 1 

[20] 

 
Figure 1. Leave One-Out Cross Validation. 

2) K-folds Cross Validation 

For the K-folds Cross Validation, assume that we have the 

dataset given as shown in equation 4 

𝐷 = *(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … , (𝑥𝑛 , 𝑦𝑛)+.   (4) 

Where, 𝑥  represents the features and the 𝑦  represents 

the corresponding label for the outcome for each observation 

i where iterations are done from   to 𝑛 [19]. In this ap-

proach, the k-folds CV error is given as shown in equation 5. 
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𝐾 − 𝐹𝑜𝑙𝑑 𝐶𝑉 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑘
∑ 𝐸 
𝑘
 =1       (5) 

Where; 

𝐸 =
1

|𝐷𝑖|
∑ 𝐿(𝑦 𝑗 , 𝑦̂ 𝑗)
|𝐷𝑖|

𝑗=1          (6) 

Graphical representation of the k-folds cross-validation is 

as shown in Figure 2 [21]. 

 
Figure 2. K-folds Cross-Validation. 

In the case of five folds cross-validation, the data is split 

into five folds. In this approach, the model is trained and 

validated multiple times for various iterations. For every 

iteration, one-fold is selected as the validation set and the 

model is trained on the four remaining folds where the 

performance of the model is evaluated on the newly trained 

model [20]. In this approach, every fold is used exactly one 

time for model validation. The average model performance is 

then calculated from the five iterations. 

3) Repeated K-folds Cross Validation 

The repeated K-foldss cross-validation is an extension of 

K-foldss cross-validation [22]. Repeated K-foldss 

cross-validation provides a way to improve the estimated 

performance of a machine-learning model. The technique 

involves simply repeating the cross-validation procedure 

multiple times and reporting the mean result across all folds 

from all runs [23]. The results from this technique are 

expected to be a more accurate estimate of the true unknown 

underlying mean performance of the model on the dataset, as 

calculated using the standard error. 

2.3.2. Parameter Tuning 

Parameter tuning, also referred to as hyperparameter 

optimization is a crucial step in the machine learning model 

development process [24]. Hyperparameter optimization 

helps in the enhancement of the model’s performance on the 

unseen data [25]. The parameter tuning for the SVM was done 

by creating a grid search for hyperparameter optimization 

with the regularization parameter C with values 0.1, 1, 10, and 

100. In order to control the spread of the Gaussian function in 

the RBF kernel sigma parameter was set with values 0.01, 0.1, 

and 1. Parameter optimization for the k-Nearest Neighbors 

(k-NN) model was done by setting up the value of k in a 

sequence of 1 to 21 with an interval of 2. Random forest on 

the other hand has only one parameter to tune; mtry. This 

parameter controls the number of features randomly chosen as 

candidates for splitting a node in each tree. The selection of 

the optimal mtry was done by selecting a grid search for a 

sequence of values from 1 to 13 by an interval of 1. The 

number of trees in the forest was set to 500 to ensure a stable 

model performance. Lastly, none of the parameters were 

optimized in the tree bag model since the algorithm focuses on 

data preprocessing rather than accuracy. 

2.4. Machine Learning Models Fitting 

1) Support Vector Machines 

Two optimization problems in the dual and primal form are 

solved during the training of the support vector machine [26]. 

The two forms of the optimization problem are expressed as 

shown below 

Primal form; 

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉 

𝑛
 =1

𝑤,𝑏,𝜉

𝑚 𝑛
          (7) 

Like any other optimization, solving the primal 
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optimization problem is subject to the condition in equation 8 

𝑦 (𝑤 ⋅ 𝑥 + 𝑏) ≥  − 𝜉 , ≥ 0,  =  ,… , 𝑛    (8) 

The dual form; 

.∑ 𝛼 
𝑛
 =1 −

1

2
∑ 𝛼 𝛼𝑗𝑦 𝑦𝑗𝐾(𝑥 𝑥𝑗
𝑛
 ,𝑗=1 /

𝛼

𝑚𝑎𝑥

    (9) 

The solution to the dual optimization problem is subject to 

the condition in equation 10 below 

∑ 𝛼 𝑦 = 0
𝑛
 =1 , 0 ≤ 𝛼 ≤ 𝐶,  =  ,… , 𝑛    (10) 

Upon solving the two optimization problems above, the 

final model is given as shown below in equation 11 

𝑓(𝑥) =  ∑ 𝛼 𝑦 𝐾(𝑥 , 𝑥𝑗
𝑛
 =1 ) + 𝑏      (11) 

For the new input feature x (test set), the model predicts the 

class label (Positive or Negative) using the sign of 𝑓(𝑥) as 

given in equation 12 [27]. 

𝑃𝑟𝑒𝑑 𝑐𝑡𝑒𝑑 𝐶𝑙𝑎𝑠𝑠 = 𝑠 𝑔𝑛(∑ 𝛼 𝑦 𝐾(𝑥 ,  𝑥𝑗) + 𝑏
𝑛
 =1 ) (12) 

2) K-Nearest Neighbors 

The k-NN concept and model development is built behind 

the idea of distance metric known as Euclidean distance  𝑘 

[28] and shown in equation 13 

𝑑(𝑋,𝑎-, 𝑋,𝑏-) =  √∑ (𝑥𝑗
,𝑎- − 𝑥𝑗

,𝑏-)2𝑚
𝑗=1

      (13) 

From this approach, neighbors are aggregated and the 

output is expressed as shown below [27] 

𝑦̂ = mode(𝑦  for  ∈ N𝑘)          (14) 

In their paper, [27] propose that the predicted class 𝑦̂ for 

the test instance, 𝑥 is the class that appears most frequently 

among the 𝑘 selected neighbors: 

𝑦̂ = (∑ 𝐼(𝑦 = 𝑐)
𝒩
 ∈𝒩𝑘

)
c∈C

arg𝑚𝑎𝑥
       (15) 

3) Random Forest 

The random forest is an ensemble approach in machine 

learning aimed at reducing the overfitting problem and 

increasing the model’s predictive accuracy [27]. 

𝑦̂ =  Arg𝑚𝑎𝑥⏟    
𝑐∈𝐶

∑ 𝐼𝐵
𝑏=1 (𝑇𝑏(𝑋) = 𝐶)      (16) 

The predicted class of the new instance from the test set is 

found as shown in equation 17 below 

𝑦̂(𝑥) = 𝑚𝑜𝑑𝑒(*𝑦̂𝑡(𝑥)+𝑡=1
𝑇 )         (17) 

4) Tree Bagging 

The tree-bagging algorithm trains the decision tree 𝑓𝑏̂ on 

each bootstrap sample  𝑏. The predicted instance from the 

test set is shown in equation 18. 

𝐶𝑙𝑎𝑠𝑠 𝑓 𝑐𝑎𝑡 𝑜𝑛: 𝑦̂ = 𝑚𝑜𝑑𝑒𝑙(𝑦̂1, 𝑦̂2, … , 𝑦̂𝐵)    (18) 

2.5. Model Evaluation and Selection 

The proposed models were assessed using the following 

metrics; accuracy, precision, recall, F1 score, and 

computational time. Thus, these metrics offered an account of 

how well each model was generalized and the time-saving 

nature of the cross-validation methods. In order to assess the 

effects that the different cross-validation techniques invoked 

on model selection; the consistency of model ranking was also 

computed. The significance of cross-validation performance 

metrics was analyzed based on statistical tests along with 

detailed graphical representations that helped in comparing 

the efficacy of each of the cross-validation techniques in 

assessing the performance of K-NN, SVM, Random Forest, 

and Tree Bagging models. 

3. Results and Discussion 

3.1. Descriptive Statistics and Features Plot 

Table 1. Descriptive Statistics. 

 N Mean SD Median Mad Min Max Range Skew Kurtosis SE 

Q4 3280.000 0.731 0.444 1.000 0.000 0.000 1.000 1.000 -1.040 -0.918 0.008 

Q5 3280.000 1.525 1.004 1.000 0.000 0.000 3.000 3.000 0.407 -1.115 0.018 

Q6 3280.000 1.538 1.356 1.000 1.483 0.000 7.000 7.000 0.953 1.228 0.024 

Q7 3280.000 0.868 0.826 1.000 1.483 0.000 4.000 4.000 0.690 0.058 0.014 
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 N Mean SD Median Mad Min Max Range Skew Kurtosis SE 

Q8 3280.000 3.179 0.895 3.000 1.483 1.000 4.000 3.000 -0.555 -1.059 0.016 

Q9 3280.000 1.314 0.864 1.000 1.483 0.000 3.000 3.000 0.302 -0.526 0.015 

Q10 3280.000 0.703 0.780 1.000 0.000 0.000 3.000 3.000 1.412 2.296 0.014 

Q11 3280.000 0.099 0.299 0.000 0.000 0.000 1.000 1.000 2.677 5.167 0.005 

Q12 3280.000 0.096 0.295 0.000 0.000 0.000 1.000 1.000 2.741 5.514 0.005 

Q13 3280.000 0.048 0.215 0.000 0.000 0.000 1.000 1.000 4.203 15.668 0.004 

 

Table 1 above shows descriptive statistics for various pre-

dictors of malaria prevalence in Kenya for Q4 to Q13. The 

descriptive statistics show columns with various measures 

including but not limited to mean, standard deviation (SD), 

median, mean absolute deviation, maximum, minimum, range, 

skewness, kurtosis, and standard error. These statistics show 

the spread as well as the distribution of the data. On the other 

hand, Figure 3 below shows how malaria test results varied 

across different features. The definition of each feature is 

given in Table 2 below. 

 
Figure 3. Features Plot for the Distribution of Malaria Tests Outcome. 
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Table 2. Feature Labels and their Definition. 

Feature Definition Feature Definition 

Q1 Region Q8 Anaemic level 

Q2 County Q9 The education level of the mother 

Q3 Zones Q10 Type of mosquito net 

Q4 Has Mosquito Net (Yes, No) Q11 Presence of Falciparum 

Q6 Number of Children under five years slept under mosquito nets last night Q12 Presence of Malariae 

Q6 Number of bed nets Q13 Presence of Ovalle 

Q7 Number of children slept under mosquito nets   

 

3.2. Models Estimation and Evaluation 

In this study, models were estimated with various 

cross-validation schemes starting with repeated k-folds 

cross-validation with 10 folds, followed by k-folds 

cross-validation with ten folds repeated five times. The final 

set of models was estimated with leave one out 

cross-validation (LOOCV). The results in Table 3 below 

show the performance metrics of the four models on the 

testing set on the repeated k-folds validation. 

Table 3. Model Performance on the Test Set using Imbalanced Data. 

Models Performance on the Testing Set 

Repeated K-folds Cross Validation K-folds Cross Validation Leave One Out Cross Validation 

 

SVM K-NN RF Bagging SVM K-NN RF Bagging SVM K-NN RF Bagging 

Sensitivity 0.541 0.000 0.784 0.757 0.541 0.054 0.784 0.784 0.541 0.154 0.787 0.784 

Specificity 0.987 1.000 0.983 0.979 0.987 1.000 0.983 0.974 0.988 1.000 0.989 0.974 

Precision 0.625 NA 0.644 0.583 0.625 1.000 0.644 0.537 0.627 1.000 0.694 0.537 

F1-Score 0.580 NA 0.707 0.659 0.580 0.103 0.707 0.637 0.583 0.103 0.777 0.637 

Balanced Accuracy 0.764 0.500 0.884 0.868 0.764 0.527 0.884 0.879 0.768 0.524 0.894 0.879 

 

The model performances across different cross-validation 

techniques revealed notable variations. Sensitivity for K-NN 

was significantly low, ranging from 0.000 in Repeated 

K-folds to 0.154 in Leave One Out Cross-Validation 

(LOOCV), whereas SVM consistently maintained a sensitiv-

ity of 0.541 across all techniques. Specificity was uniformly 

high, with K-NN achieving 1.000 in every scenario. Precision 

varied slightly, with Bagging showing a lower range (0.537 to 

0.583) compared to the more stable SVM and RF models. 

F1-Scores for K-NN were poor (0.103 in K-folds and 

LOOCV), while Random Forest demonstrated strong per-

formance across the board, particularly in LOOCV with an 

F1-Score of 0.777 and a Balanced Accuracy of 0.894. Overall, 

K-NN showed substantial variability, while Random Forest 

and Bagging remained more stable across different validation 

techniques. The results in Figure 4 below show the compara-

tive performance where random forest appeared as the best 

candidate model in both accuracy and kappa considering the 

three validation techniques; however, this is without putting 

into consideration the imbalance nature of the data. 
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Figure 4. Model Comparison on Average Performance. 

3.3. Handling Class Imbalance and 

Hyperparameter Optimization 

Class imbalance is one of the factors affecting the accuracy 

of the classification models. The results above were derived 

from imbalanced data which may be misleading. Figure 5 

below shows the bar plot for the imbalanced data as well as 

the balanced data. 

 
Figure 5. Imbalanced and Balanced Malaria Dataset. 

For more accurate and reliable results, the four models Support Vector Machines (SVM), k-NN, Random Forest, and Tree 

Bagging were re-estimated after applying SMOTE to balance the positive and negative test results. The models’ performance 

with optimized hyperparameters is tabulated in Table 4. 
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Table 4. Results from the Balanced Data with Tuned Parameters. 

Results from the Balanced Data with Tuned Parameters 

Repeated K-folds Cross Validation K-folds Cross Validation Leave One Out Cross Validation 

 

SVM K-NN RF Bagging SVM K-NN RF Bagging SVM K-NN RF Bagging 

Sensitivity 0.784 0.703 0.784 0.784 0.378 0.609 0.811 0.784 0.893 0.740 0.829 0.844 

Specificity 0.973 0.979 0.977 0.977 0.981 0.981 0.977 0.973 0.988 0.999 0.993 0.987 

Precision 0.527 0.556 0.569 0.569 0.438 0.591 0.577 0.527 0.646 0.598 0.592 0.629 

F1-Score 0.630 0.610 0.659 0.659 0.406 0.642 0.674 0.630 0.718 0.669 0.693 0.697 

Balanced Accuracy 0.878 0.827 0.880 0.880 0.680 0.842 0.894 0.878 0.897 0.859 0.899 0.895 

Processing Time 

(Seconds) 
532.110 21.480 1986.570 1786.570 100.560 5.970 0.884 0.879 987.540 65.652 2509.650 2476.540 

 

After balancing the data and tuning the parameters, the 

model performances were assessed using Repeated k-folds 

Cross Validation, k-folds Cross Validation, and Leave One 

Out Cross Validation (LOOCV). k-NN showed variations, 

with sensitivity ranging from 0.609 in k-folds to 0.740 in 

LOOCV. Random Forest (RF) and Bagging models demon-

strated consistent sensitivity values around 0.784 to 0.844 

across the different methods. Specificity was consistently 

high across all models and validation techniques, with values 

close to 0.973 to 0.999. Precision for SVM varied across the 

methods from 0.438 in k-folds cross-validation, 0.646 in 

LOOCV, and 0.527 in repeated k-folds cross-validation for 

the SVM, while k-NN showed slightly higher precision in 

LOOCV (0.598) compared to other methods. F1-Score varied 

across models and validation techniques, with SVM showing 

an F1-Score of 0.630 in repeated k-folds cross-validation, 

0.406 in k-folds cross-validation, and 0.718 in LOOCV, while 

k-NN ranged from 0.610 to 0.669. The Balanced Accuracy 

metric highlighted that RF and Bagging models performed 

better, with values up to 0.899 using leave-one-out 

cross-validation. Processing time significantly differed 

among the models, with Bagging and Random Forest showing 

higher computational costs, particularly in LOOCV, where 

processing times reached up to 2509.650 seconds. The SVM 

and k-NN models required less computational time, with the 

k-NN model being the fastest, particularly in k-folds 

cross-validation, with a processing time of only 5.970 seconds. 

The results from three validation methods show that the ran-

dom forest (RF) algorithm was found to perform better. The 

study established that random forest had reasonably high 

sensitivity, specificity and almost equal bias for all the vali-

dation methods used most especially for the LOOCV which 

recorded a sensitivity of 0. 829, specificity of 0. 993, and 

balanced accuracy of 0. 899. Even though the processing time 

taken for the random forest was high, still the above-explored 

trade-off seems to be worth it as it has easily outperformed the 

other models used in this scenario in terms of the performance 

metrics used to evaluate the model. Using leave-one-out 

cross-validation (LOOCV) random forest outperformed all 

the other algorithms in terms of classification of positive and 

negative cases (Accuracy) as well as in terms of agreement 

between the actual and predicted positive and negative cases 

(Kappa). Figure 6 shows how the four models perform in 

terms of accuracy and kappa. 

 
Figure 6. Model's Performance on the Balanced Data with Tuned Parameters. 
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4. Conclusion 

This paper aimed to make a comparative analysis of dif-

ferent cross-validation approaches, LOOCV, k-folds 

cross-validation, and repeated k-folds cross-validation across 

several ML algorithms; k-NN, SVM, random forest and tree 

bagging. The results indicate the strengths and weaknesses of 

the bias, variance, and computation cost within each method. 

Although LOOCV gives an estimate of generalization error 

that is not biased, the method is computationally expensive 

and possesses high variance especially when applied to large 

datasets. k-folds cross-validation with k=10 lies in the middle 

of bias and variance making them ideal for several modeling 

exercises. k-folds cross-validation is repeated to increase the 

stability of the cross-validation results by averaging across 

different folds, however, this increases the computational cost 

and time. The recommendations derived from the study also 

pinpoint the need to choose an appropriate cross-validation 

technique depending on the size of the data set, the computa-

tional power available, and the goal of the modeling exercise 

at hand. In subsequent studies, the emphasis should be placed 

on the creation of efficient adaptive and progressive ap-

proaches to carry out cross-validation with the intent to re-

solve such dilemmas linked to big data analysis as well as 

actual-time applications while maintaining the credibility of 

model assessment given the continually advancing nature of 

complex machine learning paradigms. 

Abbreviations 

KeNADA Kenya National Data Archive 

K-NN K-Nearest Neighbors 

LOOCV Leave One Out Cross -Validation 

ML Machine Learning 

RF Random Forest 

SMOTE Synthetic Minority Over-sampling Technique 

SVM Support Vector Machines 
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