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Abstract 

Robotic rovers have vastly expanded our understanding of the lunar surface, providing detailed imagery crucial for scientific 

research and future exploration. However, manually classifying this imagery is time-consuming and prone to errors, 

necessitating automated solutions. Automated classification of lunar surface imagery is vital for efficient data analysis, site 

selection for future missions, and advancing lunar exploration. Developing accurate and efficient image classification systems 

tailored for lunar terrain is thus imperative. The objective of this study is to develop and assess an image classification system 

utilizing Deep Convolutional Neural Networks (DCNNs) specifically for lunar surface images. The aim is to achieve high 

accuracy and efficiency in identifying geological features such as craters and dunes, as observed by robotic rovers. A curated 

dataset of lunar surface images was partitioned into training, testing, and validation subsets. DCNNs models were trained on the 

training dataset and evaluated using testing and validation datasets. Hyperparameter tuning and optimization techniques were 

employed to enhance model performance. The classification system based on DCNNs showed promising outcomes. Model B and 

F achieved an accuracy of 91.1%, while Model A and D achieved 87.5%. Model C attained an accuracy of 89.3%, and Model E 

reached 83.9%. Visualizations of training and validation metrics revealed distinct performance patterns across models, 

highlighting the potential for further advancements in lunar exploration research. 
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1. Problem Description 

The lunar surface, known for its diverse landscape and 

varied geological formations, offers both intriguing and 

challenging opportunities for exploration. Images captured by 

robotic rovers provide critical insights into the composition of 

moon and structure, acting as a gateway to its geological 

history [1]. 

Craters, as significant features, are more than mere de-

pressions; they contain valuable information about the history 

of moon. Varatharajan I. et al. [2] emphasized that these cra-

ters are records of historical impacts and geological processes 

that have shaped the lunar landscape over time. Their wide-

spread occurrence makes them essential for tasks such as age 

estimation through crater counting and understanding the 

geological evolution of the surface [3]. 
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Wang S. et al. [4] highlighted the challenges associated 

with accurately recognizing craters. While human observation 

can lead to precise classifications, it is often time-consuming 

and inconsistent, with expert assessments differing by as 

much as 45% for the same lunar landform image [5]. This 

reliance on subjective interpretation underscores the urgent 

need for automated methods that can efficiently analyze large 

volumes of lunar imagery. Craters created by small impactors 

are key surface features on many bodies in the Solar System. 

On airless bodies like the Moon, the lack of weather-related 

erosion, tectonics, and volcanic activity has allowed for the 

accumulation of impact craters over time. As noted by Silburt 

A. et al. [6], crater densities provide a means to examine a 

body’s geological history and assess the relative chronology 

of regions remotely. This emphasizes the importance of ac-

curately identifying craters, as these records are vital for un-

derstanding Solar System formation theories. Additionally, 

lunar swirls, which are large albedo features found across the 

Moon, add complexity to lunar geology. Traditionally, these 

features have been mapped through visual inspection but 

identifying the boundaries between bright and dark regions 

can be subjective [7]. Recent studies utilizing machine 

learning techniques have improved the identification and 

mapping of swirls by providing measurable criteria, thus 

reducing bias and enhancing classification accuracy. 

Within lunar surface imagery, various categories represent 

distinct geological phenomena. Craters are the most common 

feature, evidencing past impacts, while dark and bright dunes 

illustrate the interplay of light and shadow on the lunar surface. 

Other features, such as slope streaks, impact ejecta, Swiss 

cheese-like formations, and spider-like structures, further 

diversify the image catalog, each offering clues about the 

Moon’s geological evolution. However, identifying and cat-

egorizing these images presents significant challenges. The 

rugged terrain, varying lighting conditions, and the presence 

of similar-looking features often confuse automated classifi-

cation systems. Moreover, the vastness of the lunar surface 

and the sheer volume of image data necessitate efficient and 

accurate methods for analysis and classification. In this con-

text, the main aim is to utilize artificial intelligence effectively 

in creating a reliable image classification system for lunar 

surface imagery. 

To address these challenges, Wang S. et al. [4] noted the 

increasing reliance on artificial intelligence (AI) and machine 

learning techniques, particularly DCNNs. Their research 

indicates that DCNNs are effective in automating the detec-

tion and classification of lunar geological features, showing 

robustness against variations in image quality and 

noise—conditions frequently found in lunar imagery. Tradi-

tionally, crater detection has been performed manually 

through visual inspection. However, as Silburt A. et al. [6] 

pointed out, this method is impractical for the numerous 

kilometer- and sub-kilometer-sized craters on the Moon, re-

sulting in human-generated databases that often lack com-

prehensive spatial or size data. To overcome this limitation, 

researchers have developed Crater Detection Algorithms 

(CDAs) that employ various techniques, including edge de-

tection and neural networks, to automate classification. While 

these algorithms show promise, they face challenges in gen-

eralizing across unseen data due to the complex nature of 

craters. 

As Downes L. M. et al. [8] observed, AI-driven approaches 

have revolutionized lunar exploration, enabling rapid and 

precise analysis of extensive image datasets. By training ad-

vanced neural networks on labeled datasets of diverse lunar 

surface images, researchers have created models capable of 

detecting subtle differences between geological features and 

accurately classifying images into their respective categories. 

The primary aim is to leverage artificial intelligence effec-

tively to develop a reliable image classification system for 

lunar surface imagery. 

2. Data Analysis 

2.1. Raw Data 

The original dataset comprises a large collection of 73,021 

images capturing the lunar surface by robotic rovers. These 

images provide a comprehensive view of the terrain of Moon, 

highlighting various geological characteristics and formations. 

Each image is already categorized into specific groups based on 

the type of geological feature it depicts. These categories [9, 10] 

encompass craters, dark dunes, slope streaks, bright dunes, 

impact ejecta, swiss cheese-like formations, and spider-like 

structures, with each assigned a unique numerical label ranging 

from 0 to 7. The images exhibit a wide range of characteristics, 

including diverse lighting conditions, terrain textures, and ge-

ological formations. Some images capture the stark contrast 

between light and shadow, highlighting the topography of the 

lunar surface, while others reveal intricate details of geological 

features such as crater rims, dune patterns, and surface textures. 

Additionally, variations in resolution, perspective, and image 

quality add further complexity to the dataset, requiring careful 

preprocessing and analysis before classification. 

2.2. Data Description & Selection 

The dataset encompasses a vast collection of 73,021 images 

portraying the captivating lunar surface in exquisite detail. Each 

image, meticulously categorized into distinct geological features, 

offers a glimpse into the fascinating world of lunar geology. 

From the stark beauty of craters to the intricate patterns of dark 

dunes and slope streaks, these images encapsulate the diverse 

terrain and geological processes shaping the landscape of Moon. 

The selection process for these images was guided by a com-

mitment to clarity, relevance, and representativeness. By priori-

tizing high-resolution images with optimal clarity, the essence of 

each geological category while minimizing ambiguity was cap-

tured. Furthermore, the selection criteria were designed to en-

compass a broad spectrum of geological formations, providing a 
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comprehensive representation of lunar surface features. This 

approach ensures that our dataset reflects the rich diversity of the 

geology of Moon, enabling robust analysis and classification 

across different geological categories. 

Overall, the data serves as a valuable resource for training 

and validating artificial intelligence models for lunar surface 

image classification. By utilizing the DCNNs, the objective is 

to create a strong classification system capable of precisely 

categorizing 276 new images according to their geological 

content. This will enhance our comprehension of lunar geol-

ogy and streamline future exploration missions. 

  
Figure 1. Labelled lunar surface images taken by robotic rovers. 

   
Figure 2. Experimented images (276) for classification purposes. 

3. Description of Method 

3.1. Convolutional Neural Networks 

For extracting complex patterns and features from visual 

data DCNNs offer a powerful framework in the realm of 

image classification. With their structured design consisting 

of convolutional layers, pooling layers, and fully connected 

layers arranged in a hierarchy, DCNNs demonstrate profi-

ciency in extracting significant representations from raw 

image inputs. The choice of DCNNs for the task of classifying 

images of the lunar surface is rooted in their innate ability to 

unravel the complexities inherent in lunar terrain. By auto-

matically learning and extracting relevant features from the 

diverse array of geological formations captured in these im-

ages, DCNNs alleviate the need for manual feature engi-

neering, thus streamlining the classification process. Crucially, 
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DCNNs exhibit translation invariance, enabling them to rec-

ognize patterns in images regardless of their spatial orienta-

tion or position. This property proves indispensable when 

classifying geological features on the lunar surface, where the 

arrangement and appearance of features can vary significantly 

from one image to another. 

 
Figure 3. The principle of DCNNs [11]. 

A series of layers including convolutional, pooling, fully 

connected layers are the main structures of a typical DCNNs. 

The ReLU is the frequently utilized activation function in 

DCNNs. It introduces a level of complexity to the network, 

aiding in feature extraction. 

In addition, in multi-class classification tasks, a softmax 

activation function is often applied to produce probability 

distributions across the output classes. 

3.2. Hyperparameters 

Key parameters significantly influence the performance 

and effectiveness of DCNNs when classifying lunar surface 

images. These parameters, such as kernel size, layer count, 

activation function, pooling size, dropout rate, and the choice 

of optimizer, play a crucial role in determining the efficacy of 

DCNNs. As Jafar A. and Myungho M. [12] explain, hy-

perparameter optimization involves selecting the optimal 

combination of hyperparameters to enhance model perfor-

mance, focusing on both accuracy and computational effi-

ciency. In the context of deep learning, this optimization can 

be understood as a process where inputs are processed by a 

function to yield outputs as numeric values, with the goal of 

finding parameters that maximize the function's output [13]. 

For example, the choice of kernel size influences the types 

of features the network can detect, ranging from large crater 

edges to fine surface textures. The number of layers within the 

network must achieve a balance between capturing complex 

patterns and avoiding overfitting, especially given the varia-

bility of lunar surface characteristics. Activation functions 

such as ReLU are instrumental in extracting nonlinear fea-

tures, enabling the network to model the intricate relation-

ships among various geological formations. 

Pooling size is vital for down sampling feature maps while 

preserving essential characteristics, thereby ensuring efficient 

processing of extensive image datasets. Additionally, Jafar A. 

and Myungho M. [12] emphasize the importance of selecting 

appropriate hyperparameters in the training of deep neural 

networks [14]. The choice of hyperparameters can greatly 

influence model performance, as it helps maintain continuity 

between training steps, which can reduce oscillations. For 

instance, a high learning rate may lead to instability during 

training, while a low learning rate risks overlooking crucial 

patterns in the data. Therefore, identifying a suitable learning 

rate is essential for achieving optimal model performance 

without compromising computational efficiency. 

Dropout regularization is effective in mitigating overfitting 

by randomly deactivating neurons during training, which 

enhances generalization, particularly in cases where labeled 

data is limited. Adjusting the learning rate is crucial for 

achieving stable convergence during training, allowing for 

efficient learning of features from lunar surface images. Fur-

thermore, the selection of batch size plays a significant role in 

balancing computational efficiency with model stability, fa-

cilitating effective learning from the data. Ultimately, through 

careful tuning of these hyperparameters [15], a 

well-optimized DCNNs can successfully extract distinguish-

ing features from lunar surface images, leading to precise 

classification of geological formations and deepening our 

understanding of lunar geology. 

4. Results 

Convolutional Neural Networks 

In this investigation, the DCNNs were effectively deployed 

to classify 276 lunar surface images. The structure of the 

network is determined by hyperparameters such as kernel size, 
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network depth, and network width. Specifically, the DCNNs 

comprise three convolutional layers having a 3 x 3 size and 

utilizing of ReLu function, where the first layer possesses 32 

filters and subsequent layers each contain 256 filters. To down 

sample the feature maps, max pooling (2, 2) is also used 

properly. A dense layer with 512 neurons is successfully ap-

plied to prevent overfitting. Subsequently, the output layer 

utilizes an activation function, softmax, to generate probabil-

ities across classes for multi-class classification tasks. The 

entire network is optimized using the SGD optimizer, alt-

hough specific values for learning rate, momentum, and 

weight decay are not explicitly provided. Table 1 outlines the 

hyperparameters associated with network structures. Before 

constructing the model, the dataset was divided into three 

subsets: training (60%), testing (20%), and validation (20%). 

The training set comprises 165 images, while the testing and 

validation sets consist of 56 and 55 images, respectively. All 

images have dimensions of 128 x 128 pixels with three color 

channels. 

Table 1. Hyperparameters related to Network Structures. 

Model (A, B, C, D, E, F) 

Hyperparameters related to Network Structures Value Remarks 

Kernel size (3,3) 

First Conv2D layer: 32 filters, Second and 

Third Conv2D layer: 256 layers 
Network depth 3 

Network width (32, 256, 256) 

 

We utilized various parameters in training models A 

through F, encompassing a dropout rate of 0.2, momentum set 

at 0.9, weight decay of 0.01, and classification into 4 output 

classes. Additionally, incorporating leaky ReLU activation 

with a factor of 0.01, we employed mini-batch sizes of 32 and 

64. Each model underwent a different number of 

epochs—models A and D were trained for 50 epochs, models 

B and E for 100 epochs, and models C and F for 150 

epochs—with corresponding learning rates of 0.1, 0.01, and 

0.001, respectively. During testing, model A exhibited a test 

loss of 47% and achieved an accuracy of 87.5%. Model B 

displayed a reduced loss of 22.5% and achieved an accuracy 

of 91.1%. Model C demonstrated a loss of 39% and an accu-

racy of 89.3%. Model D, E, and F showed losses of 46.3%, 

40%, and 42% respectively, with corresponding accuracies of 

87.5%, 84%, and 91.1%. These findings highlight the varied 

performance of the models under different training configu-

rations. Detailed parameters are provided in. 

 
Figure 4. Performance metrics for Model A. 
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Figure 5. Performance metrics for Model B. 

 
Figure 6. Performance metrics for Model C. 

Table 2. Parameters relevant to training the model. 

Model Number of epochs Learning rate Batch size 

A 50 0.1 32 

B 100 0.01 32 

C 150 0.001 32 

D 50 0.1 64 

Model Number of epochs Learning rate Batch size 

E 100 0.01 64 

F 150 0.001 64 

In Model A, training and validation losses closely align, 

with validation consistently lower, while accuracy remains 

stable at 85% and 89%, respectively. Conversely, in Model B, 

initial validation loss is lower than training, but trends reverse 
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after 70 epochs. Model C exhibits similar behavior with a shift 

occurring after 130 epochs. Throughout, validation accuracy 

consistently outperforms training. 

In the combined analysis of models D, E, and F, distinct 

patterns emerge. Initially, model D shows fluctuations where 

validation loss surpasses training loss, but after 5 epochs, 

validation loss decreases while training loss increases. Vali-

dation accuracy consistently exceeds training accuracy over 

50 epochs, despite some fluctuations. Conversely, in model E, 

validation loss starts lower than training loss, but after 80 

epochs, this trend reverses with maintained fluctuations. 

Validation accuracy consistently surpasses training accuracy, 

but towards the end of 100 epochs, this relationship reverses 

again. Throughout 150 epochs, model F consistently exhibits 

lower validation loss than training loss. Validation accuracy 

stabilizes at 90% without fluctuations, while training accuracy 

mostly maintains around 83% with minor fluctuations. 

 
Figure 7. Performance metrics for Model D. 

 
Figure 8. Performance metrics for Model E. 
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Figure 9. Performance metrics for Model F. 
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DCNNs Deep Convolutional Neural Networks 

CDAs Crater Detection Algorithms 
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