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Abstract 

The exponential growth of industrial enterprise has highly increased the demand for effective and efficient optimization 

solutions. Which is resulting to the broad use of meta heuristic algorithms. This study explores eminent bio-inspired population 

based optimization techniques, including Particle Swarm Optimization (PSO), Spider Monkey Optimization (SMO), Grey Wolf 

Optimization (GWO), Cuckoo Search Optimization (CSO), Grasshopper Optimization Algorithm (GOA), and Ant Colony 

Optimization (ACO). These methods which are inspired by natural and biological phenomena, offer revolutionary problems 

solving abilities with rapid convergence rates and high fitness scores. The investigation examines each algorithm's unique 

features, optimization properties, and operational paradigms, conducting broad comparative analyses against conventional 

methods, such as search history, fitness functions and to express their superiority. The study also assesses their relevance, 

arithmetic andlogical efficiency, applications, innovation, robustness, andlimitations. The findings show the transformative 

potential of these algorithms and offering valuable wisdom for future research to enhance and broaden upon these 

methodologies. This finding assists as a guiding for researchers to enable inventive solutions based in natural algorithms and 

advancing the field of optimization. 
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1. Introduction 

Population based meta-heuristic optimization algorithms 

have regularly illustrated outstanding performance in ad-

dressing a wide range of real-world optimization challenges. 

These algorithms are widely used in robotics, wireless net-

works, power systems, job shop scheduling, and artificial 

neural network classification and training [1, 2]. Although 

they have widespread utility, to achieve a global optimal 

solution often requires a prominent number of fitness evalua-

tions which poseslimitations for high-complexity problems; 

such as computational fluid dynamics simulations and struc-

tural optimization. In such cases, assessing candidate solu-

tions often requires computationally in-depth numerical 

methods. This method can demand substantial CPU time, 

ranging from several minutes to days [3, 4]. 

The researchers have highly focused on Swarm Intelligence 

(SI) techniques, to address these challenges. SI algorithm is a 

subset of meta-heuristic methods, which emulates the collec-

tive behavior of natural agents to achieve coherent global 

http://www.sciencepg.com/journal/ajcst
http://www.sciencepg.com/journal/303/archive/3030704
http://www.sciencepg.com/
https://orcid.org/0000-0002-9438-0395


American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst 

 

196 

patterns throughlocal interactions, such as fish schooling, bird 

flocking, and ant foraging [5]. Evolutionary Algorithms rely 

on mutation and selection mechanisms but SI techniques 

utilize self-organizing behaviors to strike a balance between 

exploration and exploitation. One of the widely adopted 

methods for scheduling, power system optimization and 

neural network training is Particle Swarm Optimization 

(PSO); due to its fast convergence and solution accuracy [6]. 

Similarly, Grey Wolf Optimizer (GWO) has proven effective 

in multi-objective optimization problems, including IoT 

network resource allocation and dynamic trajectory optimi-

zation [7, 8]. 

Grasshopper Optimization Algorithm (GOA) and Spider 

Monkey Optimization (SMO) have shown significant appli-

cation in handling engineering design problems and 

healthcare applications. GOA has been successfully utilized 

for energy management in micro-grids and structural opti-

mization [9, 10] and SMO has been applied to medical image 

feature extraction and network intrusion detection [11, 12]. 

The hybrid use of these algorithms improves dynamic opti-

mization quality and helps to further expand their applications 

mitigating individual algorithmic weakness [13, 14]. 

 
Figure 1. Classification of Optimization Technique. 

Innovationslike adaptive parameter tuning, dynamic pop-

ulation updates, and self-learning mechanisms have enhanced 

the efficiency and robustness of these algorithms, in addition 

to hybridization [15, 16]. Adaptive mechanisms accelerate 

convergence rates and improving overall performance which 

helps maintain a balance between exploration of the search 

space and exploitation of the identified solutions. These in-

novations help algorithmslike WOA and CSO for optimizing 

renewable energy systems, feature selection in big data ana-

lytics, andlarge-scale scheduling tasks [17, 18]. 

The computational intensity of meta-heuristic algorithms 

remains a significant concern, despite their advantages. In 

case of high-complexity problems, such as those encountered 

in CFD and structural design: it required embed prob-

lem-specific knowledge of hybrid model to improve compu-

tational efficiency. For example, integrating GOA with chaos 

theory has shown success in energy management applications, 

while fuzzy-enhanced ACO has demonstrated success inlo-

gistical optimization [19, 20]. These hybrid approaches mit-

igate thelimitations of individual algorithms and open doors 

for innovative applications, especially in dynamic and 

high-dimensional problem domains. 

The versatility and adaptability of meta-heuristic optimi-

zation algorithms make them valuable tools in addressing 

modern challenges. Their impact is evident across diverse 

fields, from enhancing renewable energy systems to opti-

mizing machinelearning models and solvinglarge-scale 

scheduling problems. To ensure these algorithms remain 

relevant and efficient for emerging optimization challenges, 

future research should continue to explore hybrid models, 

adaptive mechanisms, and domain-specific enhancements. 

This paper aims to demonstrate the working principles, 
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strengths, andlimitations of these algorithms in depth. It also 

highlights their relevance and assess the recent innovations 

and applications, with a particular focus on their hybrid forms. 

The study aims to provide a broad understanding of how these 

powerful algorithms are shaping optimization practices and 

the advancements thatlie ahead in their development. 

1.1. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO)was introduced by 

Kennedy and Eberhart. It is a stochastic and swarm-based 

algorithm influenced by the collective behavior of animalslike 

fish in schools or birds in flocks. A particle moving through 

the problem space with a certain velocity is represented as the 

each possible solution in the PSO. These particles mimicking 

the social dynamics of a group for adjust their movements 

based on their own best experiences and the successes of their 

neighbors. This iterative process guides the swarm toward the 

optimal solution, muchlike a flock collectively searching for 

food [3, 21]. 

PSO is broadly popular due to its simplicity and fewer pa-

rameters to adjust. It has been applied effectively across var-

ious fields and is known for its potential to be hybridized or 

specialized for specific needs. The algorithm faces challenges 

in high-dimensional or complex problem spaces. It often 

converges slowly and may struggle to escapelocal optima, it 

resulting in suboptimal performance. Particles can become 

confined tolimited regions of the search space. Which re-

ducing thelikelihood of finding the global best solution in 

problems with numerous dimensions. Despite theselimita-

tions, PSO remains a powerful and adaptable tool in the field 

of optimization [22, 23]. 

This study provides a detailed taxonomy of PSO applica-

tions across various domains, including healthcare, environ-

ment, industry, commerce, smart cities, and general optimi-

zation challenges. Specific issues where found in each domain, 

such as economic emission dispatch, PV parameter identifi-

cation, pollution forecasting, water quality monitoring, and 

food control in environmental applications. The taxonomy 

addresses these issues by classifying and reviewing key re-

search contributions. Moreover, general concerns in PSO 

implementations are shown, proposing conceptual approaches 

to enhance adaptability across diverse applications [21, 24]. 

Comparative analyses of studies are also provided, focusing 

on their goals, case studies, strengths, limitations, and results, 

fostering the development of more efficient PSO-based solu-

tions. 

 
Figure 2. Applications of PSO. 

Modified PSO by the Inertia Constant 

This model is referred to as the standard PSO throughout 

this paper. In this model, a swarm of particles flies in a 

d-dimensional search space searching an optimal solution. 

Each particle  𝑖 has a current velocity vector 𝑉𝑖  =

 [𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑛]  and a current position vector 𝑋𝑖  =

[𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛 ], where 𝑛 is the number of dimensions. The 

PSO process starts by randomly initializing 𝑋𝑖𝑎𝑛𝑑 𝑉𝑖 .Then, 

the best position that has been found by particle 𝑖, 𝑃𝑏𝑒𝑠𝑡𝑖  =

 [𝑃𝑏𝑒𝑠𝑡𝑖1, 𝑃𝑏𝑒𝑠𝑡𝑖2, . . . , 𝑃𝑏𝑒𝑠𝑡𝑖𝑛] and the best position that has 

been found by the whole swarm 

𝐺𝑏𝑒𝑠𝑡 =  [𝐺𝑏𝑒𝑠𝑡1, 𝐺𝑏𝑒𝑠𝑡2, . . . , 𝐺𝑏𝑒𝑠𝑡_𝑛] lead particle 𝑖  to 

update its velocity and position by equations (1) and (2) in 

each iteration: 

𝑉𝑖(𝑡 + 1) = 𝑊 ∗ 𝑉𝑖(t)+𝑐1*𝑟1[𝑃𝑏𝑒𝑠𝑡 𝑖 - 𝑋𝑖(t)] + 

𝑐2*𝑟2[𝐺𝑏𝑒𝑠𝑡  - 𝑋𝑖(t)]              (1) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)          (2) 

Here, 𝑉𝑖(t) and 𝑋𝑖(t) are the velocity and position of parti-

cle 𝑖 at time 𝑡, 𝑊 is the inertia weight, 𝑐1and 𝑐2 are accel-

eration coefficients and 𝑟1  and 𝑟2are random numbers be-
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tween 0 and 1. 

PSO's outcomes strongly relies on three key parameters. 

They are inertia weight (w), cognitive component (c1), and 

social component (c2). These parameters are crucial for 

achieving high performance by tuning optimally. Various 

research results have introduced advanced procedures for 

parameter tuning, including dynamic, adaptive, and 

self-tuning approaches. These processes aim to balance ex-

ploration and exploitation efficiently, enhancing convergence 

rates and result quality.latest advancements have focused on 

hybrid strategies and machine-learning-based techniques to 

refine parameter settings, showcasing significant improve-

ments in PSO's efficiency and applicability. 

Algorithm 1. PSO 

1: Initialization; 

2: Define the swarm size S and the number of dimensions n; 

3: for each particle i ∈ [1..S] 

4: Randomly induce 𝑋𝑖 and 𝑉𝑖, and assess the fitness of 

𝑋𝑖 indicating it as 𝑓 (𝑋𝑖) ; 

5: Set 𝑃𝑏𝑒𝑠𝑡𝑖 = 𝑋𝑖 and 𝑓 (𝑃𝑏𝑒𝑠𝑡𝑖)  =  𝑓 (𝑋𝑖); 

6: ending of for 

7: Set 𝐺𝑏𝑒𝑠𝑡 =  𝑃𝑏𝑒𝑠𝑡1 and (𝐺𝑏𝑒𝑠𝑡)  =  𝑓 (𝑃𝑏𝑒𝑠𝑡1) ; 

8: for each particle i ∈ [1..S] 

9: if 𝑓 (𝑃𝑏𝑒𝑠𝑡𝑖)  <  𝑓 (𝐺𝑏𝑒𝑠𝑡) then 

10: 𝑓 (𝐺𝑏𝑒𝑠𝑡)  =  𝑓 (𝑃𝑏𝑒𝑠𝑡𝑖) ; 

11: ending of if 

12: ending of for 

13: while 𝑡 < maximum iterations number 

14: for each particle i ∈ [1..S] ; 

15: Evaluate its velocity 𝑣𝑖𝑛 (𝑡 +  1) ; 

16: Update the position 𝑥𝑖𝑛 (𝑡 +  1) of the particle ; 

17: if 𝑓 (𝑥𝑖 (𝑡 +  1))  <  𝑓 (𝑃𝑏𝑒𝑠𝑡𝑖) then 

18: 𝑃𝑏𝑒𝑠𝑡𝑖  =  𝑥𝑖  (𝑡 +  1) 

19: 𝑓 (𝑃𝑏𝑒𝑠𝑡𝑖)  =  𝑓 (𝑥𝑖 (𝑡 +  1) 

20: ending of if 

21: if 𝑓 (𝑃𝑏𝑒𝑠𝑡𝑖)  <  𝑓 (𝐺𝑏𝑒𝑠𝑡) then 

22: 𝐺𝑏𝑒𝑠𝑡 =  𝑃𝑏𝑒𝑠𝑡𝑖 

23: 𝑓 (𝐺𝑏𝑒𝑠𝑡)  =  𝑓 (𝑃𝑏𝑒𝑠𝑡𝑖) 

24: ending of if 

25: ending of for 

26: 𝑡 =  𝑡 +  1 

27: end of while 

28: return the 𝐺𝑏𝑒𝑠𝑡 

 
Figure 3. Flowchart of PSO. 

Table 1. Applications and Related Research of PSO in various fields. 

Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

Smart Homes 
Optimized energy management using 

PSO 

Achieved reduced costs and efficient energy 

use in residential buildings. 
[1] 

Traffic Management PSO for urban traffic signal optimization 
Reduced congestion and improved traffic 

flow. 
[21] 

Power Grid Optimization PSO forload flow optimization Enhanced grid reliability and reducedlosses. [3] 

Building Design Heatingload prediction using PSO 
Optimized energy consumption forlarge-scale 

buildings. 
[25] 

Business Centerlocation Location optimization using PSO 
Improved accessibility and cost-effectiveness 

of business center placement. 
[2] 
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Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

Cost Prediction in Engi-

neering 

Transmissionline cost optimization using 

hybrid PSO 
Reduced costs with better estimation accuracy. [22] 

Wireless Networks Energy-efficient routing with PSO 
Prolonged networklife and enhanced data 

delivery in ad hoc networks. 
[25] 

Image Processing 
Hybrid PSO for image restoration and 

clustering 

Improved image quality and segmentation 

accuracy. 
[23] 

Electrical Systems PSO for power flow optimization 
Improved system reliability and security under 

varyingload conditions. 
[26] 

Robotics Path Planning 
Trajectory optimization in autonomous 

robots 

Achieved smooth, collision-free motion in 

complex environments. 
[6] 

Renewable Energy Systems 
Maximum power point tracking for solar 

systems using PSO 

Increased energy efficiency under variable 

shading conditions. 
[27] 

Healthcare Systems 
Disease prediction and diagnostics using 

PSO 

Improved diagnostic accuracy for cardiovas-

cular and diabetic conditions. 
[9] 

IoT Optimization 
Resource allocation and energy optimiza-

tion for IoT networks 

Extended batterylife and improved throughput 

in IoT devices. 
[24] 

Manufacturing Optimization PSO for scheduling in productionlines 
Reduced processing time and optimized re-

source utilization. 
[28] 

Civil Infrastructure Opti-

mization 
Truss design optimization with PSO 

Enhancedload distribution and minimized 

material usage. 
[29] 

 

1.2. Spider Monkey Optimization (SMO) 

Spider Monkey Optimization (SMO) is a swarm intelli-

gence algorithm influenced by the social organization and 

foraging behavior (fission-fusion dynamics) of spider mon-

keys. Monkeys collaboratively optimize their search for re-

sources, by sharing information based on their positions and 

postures. SMO includes six key phases. They are initialization, 

localleader phase, globalleader phase, globalleaderlearning, 

localleaderlearning, and decision phase [39]. These steps help 

the algorithm to find out a balanced convergence between 

exploration and exploitation, enhancing processing speed and 

optimizing performance with fewer iterations [41]. SMO has 

been efficiently used in solving complex optimization prob-

lems across various domains, involving engineering design, 

machinelearning, and scheduling tasks [36]. 

Research shows its strengths in balancing search diversity 

and precision, making it appropriate for multi-objective op-

timization and real-world problems requiring high efficiency 

and robust results [39, 43]. 

a. Initialization Equation 

The N number of spider monkeys are initialized with the 

upper andlower bound values. 

Kij = Kminj + U(0,1) × (Kmaxj − Kminj)     (3) 

where, Ki denotes the spider monkey, Kminj and Kmaxj are 

thelower and upper bounds of the searching space, and 

U(0,1)  denotes the regularly distributed function which 

ranges from 0 to 1. 

b. Position Update (Localleader Phase) 

Knewij =  Kij  +  U(0, 1)  × (loctj − Kij)  +  U(−1,1) ×

(Krj  −  Kij)         (4) 

where, 𝐾𝑖𝑗 denotes the jth position of spider monkey 𝑖, 𝐿𝑜𝑐𝑡𝑗 

is thelocalleader of tth group, and U(−1,1) indicates the regu-

larly distributed random number. 

c. Fitness Function 

𝐹𝐹 = {

1

1+𝑜𝑗
 𝑖𝑓 𝑜𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑜𝑗) 𝑖𝑓𝑜𝑖 < 0
            (5) 

The fitness 𝐹𝐹 calculates how good a monkey’s position is 

based on 𝑜𝑖, which is the value of the objective function at that 

position and Positive or negative values are dealt with sepa-

rately to normalize the fitness score. 

d. Selection probability 

𝑃𝑏𝑖 =
𝑓𝑖

∑ 𝑓_𝑖𝑁
𝑖=1

                     (6) 

This calculates the probability of selecting a monkey as 

aleader. 
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fi is the fitness value of monkey I and ∑ fi
N
i=1  is the total 

fitness of all monkeys. 

e. Globalleader Update 

𝐾𝑛𝑒𝑤𝑖𝑗 =  𝐾𝑖𝑗  +  𝑈(0, 1)  ×  ( 𝐺𝑙𝑜𝑐𝑗 − 𝐾𝑖𝑗)  +  𝑈(−1,1) ×

(𝐾𝑟𝑗  −  𝐾𝑖𝑗)               (7) 

f. Decision Phase (Final Position Update) 

𝐾𝑛𝑒𝑤𝑖𝑗 =  𝐾𝑖𝑗  +  𝑈(0, 1)  ×  ( 𝐺𝑙𝑜𝑖𝑗 − 𝐾𝑖𝑗)  +  𝑈(0,1) ×

(𝐾𝑟𝑗  −  𝑙𝑜𝑐𝑡𝑗)                (8) 

Algorithm2. Spider Monkey Optimization (SMO) 

1: Initialize the set of parameters as population, locallead-

erlimitloc, globalleaderlimit Glo, and perturbation rate; 

2: thelocal and globalleaders are identified; 

3: Update the position oflocalleader; 

For each member Kij  ∈ 𝑡𝑡ℎ group do 

For each j ∈  {1,2, … . . , D} do 

If U(0,1) ≥  perr then 

Knewij =  Kij  +  U(0, 1)  × (loctj − Kij)  +  U(−1,1) ×

(Krj  −  Kij) ; 

Else 

Knewij =  Kij; 

Ending of if 

Ending of for 

4: Update the position of globalleader; 

Initialize count Cnt = 0; 

While Cnt <  size of group do 

If U(0,1) > Pb1 

Cnt =  Cnt + 1; 

Select the integer randomly from 

j ∈  {1,2, … . . , D}; 

Select the monkey kr ∈ group 

 Knewij =  Kij  +  U(0, 1)  ×  ( Gloij − Kij)  +  U(0,1) ×

(Krj  −  loctj); 

Ending of if 

Ending of for 

Ending of while 

5: Performlearning throughlocal and globalleaders; 

6: The positions oflocalleader and global are updated in the 

decision phase; 

//localleader 

IflLCnt > LLL then 

Initializelocallimiter countlLCnt = 0; 

For each j ∈  {1,2, … . . , D} group do 

If U(0,1) > Pbi then 

Knewij = Kminj + U(0,1) × (Kmaxj − Kminj); 

Else 

Knewij =  Kij  +  U(0, 1)  × (loctj − Kij)  +  U(−1,1) ×

(Krj  −  Kij); 

Ending of if 

Ending of for 

Ending of if 

//Globalleader 

If GLCnt > GLL then 

Initialize globallimiter count GLCnt = 0; 

If No of groups <  max group then 

The swarms are split into groups; 

Else 

Single group can be created by integrating all the groups; 

Ending of if 

Update the position of alllocalleaders; 

7: Based on the decision of globalleader, the decision of 

fusion-fission is obtained; 

8: If (termination) is satisfied 

Stop; 

Else 

The globalleader position is updated in the optimal solu-

tion; 
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Figure 4. Spider Monkey foraging behavior analysis [30]. 

Table 2. Applications and Related Research of SMO in various fields. 

Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

Android Malware 

Detection 

SMO-based Bi-LSTM for malware 

classification 

Achieved high accuracy in detecting Android 

malware for cybersecurity applications. 
[31] 

Electric Vehicle Power 

Systems 

Control for interleaved parallel bidirectional 

DC-DC converters 

Enhanced grid integration and energy efficiency in 

electric vehicles. 
[32] 

Load Flow Optimization 
SMO combined with swarm intelligence 

forload flow in power grids 

Improved efficiency and convergence in-

large-scale power networks. 
[33] 

Wireless Networks 
Smart SMO for energy-efficient wireless 

communication 

Achieved reduced energy consumption and en-

hanced nodelifetime. 
[34] 

Network Intrusion De-

tection 

Hybrid SMO with hierarchical swarm intel-

ligence for feature selection 

Enhanced detection accuracy for intrusion pre-

vention in network security systems. 
[35] 

Chemical Engineering 
SMO for optimization in chemical data 

processing 

Improved hyperparameter tuning for chemical 

data models, increasing processing accuracy. 
[12] 

Structural Engineering SMO for bridgeload optimization 
Improved structural safety and cost efficiency in 

bridge designs. 
[36] 

Healthcare Applications 
SMO for medical image feature extraction 

and segmentation 

Enhanced accuracy in disease diagnosis through 

optimized image processing. 
[37] 

Renewable Energy Sys-

tems 
SMO for wind farm placement optimization 

Achieved higher energy efficiency and reduced 

setup costs in renewable energy projects. 
[38] 

Machinelearning Opti-

mization 

SMO for optimizing deeplearning hyperpa-

rameters 

Increased model accuracy with efficient hyperpa-

rameter tuning. 
[39] 

Robotics and Path Plan- SMO for robot trajectory optimization in Improved obstacle avoidance and energy effi- [40] 
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Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

ning dynamic environments ciency in robotic movements. 

IoT Network Manage-

ment 

SMO for bandwidth and energy optimiza-

tion in IoT networks 

Enhanced network utilization and extended de-

vicelife in IoT applications. 
[41] 

Bioinformatics 
SMO for gene selection in protein structure 

analysis 

Achieved higher predictive accuracy in bioinfor-

matics applications. 
[42] 

Civil Infrastructure 

Optimization 
SMO for optimizing truss designs 

Enhancedload distribution and material utilization 

inlarge-scale truss structures. 
[36] 

Transportation Optimi-

zation 
SMO for vehicle routing in urbanlogistics 

Improved delivery efficiency and reduced trans-

portation costs. 
[43] 

 

1.3. Grey Wolf Optimization (GWO) 

The Grey Wolf Optimization (GWO) algorithm refines 

exploration and exploitation. Due to its simplicity, few control 

parameters, and high convergence accuracy, it reduces the 

risk oflocal optima and gaining popularity [44, 45]. Re-

searchers have been enhancing GWO by integrating it with 

other meta-heuristics and using advanced strategies to address 

various optimization challenges. For example, hybrid ap-

proacheslike GWO-SCA, WOAGWO, and GWO-PSO have 

enhanced performance in engineering applications such as PV 

model parameter extraction, pressure vessel design, and re-

active power scheduling [46, 47]. Strategy-based enhance-

ments such as K-means clustering, stochasticlearning, and 

nonlinear convergence factors, have also reinforced GWO’s 

exploration and convergence capabilities [48, 49]. 

Applications of GWO span various fields, including PV 

parameter estimation, emotion recognition, structural opti-

mization, and investment predictions [50]. GWO contends 

with highly confined problems or those including variouslocal 

extrema [51, 52]. This study presents an improved GWO 

algorithm integrating reverselearning, nonlinear convergence 

strategies, and concepts from Tunicate Swarm and Particle 

Swarm algorithms to address theselimitations. Benchmark 

tests and real-world engineering problems validate its en-

hanced accuracy, robustness, and applicability [53]. 

A. Basic Background 

Gray wolveslive in packs with a well-structured social hi-

erarchy. At the top of this, is the α-wolf, wholeads the pack by 

making important decisions about hunting strategies, food 

distribution, and choosing resting places. β-wolves support 

theleader and are ranked second. They assist the α-wolf in 

decision-making processes. δ-wolves follows them, who hold 

tertiary roleslike scouting, patrolling, and acting as guards. 

Atlast there are ω-wolves, whose primary role is to create 

harmony within the group and maintain social dynamics. This 

hierarchical structure and the predation behavior of gray 

wolves are important to their pack dynamics and have con-

tributed optimization models., let the solution space be rep-

resented in d dimensions and the population size by N, in the 

context of the GWO algorithm for optimization challenges. 

Thelocation of the i-th wolf within this pack indicates one 

probable solution in the search space expressed as: 

𝑋𝑖  = { 𝑋𝑖
1, 𝑋𝑖

2, … . . , 𝑋𝑖
𝑑}, 𝑖 =  1, 2, . . . . , 𝑁         (9) 

α, β, and δ, respectively denotes the optimal, sub-optimal, 

and third optimal solutions in the gray wolf population, and 

the rest of the solutions are indicated as ω. ω constantly up-

dates the position based on the positions of α, β, and δ in order 

to search the best solution or the optimal position. The posi-

tions of the gray wolves are calculated as: 

𝐷 =  |𝐶 ·  𝑋𝑝(𝑡) −  𝑋(𝑡)|                   (10) 

𝑋(𝑡 +  1) =  𝑋𝑝(𝑡)  −  𝐴 ·  𝐷                   (11) 

Where 𝑖 is pack size, D is the distance between current 

wolf position and the best solution, 𝑋(𝑡) is the 

position of wolf iteration 𝑡, 𝑋𝑝(𝑡) denotes the position of 

prey at iteration 𝑡, 𝑡 denotes the current 

position,  𝑋(𝑡 +  1)  denotes the updated position of the 

wolf, A and C are coefficient vectors. 

𝐴 =  2𝑎 ·  𝑟𝑎𝑛𝑑()  −  𝑎        (12) 

𝐶 =  2 ·  𝑟𝑎𝑛𝑑()              (13) 

This is obtained by minimizing the value of a in the Eq. (12). 

Note that the oscillation range of A islikewise decreased by a. 

A is a random number in the interval [−a, a] where a is de-

creased from 2 to 0 throughout iterations. 
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Figure 5. Schematic diagram of gray wolf population hierarchy and 

predation processes [54]. 

It is assumed that the alpha wolf (representing the best so-

lution), along with the beta and delta wolves, possess superior 

knowledge regarding the possiblelocation of the prey, to 

mathematically model the hunting behavior of gray wolves. 

As a result, the top three best solutions identified so far are 

held. The remaining search agents update their positions 

based on the guidance provided by theseleading search agents 

including the ω - wolves. 

𝐷 =  {

𝐷𝛼  =  |𝐶1  ·  𝑋𝛼  −  𝑋|
𝐷𝛽  =  |𝐶1  ·  𝑋𝛽  −  𝑋|

 𝐷𝛿  =  |𝐶1  ·  𝑋𝛿  −  𝑋|

     (14) 

𝑋 = {

 𝑋1  =  𝑋𝛼  −  𝐴1  ·  (𝐷𝛼)
 𝑋2  =  𝑋𝛽  −  𝐴2  ·  (𝐷𝛽)

𝑋3  =  𝑋𝛿  −  𝐴3  ·  (𝐷𝛿)

    (15) 

𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
             (16) 

Algorithm3: Grey Wolf Optimization Algorithm 

1: Initialize the grey wolf population 𝑋𝑖 (𝑖 =  1, 2, . . . , 𝑛) ; 

2: Initialize the coefficient vectors a, A and C ; 

3: Calculate the fitness of each search agent (wolf); 

4: 𝑋𝛼 = the best search agent (wolf); 

5: 𝑋𝛽 = the second best search agent (wolf); 

6: 𝑋𝛿 = the third best search agent (wolf); 

7: while iteration < maximum Iteration, do 

8: for each wolf 𝑋𝑖,do 

9: Update the position of current wolf 𝑋𝑖 ; 

10: Update the position of wolf 𝑋𝑖,if exceed boundaries ; 

11: ending of for 

12: Update the coefficient vectors a, A and C ; 

13: Calculate the fitness of all search agents (wolfs); 

14: Update the value of 𝑋 𝛼, 𝑋𝛽 and 𝑋𝛿; 

15: ending of while 

16: return 𝑋 𝛼; 

 
Figure 6. Flowchart of Grey Wolf Optimization. 
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Table 3. Applications and Related Research of GWO in various fields. 

Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

Structural Engineering Enhanced GWO for structural optimization 
Achieved improved efficiency and stability in 

building designs. 
[44] 

Renewable Energy Sys-

tems 

GWO for optimizing hybrid renewable 

energy systems 

Improved energy efficiency and power bal-

ancing in solar-wind hybrid systems. 
[45] 

Control Systems Adaptive GWO for PID controller design 
Enhanced performance in industrial control 

systems with optimal parameter tuning. 
[51] 

Electromagnetic Systems GWO-based antenna array optimization 
Achieved better directional performance with 

reduced design costs. 
[46] 

Healthcare Applications 
GWO for feature selection in disease diag-

nostics 

Improved classification accuracy in cancer 

and diabetes detection. 
[47] 

Machinelearning 
Integration of GWO with deeplearning 

models 

Optimized hyperparameter tuning for im-

proved model performance. 
[48] 

IoT and Network Systems 
GWO for resource allocation in IoT net-

works 

Enhanced bandwidth utilization and re-

ducedlatency inlarge-scale IoT networks. 
[50] 

Robotics and Path Plan-

ning 
GWO for robot trajectory optimization 

Improved obstacle avoidance and energy 

efficiency in dynamic environments. 
[55] 

Power Systems 
GWO forload frequency control in power 

grids 

Achieved better frequency regulation and 

stability in smart grids. 
[52] 

Environmental Monitor-

ing 
GWO for optimizing sensor deployment 

Improved coverage and reduced costs in en-

vironmental monitoring systems. 
[56] 

Bioinformatics GWO for protein structure prediction 
Enhanced accuracy in determining stable 

protein conformations. 
[57] 

Transportation andlogis-

tics 
GWO for vehicle routing problem 

Improved delivery efficiency and reduced 

transportation costs. 
[58] 

Financial Applications GWO for stock market prediction 
Optimized trading strategies with higher pre-

dictive accuracy. 
[53] 

Energy Optimization 
GWO for maximum power point tracking in 

solar panels 

Enhanced energy harvesting under partial 

shading conditions. 
[49] 

Civil Engineering GWO for optimizing truss structures 
Improvedload-bearing efficiency and material 

usage in bridge designs. 
[59] 

 

1.4. Grasshopper Optimization Algorithm 

(GOA) 

The Grasshopper Optimization Algorithm (GOA) is a 

bio-inspired meta-heuristic optimization method that follows 

the swarming behavior of grasshoppers during theirlife cycle. 

Grasshoppers show specific movement patterns in their 

nymph and adult stages, which are effectively modeled in 

GOA to balance exploration and exploitation in optimization 

tasks. Grasshoppers formlarge groups with slow, coordinated 

movements, resemblinglocal exploration to refine solutions in 

nearby areas during the nymph phase [60]. On the other hand 

adult grasshoppers show sudden, wide-ranging movements 

during aerial migrations, assisting global exploration of the 

search space [61]. The dual-phase behavior indicates the need 

to discover diverse regions of a problem space while adjusting 

favorable solutions. 

To simulate the swarm's collective behavior, GOA utilizes 

social interaction mechanismslike attraction, repulsion, and 

alignment. These mechanismslead candidate solutions (agents) 

towards best results by balancing wide-range exploration and 

precise exploitation [62, 63]. GOA is particularly valued for 

its simplicity and adaptability in solving complex mul-

ti-modal optimization problems thus it is broadly used in 

engineering, robotics, energy systems, and machinelearning, 

[64]. Its ability to emulate natural processes makes it an effi-

cient tool for facing real-world problems. 
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𝑋𝑖
𝑑=𝑐(∑ 𝑐

𝑢𝑏𝑑−𝑙𝑏𝑑

2
𝑠(|𝑋𝑗

𝑑 − 𝑋𝑖
𝑑|)

𝑋𝑗−𝑋𝑖

𝑑𝑖𝑗

𝑁
𝑗=1 ) + 𝑇𝑑 , 𝐽 ≠ 𝑖  (17) 

Equation (18) is used for the update the position of the 

grasshopper. 

Common term and parameters are used in the mathematical 

models: 

𝑛 is the population size of the grasshoppers, 𝑑 indicates 

the population dimension, 𝑋𝑖 indicates the position of the ith 

grasshopper, 𝑋𝑖
𝑑  indicates the updated position of the ith 

grasshopper, 𝑡 denotes as the current iteration, 𝑡𝑚𝑎𝑥  indi-

cates the maximum iteration, 𝑠(𝑟) is the social component, 

𝑙 is the attraction force, 𝑓 is the repulsion force and 𝑇𝑑 in-

dicates the optimal solution so far. 

Where 𝑢𝑏𝑑  indicates the upper bound in the 𝑑𝑡ℎdimen-

sion, 𝑙𝑏_𝑑  indicateslower bound in the 𝑑𝑡ℎ dimension, 𝑇𝑑 

indicates optimal solution found so far, and 𝑐 is a decreasing 

coefficient tolessen the comfort zone, repulsion zone, and 

attraction zone. 

𝑐 = 𝑐𝑚𝑎𝑥 − (
𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
)                   (18) 

The social component 𝑠(𝑟) is defined as: 

𝑠(𝑟) = 𝑓𝑒
−𝑟

𝑙 − 𝑒−𝑟             (19) 

Where = |𝑋𝑗
𝑑 − 𝑋𝑖

𝑑| , here, 𝑙  denotes as the attraction 

force and 𝑓 denotes as the repulsion force. 

Algorithm4. Grasshopper Optimization Algorithm (GOA) 

1: Initialize the grasshopper population 𝑋𝑖 (𝑖 =

 1, 2, . . . , 𝑛) ; 

2: Calculate the fitness of each search agent (grasshopper); 

3: 𝑇 = the best search agent (grasshopper) 

4: while iteration no < maximum iteration no, do 

5: Update the value of 𝑐; 

6: for each grasshopper 𝑋𝑖 , do; 

7: Normalize the distance between the grasshoppers; 

8: Update the position of current grasshopper 𝑋𝑖; 

9: Update the position 𝑋𝑖; if exceed boundaries 

10: ending of for 

11: Update Td if there is a better solution; 

12: ending of while 

13: return 𝑇𝑑; 

 

Figure 7. Flowchart of Grasshopper Optimization Algorithm (GOA). 

Table 4. Applications and Related Research od GOA in various fields. 

Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

Power Systems Control 
Standard GOA for controlling power 

systems 

Efficient balancing of control parameters and 

optimization in complex systems. 
[62] 

Routing in FANETs 
Hybrid GOA with Invasive Weed 

Optimization 

Enhanced routing efficiency and reduced 

computational overhead for network optimization. 
[65] 
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Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

Structural Analysis 
Finite Element Method (FEM) plugin 

in Grasshopper 

Improved structural modeling and optimization 

using a parametric environment. 
[66] 

Lung Cancer Classification 
Binary GOA combined with Artificial 

Bee Colony 

Effective feature selection and classification in 

medical applications using deeplearning. 
[63] 

Pavement Crack Detection 
GOA integrated with U-Net 

framework 

Accurate crack detection and condition scoring for 

pavement maintenance. 
[67] 

Machinelearning 

Optimization 

GOA for optimizing machinelearning 

models 

Achieved better refinement and performance of 

predictive models in healthcare applications. 
[64] 

Wind Farm Power Systems 
GOA forload Frequency Control 

(LFC) 

Improved dynamic stability in power systems 

incorporating renewable energy. 
[60] 

Tunnel Design 
GOA for iterative and dynamic tunnel 

modeling 

Enhanced geometric adjustments and airflow 

optimization in tunnel design. 
[68] 

Interior Design 
Parametric modeling with 

Grasshopper optimization 

Improved customization and innovation in furniture 

and architectural design. 
[69] 

Conceptual Design Process 
Computational design methods based 

on Grasshopper 

Facilitated brainstorming and creative solutions in 

the early stages of design. 
[70] 

Concrete Dam Optimization GOA for gravity dam design 
Achieved better structural stability and resource 

efficiency. 
[10] 

Photovoltaic Systems 
Improved GOA for global maximum 

power tracking 

Enhanced energy efficiency in solar panels under 

varying conditions. 
[61] 

Fuzzy Neural Networks 
GOA integrated with Recurrent Fuzzy 

Neural Networks 

Accurate predictions of surface ozonelevels using 

hybrid optimization methods. 
[71] 

Energy Management in 

Micro-Grids 

Modified Chaos GOA for optimizing 

renewable energy output 

Achieved higher efficiency in hybrid renewable 

energy systems. 
[8] 

Heart Disease Prediction 
GOA-optimized Convolutional 

Neural Network (CNN) 

Improved prediction accuracy and computational 

performance for medical diagnostics. 
[72] 

 

1.5. Cuckoo Search Optimization (CSO) 

The Cuckoo Search (CS) algorithm is a population-based 

meta-heuristic optimization technique. It is known for its 

simplicity, minimal parameter requirements, and effective 

global search capabilities [73]. It uses thelévy flight strategy 

to produce new solutions, allowing intense exploration of the 

solution space while maintaining diversity. However it can-

lead to reducedlocal exploitation and slower convergence, 

particularly in complex optimization problems as the algo-

rithm relies on highly random movements [16]. 

Improvements to the algorithm have focused on parameter 

control and hybridization to address these problems. Adaptive 

schemes have been broadly applied, including strategieslike 

dynamic updates of discovery probability, Cauchy distribu-

tion, andlehmer mean to enhance convergence performance in 

parameter control. Other approaches have involved dynami-

cally fine-tuning step size and probability parameters, show-

ing improved results in different benchmarks and constrained 

optimization works [74-77]. 

Hybridization with other algorithms has also proven effi-

cient in improving CS performance. Combining CS with 

optimization techniques such as Grey Wolf Optimization, 

Quantum-Behaved Particle Swarm Optimization, and Bat 

Algorithm to refine solution quality, improve exploration, and 

balance population diversity are some of the hybridization in 

practice. In field such as engineering design, medical diag-

nostics, data clustering, and predictive modeling, variants 

such as Dynamic CS, Quantum-Inspired CS, and Adaptive CS 

have been successfully applied. These improvements address 

key challenges in optimization, exhibiting the adaptability and 

effectiveness of the CS algorithm in solving complex, re-

al-world challenges. 

Algorithm5. Cuckoo Search Optimization Algorithm 

(CSO) 

1: Start; 

2: Objective function (𝑥), 𝑥 = ( 𝑥1, … , 𝑥𝑑)𝑇 ; 

3: Initial a population of n host nests 𝑥𝑖 (𝑖 = 1,2, … , 𝑛); 

4: while (𝑡 < Maximum Generation) or (stop criterion) 

5: Get a cuckoo (say 𝑖) randomly and generate a new so-

lution bylévy flights; 
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6: Evaluate its quality/fitness; Fi Choose a nest among n 

(say) randomly; 

7: if (𝐹𝑖  >  𝐹𝑗), Replace j by the new solution 

8: ending of if 

9: Abandon a fraction (𝑃𝑎) of worse nests [and build new 

ones at newlocations vialévy flights]; 

10: Keep the best solutions (or nests with quality solutions); 

11: Rank the solutions and find the current best; 

12: ending of while 

13: Post process results and visualization; 

14: ending 

 
Figure 8. Flowchart of Cuckoo Search Optimization. 

Table 5. Application and related research of Cuckoo Search Optimization in various fields. 

Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

Power Systems Control 
Reactive power compensation using CS 

for grid system optimization 

Improved stability and efficiency in grid systems 

with FACTS devices. 
[16] 

Network Telemetry 
Structure-aware CS for real-time traffic 

monitoring 

Enhanced data tracking in modern computer 

networks. 
[78] 

Renewable Energy Sys-

tems 
CS for photovoltaic power forecasting 

Increased accuracy in solar irradiance and pho-

tovoltaic power predictions. 
[79] 

Fault Diagnosis 
Hybrid CS for gas turbine engine fault 

identification 

Enhanced diagnostic accuracy for gas turbine 

systems with constrained nonlinear optimization. 
[80] 

Data Mining Optimization 
Dynamic CS combined with neutrosophic 

cognitive mapping 

Improved feature selection and clustering effi-

ciency inlarge datasets. 
[74] 
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Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

Wind Power Prediction 
CS for wind power installed capacity 

forecasting 

Accurate predictions for energy capacity planning 

in renewable systems. 
[75] 

Vehicular Networks 
CS for resource allocation in vehicular 

networks 

Efficient caching and offloading in re-

source-constrained vehicular systems. 
[76] 

Groundwater Contamina-

tion 
CS for identifying contamination sources 

Improved environmental monitoring with kernel 

extremelearning machines. 
[77] 

Structural Engineering 
CS-based optimization for concrete dam 

design 

Achieved better structural stability and resource 

utilization. 
[81] 

Healthcare Systems CS for disease classification and prediction 
Enhanced diagnostic accuracy for medical imag-

ing and classification tasks. 
[82] 

Image Segmentation Triple hybrid CS with Type II fuzzy sets 
Improved multi-level image segmentation with 

adaptive mechanisms. 
[83] 

Engineering Design 

Problems 

Multi-algorithm CS with adaptive muta-

tion mechanism 

Enhanced constraint handling and optimization 

efficiency. 
[84] 

Mechanical Design Enhanced CS withlevy flight and GANs 
Optimized mechanical manufacturing processes 

with generative models. 
[85] 

Advanced Machining 
CS for optimization of machining param-

eters 

Improved accuracy in machining tasks with re-

duced waste. 
[86] 

Bearing Fault Diagnosis 
Adaptive CS for noise-resistant fault di-

agnosis 

Achieved effective fault identification under 

strong noise conditions. 
[87] 

 

1.6. Ant Colony Optimization Algorithm 

Ant Colony Optimization (ACO), first introduced by in 

1991, is a population-based meta-heuristic algorithm influ-

enced by the foraging behavior of ants. Ants guide their 

movements toward food sources by communicating indirectly 

through pheromone trails. This biological behavior has been 

applied into optimization algorithms to solve complex prob-

lems. Recent studies have exhibited the flexibility of ACO in 

solving real-world challengeslikelogistics, routing, and 

scheduling [89, 95]. ACO has evolved with hybrid approaches 

and parameter optimization techniques, improving its per-

formance and extending its applicability over the years. ACO 

has been successfully used across diverse fields. ACOlever-

ages to optimize tourist itineraries and to achieve reduced 

travel times. ACO is applied to improve the accuracy oflaser 

drilling processes, reducing waste and improving efficiency in 

industrial settings [88]. likewise, ACO'sleveraged effective-

ness in optimizing vehicular and power network routing [96]. 

These applications exhibits ACO's adaptability and efficacies 

in solving complex optimization challenges. The basic ad-

vantages of ACO include its adaptability to dynamic envi-

ronments and ability in solving multi-objective optimization 

problems [89, 96]. Due to its parallel search capabilities, ACO 

is particularly efficient inlarge-scale problems. Thelimitations 

of ACO involves suffering from slow convergence in com-

plex scenarios and is prone to stagnation inlocal optima, as the 

computational cost of ACO increases significantly as the 

problem size grows [91]. These problems needs further re-

search to improve the algorithm’s efficiency and scalability. 

The food of ants can be represented by the destinations. All 

ants are randomly positioned at either one or any of the nodes 

of the transport network at the beginning of the evolution. The 

probability of transition of any ant to an adjacent node from 

time 𝑡 to 𝑡 + 1 is found by using following equation: 

𝑓(𝑥) = {

𝜏𝑖𝑗.𝑝𝑞
𝛼 (𝑡).ɳ𝑖𝑗.𝑝𝑞

𝛽
(𝑡)

∑ 𝜏𝑖𝑗.𝑝𝑢
𝛼 (𝑡).

𝑚𝑝
𝑢=1 ɳ

𝑖𝑗.𝑝𝑢
𝛽

(𝑡)
,  𝑞 = 1,2, … . . , 𝑚𝑝

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (20) 

Where 𝜏𝑖𝑗.𝑝𝑞
𝛼  indicates the intensity of trial on edge 

(𝑒𝑖𝑗 , 𝑒𝑝𝑞) at time, 𝜏𝑖𝑗.𝑝𝑞
𝛼 ∈ (𝜏𝑚𝑖𝑛,𝜏𝑚𝑎𝑥). 

ɳ𝑖𝑗.𝑝𝑞 is the visibility of edge (𝑒𝑖𝑗 , 𝑒𝑝𝑞), 𝛼 is the relative 

importance of trial, 𝛼 ≥ 0, 𝛽 is the relative importance of the 

visibility, 𝛽 ≥ 0. 

When α =0, the jobs with the shortest processing times are 

morelikely to be chosen. Whichleading to a classical sto-

chastic algorithm. Only pheromone amplification is at work 

which willlead to the pre-mature convergence of the method 

to strongly sub-optimal solution if on the contrary 𝛽 ≥ 0. 

Therefore, the transition probability demonstrate a compro-

mise between visibility i.e, the shorter the processing time the 

higher the probability to choose it and trial intensity (the 

higher the traffic on the arc (𝑒𝑖𝑗 , 𝑒𝑝𝑞 ), the higher its attrac-
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tiveness). 

Ants select an adjacent node using Eq. (21), and this con-

tinues until all ants move to a neighboring node, completing 

what is called an iteration or cycle. After this, the trial inten-

sity is updated using Eq. (21). 

𝜏𝑖𝑗.𝑝𝑞(𝑡 + 𝑛) = (1 − 𝜌)𝜏𝑖𝑗.𝑝𝑞(𝑡) + ∆𝜏𝑖𝑗.𝑝𝑞(𝑡)   (21) 

∆𝜏𝑖𝑗.𝑝𝑞(𝑡) = ∑ ∆𝜏𝑖𝑗.𝑝𝑞
𝑘(𝑡)𝑚

𝑘=1             (22) 

Where 𝜌 is the coefficient that represents the evaporation 

of trial between time 𝑡 and +𝑛, 𝜌 ⊂ [0,1). ∆𝜏𝑖𝑗.𝑝𝑞(𝑡) is the 

total intensity of node (𝑒𝑖𝑗 , 𝑒𝑝𝑞) during an iteration of ants, 

𝑚 is the total number of ants, ∆𝜏𝑖𝑗.𝑝𝑞
𝑘(𝑡) is the amount of 

pheromone ant 𝑘 deposits on the areas it has visited. This 

usually amounts to the value: 

∆𝜏𝑖𝑗.𝑝𝑞
𝑘 =

𝑄

𝑍(𝐶𝑘)
                (23) 

Where 𝑍(𝐶𝑘) is thelength of the tour and 𝑄 is a positive 

constant. 
 

Figure 9. Flowchart of the Ant Colony Optimization. 

Table 6. Application and Related research of ACO in various fields. 

Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

Agriculture 
Boosting agriculture and water efficiency with 

advanced ACO 

Enhanced accuracy and efficiency in 

predictive modeling. 
[89] 

Tourist Route Optimiza-

tion 
ACO-based recommendation system 

Reduced travel times and optimized itiner-

aries. 
[90] 

Human Resource Man-

agement 
ACO for job candidate optimization 

Improved recruitment and resource man-

agement. 
[91] 

Robotic Swarm Cleaning Bee-inspired ACO for robotic cleaners 
Improved navigation and task completion in 

industrial setups. 
[92] 

Load Balancing in Com-

puting 
Dynamic ACO for serverload balancing 

Reduced downtime and improved computa-

tion efficiency. 
[93] 

Energy Monitoring 
ACO with neural networks for harmonic dis-

tortion monitoring 

Enhanced detection and prediction in energy 

systems. 
[94] 

Microenterprise Vulnera-

bility 
ACO for fuzzy geodemographic clustering Improved business vulnerability analysis. [95] 

Logistics and Routing 
Improved ACO for integratedlogistics optimi-

zation 

Enhanced delivery efficiency and cost re-

duction. 
[96] 

Network Optimization Multi-ACO for vehicular routing problem 
Optimized traffic flow and resource utiliza-

tion. 
[97] 

Humanitarian Aid Dis-

tribution 
ACO forlocation routing problem 

Improved speed and efficiency in critical 

resource distribution. 
[98] 

Laser Drilling Optimiza-

tion 

ACO with gradient descent for precisionlaser 

drilling 

Achieved higher accuracy and reduced 

waste. 
[88] 
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Application Area/Field Proposed Method/Approach Strengths/Contribution Reference 

3D Containerloading Hybrid ACO for multi-objective optimization 
Improved packing efficiency and resource 

utilization. 
[99] 

Carbon Emissions Mod-

eling 

ACO with Cobb-Douglas models for emission 

analysis 

Enhanced understanding of emission pat-

terns and impacts. 
[100] 

Power and Transportation 

Networks 

Collaborative ACO for urban transportation 

and power systems 
Improved integration and efficiency. [101] 

Edge-Cloud Resource 

Allocation 

Bi-directionallSTM and ACO for adaptive 

resource scheduling 
Enhanced cloud computing efficiency. [102] 

2. Comparative Analysis 

Table 7. Comparison of Population-Based Algorithms. 

Algorithm  Inspiration  Strength  Limitations Scalability 
Computational 

Complexity 
Flexibility 

Convergence 

Rate  

PSO 

Swarm 

behavior of 

birds and fish  

Simple 

implementation, 

effective in 

dynamic systems 

Prone to 

premature 

convergence  

Moderate 

Scalability  in 

medium sized 

problems 

Lower 

computational 

cost compared to 

others 

High 

adaptability to 

dynamic 

environments  

Fast 

convergence 

but risks local 

optima  

SMO 

Social 

behavior of 

spider 

monkeys 

Effective in multi 

objective 

optimizations 

tasks 

Slower 

convergence in 

complex 

scenarios  

Moderate 

Scalability with 

hybrid 

enhancements  

Higher 

computational 

cost in large scale 

problems 

Good 

adaptability in 

structured 

problems  

Moderate 

convergence 

requires 

parameter 

tuning  

GWO 

Social 

hierarchy and 

hunting 

behavior of 

grey wolves 

Simplicity, low 

parameter 

dependency, 

Balancing 

global and local 

search is 

challenging 

High 

Scalability in 

large problem 

spaces  

Moderate 

computational 

cost  

Flexible for 

different 

optimizations 

problems  

Efficient 

convergence in 

static 

environments  

GOA 

Swarming 

behavior of 

grasshoppers  

Strong 

exploration 

abilities  

High sensitivity 

to parameter 

settings  

Moderate 

scalability in 

medium 

complexity 

tasks  

Higher 

computational 

complexity  

Good 

flexibility in 

multimedia 

tasks  

Fast 

convergence in 

structured 

environments  

CSO 

Brood 

parasitism of 

cuckoos 

Excellent global 

exploration 

capabilities  

Poor local 

search requires 

hybridization  

Limited 

scalability for 

very large data 

sets 

Higher 

computations 

demands  

Moderate 

flexibility in 

constrained 

problems  

Effective in 

global 

optimization 

tasks  

ACO 

Pheromone 

laying 

behavior of 

ants  

Best for 

combinational 

problems  

High 

computational 

cost for large 

problems  

Moderate 

scalability with 

hybrid 

approaches  

Significant 

computational 

complexity  

Highly flexible 

for discrete 

problems  

Slower 

convergence in 

dynamic 

scenarios  
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3. Usage and Performance Analysis of 

Bio-Inspired Optimization Algorithms 

The pie chart below shows the proportion of research 

studies using each of the six bio-inspired optimization algo-

rithms over the past decade. The algorithms based on 

benchmark such as convergence speed, solution accuracy, and 

robustness across various applications are shown below as the 

bar graph which compares the average performance efficiency 

of each algorithm. 

 
Figure 10. Pie Chart of Distribution of Algorithm Usage in Research. 

 
Figure 11. Bar graph of the Average Performance Efficiency of Algorithms. 

4. Discussion 

This section provides an extensive review of the 

bio-inspired optimization algorithms which include Particle 

Swarm Optimization (PSO), Spider Monkey Optimization 

(SMO), Grey Wolf Optimization (GWO), Grasshopper Op-

timization Algorithm (GOA), Cuckoo Search Optimization 

(CSO), and Ant Colony Optimization (ACO). Such algo-

rithms use natural processes and behaviors and are efficient in 

solving complicated optimization issues. These algorithms 

keep the diversity of the population and do not converge early 

by simulating such natural processes as group behavior, hi-

erarchy, and distribution of resources. However, they also 

show efficiency in terms of computational complexity and 

dependency on parameters that start the algorithm, which 

affects their scalability and performance mainly with prob-

lems of high dimensionality. 

Metaheuristic algorithms such PSO and GWO are some of 

the bio inspired algorithms that have proven to be efficient in 

numerous engineering fields. For example, PSO has been 
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used in energy management of smart homes and smart grid 

applications to prove its applicability in dynamic environ-

ments.likewise, GWO has been applied to resource allocation 

for IoT networks andload frequency control for power sys-

tems. These algorithms have evaluation-exploitation phases in 

which they can come close to the finest solutions efficiently. 

However, they have some difficulties, for example, premature 

convergence in multimodal search spaces, which needs high 

escape methods to avoidlocal optima. 

Due to the fact that SMO and GOA are particularly suitable 

for multi-objective optimization problems. SMO, based on 

the social interactions of the spider monkeys, performs well in 

the problems that require pyramid decision making and cat-

egorization. Recent research work has demonstrated its use 

inlow power wireless communication and in feature extrac-

tion of medical images, thus making it evident that it is a very 

general purpose filter. On the other hand, GOA copies the 

swarming behavior of grasshoppers and has been used in 

energy control and in the optimization of machinelearning 

model. However, both algorithms heavily depend on the pa-

rameter tuning and, therefore, may not be very efficient for-

large data sets or complex environments. 

CSO and ACO is based on the exploration of the opti-

mization mechanisms. CSO, based on the brood parasitism 

behavior of cuckoos, employslévy flights to traverse the 

solution space efficiently. New trendslike the hybrid CSO 

models for fault detection of gas turbines and photovoltaic 

power prediction have enhanced its usage in the renewable 

energy and mechanical systems. ACO which simulates the 

foraging behavior of ants is well known for its performance 

in solving routing and scheduling issues. Its usage in 

routing of vehicular network and in the collaborative op-

timization of urban transport confirms its ability to solve 

reallifelogistics problems. However, the computational 

complexity of ACO is directly proportional to the problem 

size, and thus, the problem size must be reduced or hybrid 

with other algorithms or adaptive methods to improve 

scalability. 

Despite the complexity of the calculations, bio-inspired 

algorithms are flexible and can be adapted easily. They give 

reliable results in different problem contexts, which is why 

they are indispensable in such areas as medicine and trans-

portation, engineering and geophysical modeling. However, 

several issues are still worth discussing. Generalization of the 

procedure is also a problem due to high computational costs 

and sensitivity to the parameter initialization, especially in the 

high-dimensional cases. To overcome these drawbacks, next 

studies could concentrate on the application of parallel com-

puting methods and varying step size control strategies which 

vary during the optimization process to perform a fine balance 

between exploration and exploitation. 

Furthermore, the integration of these algorithms, for ex-

ample, CSO-ACO or incorporating machinelearning into the 

algorithms, provides potential for improvement. For instance, 

the integration of global searching capability of ACO with-

local optimizing strategies of PSO can enhance the conver-

gence speed and yet at the same time, would decrease the 

computational burden. In addition to that, it is possible to 

integrate machinelearning models that can rapidly adjust to 

time-sensitive conditions such as hyper parameter tuning in 

order to enhance the results of the optimization techniques. 

Such developments can bring together the theoretical aspects 

of optimization and real-world problem-solving scenarios that 

canlead to the creation of new and better solutions in a con-

stantly expanding range of problem areas. 

5. Conclusion 

This paper gives the broad analysis of bio-inspired me-

ta-heuristic population based optimization methods. Which 

demonstrated the efficacy and flexibility of these algorithm, 

in solving complex optimization problems across various 

fields. The key patterns and strengths of these challenges were 

identified by assessing the usage trends, applications and 

performance efficiencies of algorithms such as Particle 

Swarm Optimization (PSO), Ant Colony Optimization (ACO), 

Grasshopper Optimization Algorithm (GOA), Spider Monkey 

Optimization (SMO), Grey Wolf Optimizer (GWO), and 

Cuckoo Search (CS). 

The PSO has a superior convergence speed and solution 

accuracy which emerges as the most broadly used and effec-

tive algorithm. Where as GOA and SMO explored growing 

relevance and adaptability. Algorithmslike Cuckoo Search 

also proved effective for niche applications, although their-

lower frequency of usage. 

Thus bio-inspired population based optimization tech-

niques represent a strong class of problem-solving method-

ologies, providing intelligent, adaptable, and efficient solu-

tions to real-world and theoretical problems. This paper direct 

to provide fellow researchers with clear insights for choosing 

an appropriate method tailored to their specific needs in the 

field of path planning. Future work can focus on hybridizing 

these algorithms toleverage their individual strengths by fur-

ther enhancing their applicability in dynamic and 

high-dimensional problem spaces 
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