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Abstract: This paper addresses the state-estimation H∞ problem for continuous-time impulsive genetic regulatory networks
(GRNs) with random delays, using a sampled-data approach. Genetic regulatory networks are fundamental in controlling gene
expression and protein synthesis, governed by regulatory interactions between transcription factors and mRNA (Messenger
Ribonucleic Acid) binding sites. To estimate mRNA and protein concentrations, sampled measurements replace continuous
measurements in this framework. We propose a new model that leverages impulsive control strategies to regulate mRNA and
protein dynamics under conditions with random delays. The primary contribution of this study is the derivation of sufficient
conditions that guaranteeing that impulsive genetic regulatory networks is globally asymptotically stable is derived. By
introducing a discontinuous Lyapunov- Krasovskii functional, sufficient stability analysis has been rooted in terms of LMIs:
Linear Matrix Inequalities. By applying Wirtinger inequality technique, conservation of the impulsive GRNs system is globally
asymptotically stable in the mean- square sense have been diminished greatly. Eventually, a numerical example is given to the
feasibility and advantages of the developed results.
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1. Introduction and System Formulation

Gene regulatory networks play an important role in the
molecular mechanism underlying biological process. The
mutual interaction between a set of genes or proteins or
small molecules to control the ratio of transcription is
referred to as ”Genetic regulatory networks” briefly called
GRNs.Transcription and Translation are the main process of
gene expression, which is composed by proteins. Until now,
various models have been developed to describe the GRNs.
Some of the theorems are Bayesian model, Boolean network
model, continuous network model, the differential equations
model.

Many of the results on the stability analysis for GRNs
with time- delay and discrete time varying systems have been
published, see [2, 4, 6, 8, 9, 16]. In [11–13, 15, 17, 20], the

authors discussed the random delays and stochastic delays in
modelling GRNs and in [5, 10, 14, 21, 22] the researchers
deeply studied in time-delay at network areas. However, an
important issue is discretization of continuous time signals
in the process of using computers to conduct the addressed
problem is called sampling.

Furthermore the sampled data approach have been presented
to handle the analysis and synthesis problems of GRNs in
many important literature, see [1, 7, 19]. Moreover many
systems are identified by changes at definite instants due to
rapid perturbations, which results to impulsive effects [3, 18].

Motivated by the above deliberations, the main contribution
of this paper can be summarised as follows:

1. To examine the approximation concerns for the
continuous - time impulsive GRNs with random delays
and extrinsic distribution into the problem and modelled
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the robust H∞ state estimator for a class of continuous-
time impulsive GRNs.

2. By applying the Lyapunov stability theory, we found
some sufficient conditions are satisfying the terms of
linear matrix inequality(LMI).

3. Finally, a numerical example is given to view the
capability of our results.

2. Problem Formulation
In this paper, we deliberate the Consequential Genetic

regulatory networks with time- varying delays, external
disturbances and impulses

ṁi(t) = −aimi(t) + g(p1(t− ζ1(t)), ..., pn(t− ζn(t))) + emiu(t)

m(tk) = Lm(t−k ), k ∈ Z+, t = tk,

ṗi(t) = −cipi(t) + dimi(t− ξ(t)) + epiu(t),

p(tk) = Jp(tk−), k ∈ Z+, t = tk (1)

where mi(t) ∈ R(i = 1, 2, 3...n) and pi(t) ∈ R(i = 1, 2, ...n)
are the concentrations of mRNA and protein of the ith gene
at time t, respectively. ai and ci represents the degradation
rates of mRNA and protein. di denotes the translation rate.
ζ1(t) ∈ [ζm1

, ζM1
] and ζ2(t) ∈ [ζm2

, ζM2
] are random delays,

the regulation function gi(·) with this form
gi(p1(t), p2(t), ..., pn(t)) =

∑n
j=1 gij(Pj(t)) is called sum

logic [18], the function gij(Pj(t)) is a monotonic function and
satisfies the Hill form [19].

gij(Pj(t)) =

γij
(Pj(t)/β)H

1+(Pj(t)/β)H
, if transcription factor j is an activator of gene i,

αij
1

1+(Pj(t)/β)H
, if transcription factor j is an repressor of gene i.

WhereH is the Hill Co-efficient, β is a positive scalar, γij is a bounded constant representing the dimensionless transcriptional
rate of transcription factor j to gene i. υ(t) is the external disturbance belonging to L2([0,∞),R), while emi and epi are used to
express the intensities of the external disturbances of the mRNA and the protein respectively.
Impulsive GRNs(1) can be rewritten as

ṁi(t) = −aimi(t) +

n∑
j=1

Vijbj(Pj(t− ζ(t)) + Ii + emiu(t))

m(tk) = Lm(t−k ), k ∈ Z+, t = tk,

ṗi(t) = −cipi(t) + dimi(t− ξ(t)) + epiu(t),

p(tk) = Jp(t−k ), k ∈ Z+, t = tk, i = 1, 2, ...n (2)

Where bj(x) = (x/β)H

(1+(x/β)H)
,// Ii =

∑
j∈Ui

γij and Ui is the set of all the transcription factors j which is a repressor of gene i.
The matrix V = (Vij) is the coupling matrix of GRNS, which is defined as follows:

Vij =


γij , if transcription factor j is an activator of gene i,

0, if there is no link from node j to node i,

−γij , if transcription factor j is a repressor of gene i.

Rewriting GRNs(2) in compact form, we have

ṁ(t) = −Am(t) + V b(p(t)− ζ(t)) + I + Emu(t)

m(tk) = Lm(t−k ), k ∈ Z+, t = tk

ṗ(t) = −Cp(t) +Dm(t− ξt)) + Epu(t)

p(tk) = Jp(t−k ), k ∈ Z+, t = tk (3)
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Where

m(t) = Col{m1(t),m2(t), ...,mn(t))}
p(t) = Col{p1(t), p2(t), ..., pn(t))}
A = diag{a1, a2, ...an}
I = Col{I1, I2, ...In}
C = diag{c1, c2, ...cn}
D = diag{d1, d2, ...dn}
Em = Col{em1 , em2 , ...emn}
Ep = Col{ep1 , ep2 , ...epn}

b(p(t)) = Col{b1(p1(t)), b2(p2(t)), ...bn(pn(t))}

Suppose that (m∗, p∗) is an equilibrium points of GRNS(3)
in the disturbance free case.

We shift the equilibrium (m∗, p∗) to the origin by letting
x(t) = m(t)−m∗, y(t) = p(t)− p∗.

Then we can obtain the following equations:

ẋ(t) = −Ax(t) + V f(y(t− ζ(t))) + Emu(t)

x(tk) = Lx(t−k ), k ∈ Z+, t = tk

ẏ(t) = −Cy(t) +Dx(t− ξ(t))) + Epu(t)

y(tk) = Jy(t−k ), k ∈ Z+, t = tk (4)

Where

x(t) = Col{x1(t), x2(t), ..., xn(t)}
y(t) = Col{y1(t), y2(t), ..., yn(t)}

f(y(t)) = b(y(t) + p∗)− b(p∗).

Note that gj(·) is a bounded and monotonically increasing
function, hence we have

0 ≤ fi(yi(t))

yi(t)
≤ Ki,∀yi(t) 6= 0, i = 1, 2, ...n (5)

The parameter uncertainties are inevitable in GRNS, due to model errors and the change of environment.
Now, we consider the following uncertain IGRNS;

ẋ(t) = −(A+ ∆A(t))x(t) + V f(y(t)− ζ(t)) + I + Emu(t)

x(tk) = Lx(t−k ), k ∈ Z+, t = tk

ẏ(t) = −(C + ∆C(t))y(t) +Dx(t− ξ(t)) + Epu(t)

y(tk) = Jy(t−k ), k ∈ Z+, t = tk (6)

the parameter uncertainties ∆A(t) and ∆C(t) satisfy:
[∆A(t),∆C(t)] = K1M(t)[NA, NC ].
Where K1, NA and NC are some given constants matrices

with approximate dimensions, M(t) is the uncertain matrix
with Lebesgue measurable elements satisfying MT (t)M(t) ≤
I, ∀t ≥ 0.
Assumption 1 [11]: Considering the probability distribution of
the time- delays ζ(t) and ξ(t), for some given scalars ζ0 and
ξ0, two sets of functions are defined as

ξ1(t) =

{
ξ(t), for t ∈ Ψ1,

0, for t ∈ Ψ2

ξ2(t) =

{
0, for t ∈ Ψ1,

ξ(t), for t ∈ Ψ2

ζ1(t) =

{
0, for t ∈ Ψ3,

ζ, for t ∈ Ψ4

ζ1(t) =

{
ζ(t), for t ∈ Ψ3,

0, for t ∈ Ψ4

Where Ψ1 = {t : ξ(t) ∈ [ξm, ξ0)},
Ψ2 = {t : ξ(t) ∈ [ξ0, ξM )},
Ψ3 = {t : ζ(t) ∈ [ζm, ζ0)},
Ψ4 = {t : ζ(t) ∈ [ζ0, ζM )},

From the definitions of the Ψ1,Ψ2,Ψ3 and Ψ4, it can be
seen that t ∈ Ψ1 means that the event ξ(t) ∈ [ξm, ξ0) occurs
t ∈ Ψ2 means that the event ξ(t) ∈ [ξ0, ξM ) occurs t ∈ Ψ3

means that the event ζ(t) ∈ [ζm, ζ0) occurs and t ∈ Ψ4

means that the event occurs ζ(t) ∈ [ζ0, ζM ) occurs. Then the
stochastic variables α(t) and β(t) can be defined as:

α(t) =

{
1, t ∈ Ψ1

0, t ∈ Ψ2,

β(t) =

{
1, t ∈ Ψ3

0, t ∈ Ψ4.

Assume that α(t) and β(t) are Bernoulli distributed
sequences with
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Prob {α(t) = 1} = E{α(t)} = α0

Prob {α(t) = 0} = 1− E{α(t)} = 1− α0

Prob {β(t) = 1} = E{β(t)} = β0

Prob {β(t) = 0} = 1− E{β(t)} = 1− β0,
where 0 ≤ α0 ≤ 1 and 0 ≤ β0 ≤ 1 are constants, E{α(t)}

E{β(t)} are the expectations of α(t) and β(t), respectively.

Remark 1:
From the Assumption 1 it is easy to see that,
E{α(t)} = α0, E{(α(t)− α0)2} = α0(1− α0)
E{β(t)} = β0, E{(β(t)− β0)2} = β0(1− β0)
By Assumption 1, the IGRNS (6), can be rewritten as

ẋ(t) = −(A+ ∆A(t))x(t) + α(t)V f(y(t− ζ1(t))) + (1− α(t))V f(y(t− ζ2(t))) + Emu(t)

x(tk) = Lx(t−k ), k ∈ Z+, t = tk

ẏ(t) = −(C + ∆C(t))y(t) + β(t)Dx(t− ξ1(t))) + (1− β(t))Dx(t− ξ2(t)) + Epu(t)

y(tk) = Jy(tk
−), k ∈ Z+, t = tk (7)

which is equivalent to

ẋ(t) = −(A+ ∆A(t))x(t) + α0V f(y(t)− ζ1(t))) + (1− α0)V f(y(t− ζ2(t)))

+(α(t)− α0)V [f(y(t− ζ1(t)))− f(y(t− ζ2(t)))] + Emu(t)

x(tk) = Lx(tk
−), k ∈ Z+, t = tk

ẏ(t) = −(C + ∆C(t))y(t) + β0Dx(t− ξ1(t)) + (1− β0)Dx(t− ξ2(t))

+(β(t)− β0)D[x(t− ξ1(t))− x(t− ξ2(t))] + Epu(t)

y(tk) = Jy(tk
−), k ∈ Z+, t = tk (8)

the initial condition of the GRNS (8) are given by

xi(t) = Ψi(t) ∈ C([−ξ, 0], R),

yi(t) = Ψi(t) ∈ C([−ζ, 0], R),

where C([−ξ, 0],R) and C([−ζ, 0],R) denote the set of all
continuous functions from [−ξ, 0] and [−ζ, 0] to R.

Now we define the measurement outputs of the network as
follows.

Zx(t) = Qx(t), Zy(t) = Py(t) (9)

where Zx(t) and Zy(t) ∈ Rm are the measurement outputs
of the GRNS(8), Q and P are known constant matrices with
appropriate dimensions.

Similar to [13], the measurement outputs have already been
sampled before transmitted to the estimator side.

That is

Z̃x(t) = Zx(tk), Z̃y(t) = Zy(tk), tk ≤ t < tk+1 (10)

Where Z̃x(t) and Z̃y(t) ∈ Rm are the actual inputs of the
estimator side, tk is the updating instant of the zero order hold,
0 = t0 < t1 < ... < tk..., satisfying limt→∞tk =∞.

Let the sampling period be h = tk+1 − tk. Using the
available sampling outputs Z̃x(t) and Z̃y(t), we can construct
the following state estimator:

˙̃x(t) = −Ax̃(t) +R1[Z̃x(t)−Qx̃(tk)], x̃(0) = 0

˙̃y(t) = −Cỹ(t) +R2[Z̃y(t)− P ỹ(tk)], ỹ(0) = 0 (11)

Where x̃(t) and ỹ(t) are the estimations of x(t) and y(t),R1

and R2 are the estimator gain matrices to be determined later.
Defining the error vectors by ex(t) = x(t) − x̂(t) and

ey(t) = y(t)− ŷ(t),
We can get the following error dynamical system from (8)

and (11):

ėx(t) = −Aex(t)−R1Qex(tk)−∆A(t)x(t) + Emu(t) + α0V f(y(t− ζ1(t))) + (1− α0)

×V f((y(t− ζ2(t))) + (α(t)− α0)V [f(y(t− ζ1(t)))− f(y(t− ζ2(t)))]

ėy(t) = −Cey(t)−R2Pey(tk)−∆C(t)y(t) + Epu(t) + β0Dx(t− ξ1(t))) + (1− β0)

×Dx(t− ξ2(t))) + (β(t)− β0)D[x(t− ξ1(t))− x(t− ξ2(t))], tk ≤ t < tk+1 (12)

Subsequently, we define a function d(t) = t− tk, then the error system (12) can be written as:

ėx(t) = −Aex(t)−R1Qex(t− d(t))−∆A(t)x(t) + Emu(t) + α0V f(y(t− ζ1(t))) + (1− α0)

×V f((y(t− ζ2(t))) + (α(t)− α0)V [f(y(t− ζ1(t)))− f(y(t− ζ2(t)))]

ėy(t) = −Cey(t)−R2Pey(t− d(t))−∆C(t)y(t) + Epu(t) + β0Dx(t− ξ1(t))) + (1− β0)

×Dx(t− ξ2(t))) + (β(t)− β0)D[x(t− ξ1(t))− x(t− ξ2(t))], tk ≤ t < tk+1 (13)
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where 0 ≤ d(t) < h.
By defining

˙̄x(t) = [xT (t)eT (t)
x ]T

˙̄y(t) = [yT (t)eT (t)
y ]T

Combining (8) and (13) we get the following augmented system

˙̄x(t) = −Āx̄(t)− Q̄x̄(t− d(t)) + α0V̄ f(Rȳ(t− ζ1(t))) + (1− α0)V̄ f(Rȳ(t− ζ2(t)))

+Ēmu(t) + (α(t)− α0)V̄ [f(Rȳ(t− ζ1(t)))− f(Rȳ(t− ζ2(t)))]

x(tk) = Lx(tk
−), k ∈ Z+, t = tk

˙̄y(t) = −C̄ȳ(t)− P̄ ȳ(t− d(t)) + β0D̄Rx̄(t− ξ1(t)) + (1− β0)D̄Rx̄(t− ξ2(t)))

+Ēpu(t) + (β(t)− β0)D̄[Rx̄(t− ξ1(t))− x(t− ξ2(t))]

y(tk) = Jy(tk
−), k ∈ Z+, t = tk (14)

where

Ā =

(
A+ ∆A(t) 0

∆A(t) A

)
, Q̄ =

(
0 0
0 R1Q

)
, C̄ =

(
C + ∆C(t) 0

∆C(t) C

)
, V̄ =

(
V
V

)

P̄ =

(
0 0
0 R2P

)
, D̄ =

(
D
D

)
, R =

(
I 0

)
, Ēm =

(
Em
Em

)
, Ēp =

(
Ep
Ep

)
Let us introduce the following definitions and lemmas.
Definition 2.1. For all non- zero v(t) ∈ L2[0,+∞), the error

system (13) is said to satisfy a prescribed H∞ disturbance
attenuation level γ, if it satiesfies the following inequality
under the zero- initial condition:

E{||e||22} ≤ γ2||v2
2 || (15)

where e(t) = [eTx (t)eTy (t)]T .
Definition 2.2. For a given functional V : C([ζ, 0];Rn) ×

R+ → R, its infinitesimal operator L is defined as
LV (xt, t) = lim∆ → 0− 1

∆ [E(V (xt+∆, t + ∆)/(xt) −
V (xt, t)].

Lemma 2.1. (Extended Wirtinger inequality) Let Z(t) ∈
V [c, d) and Z(c) = 0. Then , for any n× n matrix H > 0, the
following inequality holds:∫ d

c
ZT (s)HZ(s)ds ≤ 4(d−c)2

π2

∫ d
c
ŻT (s)RŻ(s)ds.

Lemma 2.2. (Lower Bounds Theorem) Let r1, r2, ..., rN :
Rm → R have positive values in an open subset G of
Rm. Then, the reciprocally convex combination of fi over D
satisfies:

min
αi|αi>0,

∑
αi=1

∑
i

1

αi
fi(t) =

∑
i

fi(t) + max
gi,j(t)

∑
i 6=j

gi,j(t)

subject to

gi,j : Rm → R, gi,j(t) = gi,j(t),

(
fi(t) gi,j(t)
gi,j(t) fj(t)

)
≥ 0.

Lemma 2.3. Let E,F and G be real matrices of appropriate
dimensions with GTG ≤ I. Then for any scalar ε > 0,
EGF + (EGF )T ≤ εEET + ε−1FFT .
Main Results: In this section, to obtain the sufficient

condition under which the disturbance level v(t) = 0 is
globally asymptotically stable in the mean - square sense and
satisfies the H∞ performance constraints (15) under the zero-
initial condition for all non-zero v(t).

Theorem 2.1. Let the estimator gain matrices R1 and R2 be
given. For given positive scalars ςm, ςM , ς0, ξm, ξM and ξ0, the
error system with v(t) = 0 is globally asymptotically stable in
the mean- square sense, if there exist matrices S1 > 0, S2 >
0, Tj > 0, Uj > 0(j = 1, 2, ..., 6), V1 > 0, V2 > 0, diagonal
matrices W1 > 0,W2 > 0,W3 > 0, and any appropriate
dimensional matrices Z1, Z2, Ũj(j = 1, 2, ..., 6), such that the
following LMIs hold:

Φ < 0 (16)

(
Ui Ũi
∗ Ui

)
≥ 0(i = 1, 2, ..., 6) (17)
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Where Φ = [Φi,j ]21×21 is symmetric, with

Φ1,1 = −S1Ā− ĀTS1 + T1 + T2 + T3 + T4 − U3 −
π2

4
V1,

Φ1,2 = −S1Q̄− ŨT3 + U3 +
π2

4
V1,

Φ1,3 = ŨT3 , Φ1,9 = −ĀTZT1 , Φ1,20 = α0S1Q̄,

Φ1,21 = (1− α0)S1Q̄,

Φ2,2 = −2U3 + Ũ3 + ŨT3 −
π2

4
V1,

Φ2,3 = −ŨT3 + U3,

Φ2,9 = −Q̄TZT1 , Φ3,3 = −T4 − U3,

Φ4,4 = −U1 − T1, Φ4,5 = −ŨT1 + U1,

Φ4,6 = ŨT1 , Φ5,5 = −2U1 + Ũ1 + ŨT1 ,

Φ5,6 = −ŨT1 + U1, Φ5,10 = β0(D̄R)
T
S2,

Φ5,18 = β0(D̄R)
T
Z2

T , Φ6,6 = −U1 − U2 − T2,

Φ6,7 = −ŨT2 + U2, Φ6,8 = ŨT2 , Φ7,7 = −2U2 + Ũ2 + ŨT2 ,

Φ7,8 = −ŨT2 + U2, Φ7,10 = (1− β0)(D̄R)
T
S2,

Φ7,18 = (1− β0)(D̄R)
T
ZT2 , Φ8,8 = −U2 − T3,

Φ9,9 = −Z1 − ZT1 + ξ2
1U1 + ξ2U2 + g2U3 + g2V1,

Φ9,10 = α0Z1Q̄,

Φ9,11 = (1− α0)Z1Q̄,

Φ10,10 = −S2C̄ − C̄TS2 + T5 + T6 + T7 + T8 − U6 −
π2

4
V2,

Φ10,11 = −S2P̄ − ŨT6 + U6 +
π2

4
V2,

Φ10,12 = ŨT6 , Φ10,18 = −C̄TZT2 ,

Φ10,19 = RTKW1, Φ11,11 = −2U6 + Ũ6 + ŨT6 −
π2

4
V2,

Φ11,12 = −ŨT6 + U6, Φ11,18 = −P̄T + ZT2 , Φ12,12 = −T8 − U6,

Φ13,13 = −U4 − T5, Φ13,14 = −ŨT4 + U4,

Φ13,15 = ŨT4 , Φ14,14 = −2U4 + Ũ4 + ŨT4 ,

Φ14,15 = ŨT4 + U4, Φ14,20 = (R)TKW2,

Φ15,15 = −U4 − U5 − U6, Φ15,16 = ŨT5 + U5,

Φ15,17 = ŨT5 , Φ16,16 = −2U5 + Ũ5 + ŨT5 ,

Φ16,17 = −ŨT5 + U5, Φ16,21 = RTKW3,

Φ17,17 = −U5 − T7,

Φ18,18 = −Z2 − ZT2 − ξ12U4 + ξ2
2U5 + g2U6 + g2V2,

Φ19,19 = −2W, Φ20,20 = −2W2, Φ21,21 = −2W3,

ξ1 = ξ0 − ξm, ξ2 = ξM − ξ0, ς1 = ς0 − ςm, ς2 = ςM − ς0,

and the rest terms of Φ are zero.
Proof: We choose the following discontinuous Lyapunov functional to prove our results

V (t, x̄t, ȳt) =

4∑
i=1

Vi(t, x̄t, ȳt) (18)
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Where

V1(t, x̄t, ȳt) = x̄T (t)S1x(t) + ȳT (t)S2y(t)

V2(t, x̄t, ȳt) =

t∫
t−ξm

x̄T (s)T1x̄(s)ds+

t∫
t−ξ0

x̄T (s)T2x̄(s)ds+

t∫
t−ξM

x̄T (s)T3x̄(s)ds+

t∫
t−g

x̄T (s)T4x̄(s)ds

+

t∫
t−ζm

ȳT (s)T5ȳ(s)ds+

t∫
t−ζ0

ȳT (s)T6ȳ(s)ds+

t∫
t−ζM

ȳT (s)T7ȳ(s)ds+

t∫
t−g

ȳT (s)T8ȳ(s)ds,

V3(t, x̄t, ȳt) = ξ1

−ξm∫
−ξ0

t∫
t+θ

˙̄xT (s)U1 ˙̄x(s)dsdθ + ξ2

−ξ0∫
−ξM

t∫
t+θ

˙̄xT (s)U2 ˙̄x(s)dsdθ + g

0∫
−g

t∫
t+θ

˙̄xT (s)U3 ˙̄x(s)dsdθ

+ξ1

−ξm∫
−ξ0

t∫
t+θ

˙̄yT (s)U4 ˙̄y(s)dsdθ + ξ2

−ξ0∫
−ξM

t∫
t+θ

˙̄yT (s)U5 ˙̄y(s)dsdθ + g

0∫
−g

t∫
t+θ

˙̄yT (s)U6 ˙̄y(s)dsdθ,

V4(t, x̄t, ȳt) = g2

t∫
tk

˙̄xT (s)V1 ˙̄x(s)ds+ g2

t∫
tk

˙̄yT (s)V2 ˙̄y(s)ds− π4

4

t∫
tk

(x̄(s)− x̄(tk))TV1(x̄(s)− x̄(tk))ds

−π
4

4

t∫
tk

(ȳ(s)− ȳ(tk))TV2(ȳ(s)− ȳ(tk))ds

According to Lemma 1, it is easy to see that V4(t) ≥ 0.
Furthermore, V4(t) vanishes at t = tk. So we have lim

t→t−k
V (t) ≥ V (tk).

Differentiating equation (18) and taking expectation on it, we get

E{LV (t, x̄t, ȳt)} =

4∑
i=1

E{Vi(t, x̄t), ȳt} (19)

E{LV1(t, x̄t, ȳt)} = 2x̄T (t)S1 ˙̄x(t) + 2ȳT (t)S2 ˙̄y(t) (20)

E{LV2(t, x̄t, ȳt)} = x̄Tt (T1 + T2 + T3 + T4)x̄t + ȳTt (T1 + T2 + T3 + T4)ȳt

−x̄Tt (t− ξm)T1x̄(t− ξm)− x̄Tt (t− ξ0)T2x̄(t− ξ0)

−x̄Tt (t− ξM )T3x̄(t− ξM )− x̄Tt (t− g)T4x̄(t− g)

−ȳTt (t− ζm)T5ȳ(t− ζm)− ȳTt (t− ζ0)T6ȳ(t− ζ0)

−ȳTt (t− ζM )T7ȳ(t− ζM )− ȳTt (t− g)T8ȳ(t− g) (21)

E{LV3(t, x̄t, ȳt)} = ˙̄xT (t)(ξ2
1U1 + ξ2

2U2 + g2U3) ˙̄x(t) + ˙̄yT (t)(ζ2
1U4 + ζ2

2U5 + g2U6) ˙̄y(t)

−ξ1

t−ξm∫
t−ξ0

˙̄xT (s)U1 ˙̄x(s)ds− ξ2

t−ξ0∫
t−ξM

˙̄xT (s)U2 ˙̄x(s)ds− g
t∫

t−g

˙̄xT (s)U3 ˙̄x(s)ds

−ζ1

t−ζm∫
t−ζ0

˙̄yT (s)U4 ˙̄y(s)ds− ζ2

t−ζ0∫
t−ζM

˙̄yT (s)U5 ˙̄y(s)ds− g
t∫

t−g

˙̄yT (s)U6 ˙̄y(s)ds (22)

E{LV4(t, x̄t, ȳt)} = g2 ˙̄xT (t)V1 ˙̄x(t) + g2 ˙̄yT (t)V2 ˙̄y(t)

−π
4

4

[
x̄(t)

x̄(t− dt)

]T [
V1 −V1

∗ V1

] [
x̄(t)

x̄(t− dt)

]
−π

4

4

[
ȳ(t)

ȳ(t− dt)

]T [
V2 −V2

∗ V2

] [
ȳ(t)

ȳ(t− dt)

]
(23)
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It follows that Lemma ∗ that we can obtain

−ξ1

t−ξm∫
t−ξ0

˙̄xT (s)U1 ˙̄x(s)ds ≤ −
[
x̄(t− ξ1(t))− x̄(t− ξ0)
x̄(t− ξm)− x̄(t− ξ1(t))

]T [
U1 Ũ1

∗ U1

]

×
[
x̄(t− ξ1(t))− x̄(t− ξ0)
x̄(t− ξm)− x̄(t− ξ1(t))

]
(24)

Similar to (24), we have

−ξ2

t−ξ0∫
t−ξM

˙̄xT (s)U2 ˙̄x(s)ds ≤ −
[
x̄(t− ξ2(t))− x̄(t− ξM )
x̄(t− ξ0)− x̄(t− ξ2(t))

]T [
U2 Ũ2

∗ U2

]

×
[
x̄(t− ξ2(t))− x̄(t− ξM )
x̄(t− ξ0)− x̄(t− ξ2(t))

]
− g

t∫
t−g

˙̄xT (s)U3 ˙̄x(s)ds (25)

≤ −
[
x̄(t− d(t))− x̄(t− g)
x̄(t)− x̄(t− d(t))

]T [
U3 Ũ3

∗ U3

]

×
[
x̄(t− d(t))− x̄(t− g)
x̄(t)− x̄(t− d(t))

]
− ζ1

t−ζm∫
t−ζ0

˙̄yT (s)U4 ˙̄y(s)ds (26)

≤ −
[
ȳ(t− ζ1(t))− ȳ(t− ζ0)
ȳ(t− ζm)− ȳ(t− ζ1(t))

]T [
U4 Ũ4

∗ U4

]

×
[
ȳ(t− ζ1(t))− ȳ(t− ζ0)
ȳ(t− ζm)− ȳ(t− ζ1(t))

]
− ζ2

t−ζ0∫
t−ζM

˙̄yT (s)U5 ˙̄y(s)ds (27)

≤ −
[
ȳ(t− ζ2(t))− ȳ(t− ζM )
ȳ(t− ζ0)− ȳ(t− ζ2(t))

]T [
U5 Ũ5

∗ U5

]

×
[
ȳ(t− ζ2(t))− ȳ(t− ζM )
ȳ(t− ζ0)− ȳ(t− ζ2(t))

]
− g

t∫
t−g

˙̄yT (s)U6 ˙̄y(s)ds (28)

≤ −
[
ȳ(t− d(t))− ȳ(t− g)
ȳ(t)− ȳ(t− d(t))

]T [
U6 Ũ6

∗ U6

]
×
[
ȳ(t− d(t))− ȳ(t− g)
ȳ(t)− ȳ(t− d(t))

]
(29)

Besides from (5), we obtain

fi(yi(t)) [fi(yi(t))− kiyi(t)] ≤ 0

fi(yi(t− ζ1(t))) [fi(yi(t− ζ1(t)))− kiyi(t− ζ1(t))] ≤ 0,

fi(yi(t− ζ2(t))) [fi(yi(t− ζ2(t)))− kiyi(t− ζ2(t))] ≤ 0,

where i = 1, 2, ...n Hence for the diagonal matrices W1 > 0,W2 > 0 and W3 > 0, the following inequalities hold.

2(Rȳ(t))TKW1f(Rȳ(t))− 2fT (Rȳ(t)W1f(Rȳ(t)) ≥ 0 (30)
2(Rȳ(t− ζ1(t)))TKW2f(Rȳ(t− ζ1(t)))− 2fT (Rȳ(t− ζ1(t))W2f(Rȳ(t− ζ1(t)) ≥ 0 (31)
2(Rȳ(t− ζ2(t)))TKW3f(Rȳ(t− ζ2(t)))− 2fT (Rȳ(t− ζ2(t))W3f(Rȳ(t− ζ2(t)) ≥ 0 (32)

Where K = diag{k1, k2, ...kn}.
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It is also known that the following equations are always true

E{2 ˙̄xT (t)Z1[− ˙̄x(t)− Āx̄(t)− Q̄x̄(t− d(t)) + α0V̄ f(Rȳ(t− ζ1(t)))

+(1− α0)V̄ f(R(̄y)(t− ζ2(t))) + (α(t)− α0)V̄ f(Rȳ(t− ζ1(t)))− f(Rȳ(t− ζ2(t)))]} = 0 (33)
E{2 ˙̄yT (t)Z2[− ˙̄y(t)− C̄ȳ(t)− P̄ ȳ(t− dt) + β0D̄Rx̄(t− ξ1(t))

+(1− β0)D̄Rx̄(t− ξ2(t)) + (β(t)− β0)D̄[Rx̄(t− ξ1(t))−Rx(t− ξ2(t))]} = 0 (34)

By combining (18)-(34) and setting

Ψ(t) = Col{x̄(t), x̄(t− d(t)), x̄(t− g), x̄(t− ξm), x̄(t− ξ1(t)), x̄(t− ξ0), x̄(t− ξ2(t)), x̄(t− ξM ),

˙̄x(t), ȳ(t), ȳ(t− d(t)), ȳ(t− g), ȳ(t− ζm), ȳ(t− ζ1(t)), ȳ(t− ζ0), ȳ(t− ζ2(t)), ȳ(t− ζM ),

˙̄y(t), f(Rȳ(t)), f(Rȳ(t− ζ1(t))), f(Rȳ(t)− ζ2(t))},

We obtain,

E{V (t, x̄t, ȳt)} ≤ ΨT (t)ΦΨ(t), (35)

Where Φ is defined in (16).
Obviously, the inequalities (16) and (35) imply E{V (t, x̄t, ȳt)} < 0.
Then, from the Lyapunov stability theorem , it is easy to find that the error system with v(t) = 0 is globally asymptotically

stable in the mean square sense.
On the other hand from the conditions of equation (18) and theorem (1), we note that,

V1(tk, x(tk), j)− V1(t−k , x̄(t−k ), i) = xTm(tk)Ljxm(tk)− xTm(t−k )Lixm(t−k ) (36)
= xTm(t−k )DT

ikLjDikxm(t−k )− xTm(t−k )Lixm(t−k )

= xTm(t−k )(DT
ikLjDik − Li)xm(t−k )

≤ 0

V1(tk, xm(tk), j) ≤ V1(t−k , xm(t−k ), i), k ∈ Z+. (37)

This proves that the system (14) with impulsive effect is asymptotically stable in the mean square.
Hence the proof.

3. A Numerical Example

In this section, a numerical example is given to demonstrate the effectiveness of the proposed method for estimating
concentrations of the GRNs.

Example 1. Considering delayed GRNs (8), the parameters are given as follows.

A =

(
0.4 0
0 0.1

)
, V =

(
−0.6 0.2
0.2 −0.7

)
, C =

(
0.1 0
0 0.3

)
, D =

(
0.2 0
0 0.7

)

Em =

(
0.46 0

0 0.5

)
, Ep =

(
0.5 0
0 0.9

)
, E1 =

(
0.1 −0.1
0.1 0.3

)
Let f(y) = y2

1+y2 is taken as the regulatory function. It can be easily checked that the derivative of f(y) is less than 0.65.
Assume that time-delays ξ(t) ∈ [0.3, 0.6] and ζ(t) ∈ [0.4, 0.1] are not continuously differentiable, suppose ξ0 = 0.5, ζ0 =
0.2, α0 = 0.4 and β0 = 0.2. By Theorem 2.6, we can obtain the following feasible parameters. Due to space consideration, we
only provide a part of the feasible solutions here.

Q =

(
0.0231 −0.0306
−0.0306 0.1218

)
, P =

(
0.0463 −0.1003
−0.1003 0.0243

)
Let h = 0.9 and γ = 1. Then, we can obtain that ξm = 0.1, ξM = 0.6, ζm = 0.2 and ζM = 0.4.

R1 =

(
0.5440 0.0003
0.0003 1.7873

)
, R2 =

(
0.0050 0.0000
0.0000 0.0081

)
.
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Figure 1. mRNA and Protein concentrations with impulsive effects.

Figure 2. mRNA and Protein concentrations without impulsive effects.

From Theorem 2.6, one can conclude that the continuous-
time GRNs (7) with impulsive effects are globally
asymptotically stable. The concentrations of mRNAs and
proteins with impulsive effects are illustrated in Figure 1 with
the initial conditions x(0) = [0.01 0.02]T , y(0) = [0.1 0.2]T

and the concentrations of mRNAs and proteins without
impulsive effects are illustrated in Figure 2 with the initial
conditions x(0) = [0.01 0.1]T and y(0) = [0.1 0.3]T .

4. Conclusion

In this paper, we have investigated the robust sampled- data
H∞ state estimation problem for continuous- time impulsive
genetic regulatory networks subject to random delays. By
constructing a discontinuous Lyapunov-Krasovskii functional,
sufficient stability analysis has been rooted in terms of LMIs.
By applying Wirtinger inequality technique, conservation of
the impulsive GRNs system is globally asymptotically stable
in the mean- square sense have been diminished greatly.
Eventually, a numerical example is given to the feasibility and

advantages of the developed results.
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