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Abstract 

In this article, we propose a simple and effective methods to resolve the reaction diffusion equation for facilitated emigration of 

planar electrode in a steady state non-linear process that arises in the context of the electroactive polymer film. The 

mathematical modeling presented here suggest a substrate and an immobilized catalyst form a complex. By applying the two 

effective analytical approach namely Homotopy Analysis Method and Exp-Function Method, an approximate analytical 

expression for the substrate concentration for planar electrode is established. Moreover, the analytical approach of the current 

for the experimental outcomes is established. The efficiency of the methods is demonstrated by contrasting the numerical 

simulation with the Analytical findings. The derived analytical outcomes are compared with numerical data which is obtained 

by using Matlab software and it is transpires that they correspond adequately. Also the comparison of computational outcomes 

with dimensionless concentration of planar electrode substrate in its analytical representation established in table. In these table 

results depicts for different amount of reaction and diffusion parameters our new result agree rather well with the numerical 

findings. The error percentage of our results employing Homotopy Analysis Method and Exp-Function Method with numerical 

results presented. The solution is also graphically presented. It provides a satisfactory agreement for all parameter setting under 

comparison. 
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1. Introduction 

Over the last two decades, interest has risen in innovative 

materials that alter their structure and mechanical behavior in 

response to outside non-mechanical stimulation. Electroactive 

polymers are prominent representatives of intelligent materials 

because they respond to an electro field’s excitation by de-

forming in bulk and altering their material behavior. Electrode 

surfaces modified with electroactive polymer films are fre-

quently employed in electrocatalysis and chemical sensor 

technologies. In the past 20 years, several simplified mathe-

matical models that explain electrocatalysis in electroactive 
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polymer film have been developed [1-5]. Nonlinear reac-

tion-diffusion equations are frequently created and solved 

during the inquiry, leading to the establishment of empirical 

estimation for the current amperometric response. Due to the 

simulation of the reaction-diffusion process in a finite diffusion 

space, the analysis is exceedingly tricky, where Michaeli’s 

Menten Equation gives the chemical reaction term. When 

formulating the differential equation, including the chemical 

reaction component alongside the Fick diffusion term fre-

quently generates a nonlinear form that is difficult to solve 

using conventional analytical techniques. This technique often 

occurs when a complicated rate expression represents the in-

teraction between the substrate and the active sensing catalysis. 

As a result, approximations of solutions must be found. On 

polymer-modified electrodes, significant progress has been 

achieved in simulating current response at a stable state arising 

from mediated electrocatalysis. 

Many valuable summaries of recent developments in this 

field was published by numerous scientists [6-16]. Dharma-

lingam et al [17]. used Akbari Ganji Method to found the ana-

lytical expression of electroactive polymer film. Rajendran et al. 

[18] obtained the analytical solution of substrate concentration 

using Taylor Series Method. The analytical study to find the 

concentration of various electrodes geometries employing 

hyperbolic function method was established by Rekha et al. [19] 

In this work, we present approximate analytical formulation for 

the substrate concentration in the case of planar electrode at 

electroactive polymer film by applying Homotopy Analysis 

Method and Exp-Function Method. The issue is then numeri-

cally stimulated and then the solution is also graphically pre-

sented by using Matlab Software. 

2. Mathematical Modeling 

The detailed discussion of the model has already been ex-

plained [20]. So, we only briefly describe the model used here. 

The mechanism by which the substrate and the sensing ele-

ment interact, along with the substrate’s diffusion in the 

Nernst diffusion phase and the polymer matrix, are all con-

sidered in the model. 

We presume the catalyst and substrate will react using 

Michaeli’s Menten kinetics, as shown in Ref. [20] 

𝐴 + 𝐵 
𝒦𝑀
→  [𝐴𝐵] →[𝑄𝐵′] 

𝑘𝐶
→  𝑄 + 𝐵′            (1) 

𝐵′
𝑘𝐸
′

→  𝐵 

Where 𝐵 and 𝒞′  – The catalytically active form of im-

mobilized catalyst, 𝐴-Substrate, 𝑄  -Product, [𝐴𝐵]-enzyme 

substrate complex, [ 𝑄𝐵′ ] – product enzyme complex, 

𝒦𝑀-Michaeli’s Menten constant, 𝑘𝐵 – Catalytic constant. 

The diffusion coefficients of a substrate in the Nernst dif-

fusion layer and in the film are denoted by 𝔇𝐴  and 𝔇′𝐴 

respectively. The coefficient of partition and the substrate’s 

partitioning through the polymer film are assume to be accu-

rate. The rate of the reactions takes on the Michaeli’s Menten 

from. Using the non-dimensional parameters, the limiting 

equation for reaction diffusion is expressed as, 

𝑑𝒫2(𝜁)

𝑑𝜁2
 + 

𝑎

𝜇
 
𝑑𝒫(𝜁)

𝑑𝜁
−

𝜆𝒫(𝜁)

1+𝛿𝒫(𝜁)
 = 0           (2) 

Subject to the boundary conditions 

𝑑𝒫(𝜁)

𝑑𝜁
= 0 when 𝜁 = 0 

𝒫(𝜁) = 1, when 𝜁 = 1 

The normalized current reaction can be represented as 

Ω = 
𝜉

𝑛𝒟𝐴𝒦𝑀
 

The dimensionless parameters are, 

𝒫 = 
𝐴

𝒦𝐴∞
; 𝜁 =

𝜇

𝜉
; 𝛿 =

𝒦𝐴∞

𝒦𝑀
; 𝜆 =

𝑘𝜉2

𝒟𝐴
              (3) 

Where P – non-dimensional concentration of substrate, 𝜁 – 

dimensionless distance, 𝜆- Non-dimensional diffusion- pa-

rameter, 𝛿 -dimensionless saturation,  𝑎  – number of elec-

trodes involved in a charge transfer, 𝜇 -distance from elec-

trode, 𝜉  -uniform thickness film, 𝐴∞- Bulk substrate con-

centration. In case of a planar, cylindrical and spherical elec-

trode, the value of 𝑎 is zero, one and two. 

The planar electrode equation can be formulated as follows 

according to steady state scenarios, 

𝑑𝒫 
2(𝜁)

𝑑𝜁2
 −

𝜆𝒫(𝜁)

1+𝛿𝒫(𝜁)
 = 0             (4) 

with the boundary conditions 

𝑑𝒫 (0)

𝑑𝜁
= 0 and 𝒫(1) = 1              (5) 

The non-dimensional current written as 

Ω = 𝜏(
𝑑𝒫 (𝜁)

𝑑𝜁
)𝜁=1                 (6) 

3. Analytical Formulation of the 

Concentration 

Two various methods namely Homotopy Analysis Method 

and Exp-Function Method are used to derive the analytical ex-

pression for the concentration of substrate of planar electrode. 

3.1. Homotopy Analysis Method 

Nonlinear equations are solved by numerous methods 
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Homotopy perturbation Method [21, 22], Akbari Ganji 

Method [23, 24], Variational Iteration Method etc., One effi-

cient algebraic technique, Homotopy Analysis Method, can 

approximate semi analytic solutions to reaction diffusion 

nonlinear equations. It was first developed by Liao Shijun in 

1992. It is an easy technique to verify and implement the 

convergence of a several solutions using the convergent con-

trol parameter. More Application of Homotopy Analysis 

Method can be phrased in numerous articles [25-30]. 

By Homotopy Analysis Method, we first construct the ze-

roth order deformation equation by taking H(𝜁) = 1. We build 

the homotopy as follows 

(1 − 𝑝) 
𝑑𝒫2(𝜁)

𝑑𝜁2
 = 𝑝ℎ[

𝑑𝒫2(𝜁)

𝑑𝜁2
− 𝜆 (𝛿 +

1

𝑃
)
−1

]        (7) 

This equation (7) has an approximate solution 

𝑑𝒫 (𝜁)

𝑑𝜁
 = 

𝑑𝒫0 (𝜁)

𝑑𝜁
+𝑝

𝑑𝒫1 (𝜁)

𝑑𝜁  
+𝑝2

𝑑𝒫2 (𝜁)

𝑑𝜁
+. ..              (8) 

Substituting (8) in (7) 

(1 − 𝑝) [
𝑑𝒫0 

2(𝜁)

𝑑𝜁2
+ 𝑝

𝑑𝒫1 
2(𝜁)

𝑑𝜁2
+ 𝑝2

𝑑𝒫 2
2(𝜁)

𝑑𝜁2
+. . . ] = 

𝑝ℎ[
𝑑𝒫0 

2(𝜁)

𝑑𝜁2
+ 𝑝

𝑑𝒫1 
2(𝜁)

𝑑𝜁2
+ 𝑝2

𝑑𝒫 2
2(𝜁)

𝑑𝜁2
+. . . ) 

−𝜆 (𝛿 +
1

𝒫0+𝑝𝒫1+𝑝
2𝒫2+...

)
−1

]       (9) 

Comparing the coefficients of various powers of p in (9), 

we get 

𝑝0 : 
𝑑𝒫0 

2(𝜁)

𝑑𝜁2
= 0                (10) 

𝑝1:
𝑑𝒫1 

2(𝜁)

𝑑𝜁2
 = 
𝑑𝒫0 

2(𝜁)

𝑑𝜁2
(ℎ + 1) − ℎ[𝜆((𝛿 +

1

𝒫0
)
−1

]   (11) 

Solving equation (10) 

𝑑𝒫0 (𝜁)

𝑑𝜁
= 𝛼1𝜁 + 𝛼2                (12) 

Where 𝛼1 and 𝛼2 are constants. 

Using the boundary conditions (5), we get 

𝛼1 = 0 𝑎𝑛𝑑 𝛼2 = 1                    (13) 

Substitute (13) in (12), we get 𝒫0 (𝜁) = 1 

Solving equation (11), we get 

𝑑𝒫1 (𝜁)

𝑑𝜁
=−ℎ𝜆[

𝜁

(1+𝛿)
] + 𝑐1𝜁           (14) 

𝒫1 (𝜁)= −ℎ𝜆[
𝜁2

2(1+𝛿)
] + 𝑐1𝜁 + 𝑐2             (15) 

where 𝑐1 and 𝑐2 are constants. 

Under the boundary conditions (5), we get 

𝑐1 = 0 𝑎𝑛𝑑 𝑐2 = 1 + 
ℎ𝜆

2(1+𝛿)
        (16) 

Equation (15) becomes 

𝒫1 (𝜁) =  
ℎ𝜆

2(1+𝛿)
(1 − 𝜁2)           (17) 

According to Homotopy Analysis Method, the analytical 

expression of the concentration of the substrate as 

𝒫 (𝜁) =  𝒫0 +𝒫1 = 1 +
ℎ𝜆

2(1+𝛿)
(1 − 𝜁2)     (18) 

The analytical expression of steady state current solved by 

using Homotopy Analysis Method as, 

Ω = 𝜏(
−ℎ𝜆

(1+𝛿)
)                 (19) 

3.2. Exp-Function Method 

Exp-Function Method is more effective and simpler than 

other methods and a numerous solution can be found in the 

same time [31, 32]. We are able to discover more general 

answers in the Exp- Function which is more universal than the 

sinh and tanh-function, so we can find more general solutions 

in Exp-Function method. 

According to Exp-Function Method, the trial solution of (4) 

is in the form as, 

𝒫 (𝜁) = 𝐶1𝑒
𝜔𝜁 + 𝐶2𝑒

−𝜔𝜁        (20) 

Where 𝐶1, 𝐶2 are constants. 

By the use of Boundary conditions (5), we get the values of 

constants 

𝑃′(0)= 𝜔𝐶1𝑒
𝜔(0) −𝜔𝐶2𝑒

−𝜔(0), when t = 0 

Then we get 𝐶1 = 𝐶2                  (21) 

𝒫 (1) = 𝐶1𝑒
𝜔 + 𝐶2𝑒

−𝜔, when t = 1 

Therefore 𝐶2 = 
1

𝑒𝜔+𝑒−𝜔
        (22) 

Replacing the constants in (20), 

𝒫 (𝜁) = 
𝑒𝜔𝜁+𝑒−𝜔𝜁 

𝑒𝜔+𝑒−𝜔
,                   (23) 

where 𝜔 is the constant coefficient. 

Consider (𝑡): 
𝑑𝒫 

2(𝜁)

𝑑𝜁2
− 

𝜆𝒫 (𝜁)

1+𝛿𝒫 (𝜁)
 = 0             (24) 
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To find the value of m by the way of getting 𝑓′(𝑡 = 1) = 0 

Using (23) in (24), we obtain, 

𝑓(𝜁): (
𝑒𝜔𝜁+𝑒−𝜔𝜁

𝑒𝜔+𝑒−𝜔
)
′′

− 
𝜆(
𝑒𝜔𝜁+𝑒−𝜔𝜁 

𝑒𝜔+𝑒−𝜔
)

1+𝛿(
𝑒𝜔𝜁+𝑒−𝜔𝜁 

𝑒𝜔+𝑒−𝜔
)

 = 0        (25) 

𝑓(𝜁): 𝜔 (
𝑒𝜔𝜁+𝑒−𝜔𝜁

𝑒𝜔+𝑒−𝜔
)
′

− 
𝜆(
𝑒𝜔𝜁+𝑒−𝜔𝜁 

𝑒𝜔+𝑒−𝜔
)

(𝑒𝜔+𝑒−𝜔)+𝛿(𝑒𝜔𝜁+𝑒−𝜔𝜁)

(𝑒𝜔+𝑒−𝜔)

 = 0 

𝑓(𝜁): 𝜔2 (
𝑒𝜔𝜁+𝑒−𝜔𝜁

𝑒𝜔+𝑒−𝜔
) −

𝜆(𝑒𝜔𝜁+𝑒−𝜔𝜁) 

(𝑒𝜔+𝑒−𝜔)+𝛿(𝑒𝜔𝜁+𝑒−𝜔𝜁)
 =0  (26) 

Differentiate (26) with respect to t, 

𝑓′(𝜁): 𝜔3 (
𝑒𝜔𝜁−𝑒−𝜔𝜁

𝑒𝜔+𝑒−𝜔
) − 

𝜆

(

 

𝜔(𝑒𝜔𝜁−𝑒−𝜔𝜁 )(𝑒𝜔+𝑒−𝜔+𝛿(𝑒𝜔𝜁+𝑒−𝜔𝜁 ))

+𝛿𝜔(𝑒𝜔𝜁−𝑒−𝜔𝜁 )(𝑒𝜔𝜁+𝑒−𝜔𝜁 )

((𝑒𝜔+𝑒−𝜔)+𝛿(𝑒𝜔𝜁+𝑒−𝜔𝜁 ))
2

)

 = 0      (27) 

Substituting 𝜁 =1in (27), 

𝑓′(𝜁 = 1): 

𝜔3 (
𝑒𝜔−𝑒−𝜔

𝑒𝜔+𝑒−𝜔
) − 𝜆(

𝜔(𝑒𝜔−𝑒−𝜔 )(𝑒𝜔+𝑒−𝜔+𝛿(𝑒𝜔+𝑒−𝜔 ))

+𝛿𝜔(𝑒𝜔−𝑒−𝜔 )(𝑒𝜔+𝑒−𝜔 )

((𝑒𝜔+𝑒−𝜔)+𝛿(𝑒𝜔+𝑒−𝜔 ))
2 ) = 0 

Then, 𝑓′(𝜁 = 1) = 
𝜔(𝑒2𝜔−1)(−𝜔2+(

𝜆

 1+𝛿
)−(

𝛿𝜆

(1+𝛿)2
))

𝑒2𝜔+1

      (28) 

After Simplifying (28), we obtain 

𝜔 =√𝜆 (
1

 1+𝛿
−

𝛿

(1+𝛿)2
)                (29) 

By Exp-Function Method, the approximate analytical 

formulation of the concentration of substrate as 

𝒫 (𝜁) = 
𝑒

(√𝜆(
1

 1+𝛿
−

𝛿

(1+𝛿)2
))𝜁

+𝑒

−(√𝜆(
1

 1+𝛿
−

𝛿

(1+𝛿)2
))𝜁

 

𝑒

(√𝜆(
1

 1+𝛿
−

𝛿

(1+𝛿)2
))

+𝑒

−(√𝜆(
1

 1+𝛿
−

𝛿

(1+𝛿)2
))

      (30) 

The normalized current obtained by using EFM can be 

expressed as, 

Ω = 𝜏√𝜆 (
1

 1+𝛿
−

𝛿

(1+𝛿)2
)

(

 
 𝑒

(√𝜆(
1

 1+𝛿
−

𝛿

(1+𝛿)2
))

−𝑒

−(√𝜆(
1

 1+𝛿
−

𝛿

(1+𝛿)2
))

𝑒

(√𝜆(
1

 1+𝛿
−

𝛿

(1+𝛿)2
))

+𝑒

−(√𝜆(
1

 1+𝛿
−

𝛿

(1+𝛿)2
))

)

 
 

 (31) 

4. Numerical Simulation 

The efficiency of the methods is demonstrated by con-

trasting the numerical simulation of the equation of (4) with 

the Analytical findings (18) and (30). Table 1 and Table 2 

compares the computational outcomes with dimensionless 

concentration of planar electrode 𝒫 (𝜁) substrate in its an-

alytical representation. These tables show that, for different 

amount of 𝛿 and 𝜆, our new result agree rather well with the 

numerical findings. It provides a satisfactory agreement for 

all parameter setting under comparison. Our results em-

ploying Homotopy Analysis Method and Exp-Function 

Method with numerical results have maximum relative error 

rate of 0.0045% and 0.0078% respectively. 

Table 1. Deviation between Numerical result (4) and Analytical results (18) and (30) of the substrate concentration in the case of planar 

electrode for various values of saturation parameter 𝛿 and for fixed diffusion parameter 𝜆 = 0.1 and h = -1. 

𝝀 = 𝟎. 𝟏, 𝜹 = 𝟏, 𝒉 = −𝟏  𝝀 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟏, 𝒉 = −𝟏  

T 
Num. 

Value 

HAM of 

(18) 

Error% of 

HAM 

EFM of 

(3) 

Error of 

EFM 

Num. 

Value 

HAM of 

(18) 

Error of 

HAM 

EFM of 

(30) 

Error of 

EFM 

0.0 0.9753 0.9750 0.0003 0.9876 0.0123 0.9524 0.9504 0.0020 0.9529 .0.0005 

0.1 0.9755 0.9752 0.0003 0.9877 0.0122 0.9528 0.9509 0.0019 0.9533 0.0005 

0.2 0.9762 0.9760 0.0002 0.9881 0.0119 0.9542 0.9524 0.0018 0.9547 0.0005 

0.3 0.9775 0.9772 0.0003 0.9887 0.0112 0.9565 0.9549 0.0016 0.9571 0.0006 

0.4 0.9791 0.9790 0.0001 0.9896 0.0105 0.9598 0.9584 0.0014 0.9603 0.0005 

0.5 0.9816 0.9812 0.0004 0.9907 0.0091 0.964 0.9628 0.0012 0.9646 0.0006 

0.6 0.984 0.9840 0.0004 0.9920 0.008 0.9692 0.9683 0.0009 0.9697 0.0005 

0.7 0.9876 0.9872 0.0004 0.993 0.0057 0.9754 0.9747 0.0007 0.9758 0.0004 

0.8 0.991 0.9910 0.000 0.9955 0.0045 0.9826 0.9821 0.0005 0.9829 0.0003 
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𝝀 = 𝟎. 𝟏, 𝜹 = 𝟏, 𝒉 = −𝟏  𝝀 = 𝟎. 𝟏, 𝜹 = 𝟎. 𝟎𝟏, 𝒉 = −𝟏  

T 
Num. 

Value 

HAM of 

(18) 

Error% of 

HAM 

EFM of 

(3) 

Error of 

EFM 

Num. 

Value 

HAM of 

(18) 

Error of 

HAM 

EFM of 

(30) 

Error of 

EFM 

0.9 0.9957 0.995 0.0007 0.997 0.0013 0.9908 0.9905 0.0003 0.9909 0.0001 

1.0 1.0000 1.0000 0.000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 0.0000 

Average Error%  0.0003  0.0078   0.0001  0.0004 

Table 2. Comparison of concentration of substrate in the case of planar electrode between Numerical result (4) and obtained new Analytical 

results (18) and (30) for various values of diffusion parameter 𝜆 and for fixed saturation parameter 𝛿 =0.01 and h = -1. 

𝝀 = 𝟎. 𝟎𝟏, 𝜹 = 𝟎. 𝟎𝟏, 𝒉 = −𝟏  𝝀 = 𝟎. 𝟐, 𝜹 = 𝟎. 𝟎𝟏, 𝒉 = −𝟏  

T 
Num. 

Value 

HAM of 

(18) 

Error% of 

HAM 

EFM of 

(30) 

Error of 

EFM 

Num. 

Value 

HAM of 

(18) 

Error of 

HAM 

EFM of 

(30) 

Error of 

EFM 

0.0 0.9951 0.9950 0.0001 0.9951 0.0001 0.9085 0.9009 0.0076 0.9093 0.0008 

0.1 0.9951 0.9950 0.0001 0.9951 0.0001 0.9094 0.9019 0.0075 0.9102 0.0008 

0.2 0.9953 0.9952 0.0001 0.9953 0.0001 0.9118 0.9049 0.0069 0.9129 0.0011 

0.3 0.9955 0.9954 0.0001 0.9955 0.0001 0.9168 0.9099 0.0069 0.9174 0.0006 

0.4 0.9958 0.9958 0.0000 0.9958 0.0000 0.9225 0.9168 0.0057 0.9236 0.0011 

0.5 0.9963 0.9962 0.0001 0.9963 0.0001 0.9306 0.9257 0.0049 0.9317 0.0011 

0.6 0.9968 0.9968 0.0000 0.9968 0.0000 0.9406 0.9366 0.004 0.9416 0.001 

0.7 0.9975 0.9974 0.0001 0.9975 0.0001 0.9526 0.9495 0.0031 0.9534 0.0008 

0.8 0.9982 0.9982 0.0000 0.9982 0.0000 0.9664 0.9643 0.0021 0.9670 0.0006 

0.9 0.9991 0.999 0.0001 0.999 0.0001 0.9822 0.9811 0.0011 0.9825 0.0003 

1.0 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 0.0000 

Average Error%  6.36e-5  6.36e-5   0.0045  0.0007 

 

5. Results and Discussion 

Equation (18) and (30) are the newly developed approxi-

mative analytical expressions for the concentration of sub-

strate in Homotopy Analysis method and Exp-Function 

Method respectively. Also, the reaction of the normalized 

current is presented in Eqn. (19) and (31). The prediction was 

observed that the analytical and numerical results agreed well. 

The diffusion parameter 𝜆 and the saturation 𝛿 both affect 

the materials concentration. The layer thickness 𝜉, the diffu-

sion coefficient of the substrate 𝒟𝐴 within the polymer film 

and the parameter of reaction diffusion 𝜆 which establishes 

the relationship between the rate of substrate diffusion over 

the film to the amount of the chemical reaction that occurs in 

the layer. 

Figure 1 represents that the dimensionless substrate con-

centration for the various values of 𝛿 and the constant value 

of 𝜆 = 0.1 and h = -1. According to Figure 1, it evident that 

the concentration of substrate 𝒫 (𝜁) increases whenever the 

saturation factor 𝛿 increases for the fixed amount of diffusion 

parameter 𝜆. For 𝛿 ≥ 5, the concentration of material be-

comes constant. For every large amount of non-dimensional 

distance, the analytical outcomes which are derived by using 

Homotopy analysis method and Exp-Function method are 

coincide. 
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Figure 1. Comparison of Analytical and Numerical outcomes for 

different values of 𝛿 with fixed amount of 𝜆=0.1. 

 
Figure 2. Comparison of Analytical and Numerical results for fixed 

𝜆=0.2 with various amount of 𝛿. 

Figure 2 shows that the comparison of analytical and nu-

merical outcomes of the concentration for fixed 𝜆 = 0.2 with 

the various saturation parameter. It depicts that the substrate 

evolves into less saturated in the concentration although the 

diffusion parameter remains elevated. The concentration on 

the electrode surface have been considered to be directly 

proportional to the saturation parameter 𝛿. 

Figure 3 demonstrate that the non-dimensional concentration 

of substrate for the different values of 𝜆 and the fixed value of 

𝛿 = 0.01 and h = -1. Figure 3 leads to the conclusion that the 

material concentration rises when the diffusion parameter  𝜆 

falls for the fixed factor 𝛿. When 𝜆 ≤ 0.01, the concentration 

of substrate is uniform. That means, the inclined curve im-

merged as straight line. The parameter has an impact which is 

inversely correlated to the diffusion parameter. 

 
Figure 3. Comparison of Analytical and Numerical results for fixed 

𝛿=0.01 with various amount of 𝜆. 

 
Figure 4. Plot of analytical finding contrast with numerical results 

for various values of 𝜆 with 𝛿 = 0.1. 

Figure 4 illustrates that the plot of new analytical findings 

contrast with numerical simulation for different values of 

diffusion parameter with 𝛿 = 0.1. According to Figure 4, the 

increasing amount of diffusion parameter decreases the con-

centration of substrate on the planar electrode. The substrate 

concentration 𝒫 (𝜁) reaches attains its most extreme value 

and decreases for 𝜁 ≤ 1  due to very large amount of 

non-dimensional distance at 𝜁=1. 

Figure 5 depicts that the consequences of diffusion param-

eter on the current according to demonstrating the steady state 

current compared with the substrate concentration in the 

polymer modified electrode surface for an ensemble of vari-

ous saturation parameter values. From the findings, the large 

amount of diffusion parameter increases the concentration of 

molar flux. 
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Figure 5. Influence of diffusion parameter 𝜆 on normalized current 

for fixed 𝛿 = 1. 

 
Figure 6. Influence of saturation parameter 𝛿 on normalized cur-

rent for fixed 𝜆 = 5. 

Figure 6 represent the plot of normalized current versus 

saturation parameter 𝜏 for various values of 𝛿  with 𝜆 = 5 

From this figure, the concentration level decreases for all 

large values of saturation parameter. That is, the impact of 𝛿 

inversely proportional to the normalized current for fixed 

amount of diffusion parameter. 

Figure 7 demonstrate that the concentration of current with 

respect to the saturation parameter 𝛿 for numerous amounts 

of diffusion parameter 𝜆 and for constant 𝜏 = 1. According 

to Figure 7, it evident that the impact of greater amount of 

diffusion parameter on normalized current increases the 

concentration level. At 𝜆 ≤ 1, the concentration of current 

attains its steady state. 

 
Figure 7. Influence of diffusion parameter 𝜆 on normalized current 

versus saturation parameter 𝛿. 

 
Figure 8. Influence of saturation parameter 𝛿 on normalized cur-

rent versus diffusion parameter 𝜆. 

Figure 8. established that the relation between the normal-

ized current and the saturation parameter 𝛿 depends on the 

diffusion parameter 𝜆. If the amount of saturation parameter 

𝛿 rises, then the concentration level decreases and reaches the 

steady state. That means, the concentration of current in-

versely proportional to the saturation parameter 𝛿. 

6. Conclusion 

A mathematical model of the facilitated diffusion of a 

planar electrode in a nonlinear process at an electroactive 

polymer film is discussed in this work. The approximate an-

alytical formulation of concentrations is achieved using Ho-

motopy Analysis Method and Exp-Function Method. The 

substrate concentration of planar electrode in the electroactive 
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film has been examined employing our analytical results for a 

range of parameter values. These two analytical techniques 

are also examined with Matlab solution. Homotopy Analysis 

Method prevails over the Exp-Function Method in terms of 

efficiency and leads to a highly satisfactory result. Non-steady 

state scenarios are also possible to resolved with these 

methods as well. Furthermore, the outcome of this research 

offers the prospect of developing the approach in order to 

obtain an approximation of substrate concentrations and 

normalized flux for various electrode geometries. 
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