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Abstract: After years of the attempt to replace password with other alternatives such as biometrics and smart cards, password
is still the most pervasive user authentication mechanism. The password checking authentication is widely used for financial
services, online social networks, and many other applications. This paper aims to analyze the security of a password checker
qualitatively and quantitatively, and show how to improve it. Qualitative security analysis, in which it does not allow any
information flow from secret date to public data, considers that the password checker is not a secure process. Therefore, an
alternative analysis for the password checker is to analyze quantitatively, i.e., quantifying its information flow and determining
how much secret information has been leaked. This method can be used to decide whether we can tolerate small leakages.
A quantitative security analysis can be seen as a generalization of a qualitative one. To improve the security of the password
checker, we propose a noisy-output policy, i.e., a situation where a system operator is able to add noise to the output: instead of
always producing the exact outcomes, the system sometimes reports noisy outcomes. The noisy outcomes reduce the correlation
between the output and the input, and thus reduce the leakage.
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1. Introduction
The password checking authentication is widely used for

login systems, banking systems, and many other real-world
applications. In this paper, we analyze the security of a
password checker qualitatively and quantitatively, and propose
a method to improve it. Qualitative security analysis, such
as noninterference [8] and observational determinism [9, 18]
properties, is proposed for strict applications, in which they
prohibit any information flow from a high security level to
a low security level. For simplicity, throughout this paper,
we consider a simple two-point security lattice, where the
data is divided into two disjoint subsets, of private (high) and
public (low) security levels, respectively. For many real-world
applications, the leakage is unavoidable. A typical example is
a password checker where an attacker (user) tries a string to
guess the password [3, 7, 16]. Even when the attacker makes a
wrong guess, secret information has been leaked, i.e., it reveals
information about what the real password is not. Thus, despite
the correct functioning, the password checker is rejected by
qualitative security standard.

Therefore, an alternative approach for such applications

is to consider quantitative security analysis, i.e., quantifying
the information flow and determining how much secret
information has been leaked [4]. This method can be used to
decide whether we can tolerate minor leakages. A quantitative
security theory can be seen as a generalization of a qualitative
one. Quantifying information flow also provides a way to
judge whether an application leaks more information than
another, in case both are insecure.

1.1. Quantitative Security Analysis

Quantitative theory sees a program as a channel in the
information-theoretic sense, where the secret S is the input
and the observable final outcomes O are the output [3]. An
attacker, by observing O , might be able to derive information
about S .

The quantitative analysis of information flow then analyzes
the amount of private data that an attacker might learn. The
analysis is based on the notion of entropy. The entropy of
a random private variable expresses the uncertainty of an
attacker about its value, i.e., how difficult it is for an attacker
to discover its value.
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The leakage of a program is typically defined as the
difference between the secret’s initial uncertainty, i.e., the
uncertainty of the attacker about the private data before
observing the program’s public outcomes, and the secret’s
remaining uncertainty, i.e., the uncertainty of the attacker after
observing the outcomes, i.e.,

Information leakage = Initial uncertainty - Remaining
uncertainty.

The literature argues that observable outcomes would
reduce the initial uncertainty of the attacker on the secret; and
thus, cause the leakage of the system.

This paper presents an idea that is to enhance the security of
the password checkers. The system operator adds noise to the
response of the system, i.e., instead of always producing the
exact outcomes, the program might sometimes report a noisy
one. The noisy-output policy makes the outcomes of program
more random, and thus, it reduces the correlation between
the output and the input. As a consequence, it increases the
remaining uncertainty, and the value of leakage is reduced.

1.2. Contributions

We discuss how to enhance the security of a system by
adding noise to its output. We apply this idea to the situation
of a password checker, which is popular in many real-world
applications. We show quantitatively that this will reduce the
value of leakage.

1.3. Organization of the Paper

Section 2 presents the preliminaries, then, Section 3
discusses the classical quantitative security analysis for a
password checker. Section 4 discusses the idea of adding noise
to the ouput, while Section 5 proves that the noisy output
reduce the leakage of the system quantitatively. Section 6
discusses how noisy-output policy can be applied to real-world
applications. Section 7 discusses related work, and finally,
Section 8 concludes the paper.

2. Preliminaries

2.1. Probabilistic Distribution

Let X be a discrete random variable with the carrier X =
{x1, . . . , xn}. A probability distribution π over a set X is a
function π : X→ [0, 1], such that the sum of the probabilities
of all elements over X is 1, i.e.,

∑
xi∈X π(xi) = 1. If X is

uncountable, then
∑

xi∈X π(xi) = 1 implies that π(xi) > 0
for countably many xi ∈ X. The probabilistic behavior of X
is then simply given by probabilities p(X = xi) = π(xi).

When X is clear from the context, we use the notation
π = {p(x1), p(x2), . . . , p(xn)} to denote the probabilities of
elements in X, i.e., p(X = xi).

2.2. Shannon Entropy

Definition 2.1. The Shannon entropy of a random variable
X is defined as [3],

H(X) = −
∑
x∈X

p(x) log p(x),

where the logarithm is to the base 2.
Definition 2.2. The conditional Shannon entropy of a

random variable X given Y is [3],

H(X|Y ) =
∑
y∈Y

p(y)H(X|Y = y),

whereH(X|Y = y) = −
∑

x∈X p(x|y) log p(x|y).
It is possible to prove that 0 ≤ H(X|Y ) ≤ H(X).

The minimum value of H(X|Y ) is 0, if X is completely
determined by Y . The maximum value of H(X|Y ) is H(X),
when X and Y are independent.

2.3. Information-theoretic Channel

The quantitative security analysis in the information-
theoretic sense models the system as a channel with the secret
as the input and the observables as the output. Formally, an
information-theoretic channel is a triple (X,Y,M ), where X
represents a finite set of secret inputs, Y represents a finite set
of observable outputs, and M is a |X| × |Y| channel matrix
which contains the conditional probabilities p(y|x) for each
x ∈ X and y ∈ Y. Thus, each entry of M is a real number
between 0 and 1, and each row sums to 1.

2.4. Basic Settings for the Analysis

First, we denote the high security input as S and the low
security input as L, i.e., the string to guess the password. Since
the high security output is irrelevant, programs only give a
low security outcome O . Our goal is to quantify how much
information about S is deduced by observing O . We also
assume that the sets of possible values of data are finite, as
in the traditional approaches.

Secondly, for generalization, we assume that there is an
uniform probability distribution on the high values.

Notice that these restrictions aim to demonstrate our core
idea. However, the analysis might be adapted to more complex
situations easily after some trivial modifications.

3. Quantitative Security Analysis for a
Password Checker

First, we introduce the model of quantitative security
analysis, and how to apply it to a typical example of password
checker.
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3.1. The Model of Quantitative Security Analysis

Classical works [5, 6, 12–14, 19] use information theory to
analyze information flow quantitatively. A program is seen as
a standard channel with S as the private input (high security)
and O as the public output (low security). Let H(S ) denote
the uncertainty of the attacker on the secret before executing
the program, and H(S |O) the uncertainty after the program
has been executed and public outcomes are observed, whereH
is the Shannon entropy. The leakage of the program is defined
as L(P ) = H(S )−H(S |O), where L(P ) denotes the leakage
of P .

3.2. A Case Study of Password Checker

Consider the following password checker. Let S denote the
private password, L the string entered by the attacker, and O
the public answer,

if (S = L) then O := 1 else O := 0.

Assume that S might be A1, A2, A3, or A4, with π =
{p(A1) = p(A2) = p(A3) = p(A4) = 0.25}. Thus,
H(S ) = −4 log 0.25 = 2.

Without loss of generality, we assume that L = A1. When
L = A1, the password checker is modeled by the following
channel M ,

M O = 1 O = 0
S = A1 1 0
S = A2 0 1
S = A3 0 1
S = A4 0 1

The channel M and the distribution π determine the joint
probability matrix J , where J [s, o] = π(s) ·M [s, o].

J O = 1 O = 0
S = A1 0.25 0
S = A2 0 0.25
S = A3 0 0.25
S = A4 0 0.25

The joint probability matrix J determines a marginal
distribution of O , i.e., p(o) =

∑
∀s J [s, o]. Thus, p(O = 1) =

0.25 and p(O = 0) = 0.75. Since p(S = s|O = o) = J[s,o]
p(o) ,

then p(S = A1|O = 1) = 1, p(S = A2|O = 1) =
p(S = A3|O = 1) = p(S = A4|O = 1) = 0, and
p(S = A1|O = 0) = 0, p(S = A2|O = 0) = p(S =
A3|O = 0) = p(S = A4|O = 0) = 0.333. Thus,

H(S |O) = −0.25(1 log 1)−0.75(3·0.333 log 0.333) = 1.189.

Hence, L(P, π) = 2− 1.189 = 0.811.

4. Adding Noise to the Output
To improve the security of the password checker, we

propose a situation in which the system operator adds noise

in a controlled way to the output, i.e., to mask the contribution
of the data while still preserving the overall accuracy of the
system. The noisy outcomes might mislead the attacker’s
belief about the secret, i.e., they increase the final uncertainty.
As a consequence, the value of leakage is decreased. This idea
is illustrated in details below.

Password checker with noisy outcomes: Consider the
previous password checker. We assume that the system
operator secretly changed its behavior, i.e., the real password
checker is a probabilistic password checker where the system
operator introduced some perturbation mechanism to the
output (We assume that the attacker does not know about the
security policy applied to the system.),

if (S = L) then {O := 1 0.9[]O := 0}

else {O := 0 0.9[]O := 1}.

In this version, the exact answers are reported with
probability 0.9, e.g., when S = L, O = 1 is reported with
probability 0.9, and O = 0 with probability 0.1. Therefore,
the real channel M ′ is given as follows,

M ′ O = 1 O = 0
S = A1 0.9 0.1
S = A2 0.1 0.9
S = A3 0.1 0.9
S = A4 0.1 0.9

Notice that the attacker still thinks that the system is M , but
in fact, the real system is M ′. Similarly, based on π and M ′,
we determine the joint probability matrix J ′ as follows:

J ′ O = 1 O = 0
S = A1 0.225 0.025
S = A2 0.025 0.225
S = A3 0.025 0.225
S = A4 0.025 0.225

Thus, the computation gives the real distribution p(O =
1) = 0.3 and p(O = 0) = 0.7. The real posteriori
probabilities are p(S = A1|O = 1) = 0.75, p(S = A2|O =
1) = p(S = A3|O = 1) = p(S = A4|O = 1) = 0.083, and
p(S = A1|O = 0) = 0.37, p(S = A2|O = 0) = p(S =
A3|O = 0) = p(S = A4|O = 0) = 0.321. Therefore,
H(S |O) = 1.84. Hence, L′(P, π) = 2 − 1.84 = 0.16. This
result shows that the leakage has been decreased.

5. Password Checker’s Leakage
Without/With Noisy Output

5.1. Without Noisy Output

In general, we assume that S might be A1, A2, A3,. . . , or
An, with π = {p(A1) = p(A2) = p(A3) = · · · = p(An) =
1
n}. Similarly, without loss of generality, let assume that the
attacker chooses L = A1. When L = A1, the password
checker is modeled by the following channel M ,
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M O = 1 O = 0
S = A1 1 0
S = A2 0 1
S = A3 0 1

...
...

...
S = An 0 1

Therefore,

L(P, π) = log(n)−
(
n− 1

n

)
· log(n− 1).

5.2. With Noisy Output

The noisy outcomes change the behavior of the system,
i.e., they change the channel M that models the system (the
public channel that the attacker knows) toM ′ (the real channel
in secret). The noisy outcomes should be added in such a
way that they change the original channel, but still preserve
a certain level of reliability, e.g., the above password checker

works properly in 90% of the time. Here, we define the
reliability of a system as the probability that a system will
perform its function correctly during a specified period of
observation time. Totally random outcomes might achieve the
best confidentiality, but with these outcomes, the system is
practically useless.

With noisy output, the password checker is modeled by
the following channel M ′, where R is the reliability of the
systems.

M ′ O = 1 O = 0
S = A1 R 1−R
S = A2 1−R R
S = A3 1−R R

...
...

...
S = An 1−R R

Therefore, L′(P, π) = log(n)−H(S |O), whereH(S |O) is
given by:

H(S|O) = −
(
n−1
n + 2−n

n R
)
·
(

R
(n−1)+(2−n)R log R

(n−1)+(2−n)R +(n− 1) · 1−R
(n−1)+(2−n)R log 1−R

(n−1)+(2−n)R

)
−
(
1
n + n−2

n R
)
·
(

1−R
1+(n−2)R log 1−R

1+(n−2)R +(n− 1) · R
1+(n−2)R log R

1+(n−2)R

)
.

Now, we need to show that, with noisy output, the leakage will be reduced. The common idea is that the observation of the
program’s public outcomes would enhance the attacker’s knowledge about the private data. With noisy output, the attacker’s
knowledge is misled, and thus, the leakage will be decreased.

Figure 1. Leakage Values.

The Figure 1 shows that with noisy output, the leakage of
password checker is always not greater than the one without
noise in the outcomes. As we expected, the higher value of
reliability we want to ensure, the higher value of leakage the

attacker might get. When R = 1, it is trivial that M and M ′

are identical, and thus, their values of leakage are the same.
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6. Real-world Applications

Here it raises a question of how this noisy policy can
be applied to real-world applications, when it changes the
behavior of a system. A noisy-output policy enhances the
security, but it also reduces the reliability of a system, i.e.,
the system does not always work in a proper way. Therefore,
firstly, we require that a noisy-output should guarantee at least
a certain level of reliability. Besides, secondly, we discuss how
the drawback of the reduced reliability can be overcome.

To make it clearer, we analyze the case when an attacker
try the correct password to the system. Without the noisy-
output policy, the system always accepts the correct password.
With the policy, the system might reject it; and thus, make the
system more secure in case the correct password is applied by
the attacker.

In case the system rejects the password, we need to
distinguish the different situations between the user and the
attacker. If the system rejects the password applied by the
user: since the user knows the policy, then he would try it
again. Notice that with a very high probability, the system
work properly. Therefore, the system will accept the password
on the second try.

On the contrary, the attacker does not know the policy.
Therefore, when the correct password is rejected, he will try
another password; and with a very high probability, the system
would also reject it. For applications such as login systems or
banking systems, we can allow the user/attacker try three times
before locking him out.

Notice again that to make a system more secure with the
noisy-output policy, we have to accept that in some cases, the
system accepts a wrong password. This is the reason that
the policy should guarantee a high reliability. Notice that
in this situation, the system accepts the login, but no private
information is leaked, since the attacker still does not know
the correct password. Thus, in the next login, there is a high
chance that the system will reject this wrong password.

This situation that the system accepts a wrong password can
be avoided by modifying the probabilistic password checker as
follows, where noise is only added to the selected output.

if (S = L) then {O := 1 0.9[]O := 0} else {O := 0}.

In this case, H(S |O) = 1.35, and thus, L′(P, π) = 2 −
1.35 = 0.65. This leakage is smaller than the case without
noise, but greater than the situation where noise is added to all
outputs.

Besides, to guarantee a higher reliability, the system might
also implement two-factor authentication, i.e., in addition to
asking for something that only the user knows (e.g., user-
name, password, personal identification number), the system
also requires something that only the user has (e.g., the bank
card, the smart card). The automated teller machine scenario
illustrates the basic concept of two-factor authentication
systems, i.e., without the combination of both card and
personal identification number verification, authentication
does not succeed.

7. Related Work
The idea of adding noise to the output comes from

the differential privacy control. Differential privacy is
a mathematical framework for ensuring the privacy of
individuals in the datasets. It can provide a strong guarantee
of privacy by allowing data to be analyzed without revealing
sensitive information about any individual in the datasets. The
differential privacy control is the problem of protecting the
privacy of database’s participants when performing statistical
queries [1–3, 10]. The differential privacy control uses some
output perturbation mechanism to report a noisy answer among
the correct ones for the queries. Thus, while the attacker is still
able to learn properties of the population as a whole, he cannot
learn the value of an individual.

In [11], Köpf et al. also explore a similar idea to cope
with timing attacks for cryptosystems, i.e., randomizing each
cipher-text before decryption. As a consequence, the strength
of the security guarantee is enhanced, while the efficiency of
the cryptosystem is decreased, since the execution time of the
cryptographic algorithm is increased.

The idea of adding noise is also popular in the field of
universal filtered multicarrier. In [17], authors introduce
artificial noise generated by hyperchaotic system to pseudo
expand the distribution of quantum noise, which will make it
more difficult for eavesdroppers to crack plaintext information
violently. In [15], we discuss the noisy-output policy in the
one-try guessing model, i.e., observing the public outcomes,
the attacker is allowed to guess the value of S by only one
try. For the password checker, this one-try guessing model
can be understood as that an attacker is allowed to try a string
to the system only once. If the entered string is not the
correct password, the system will block the account. However,
we realize that this model of attack is not suitable in real-
life situations. In this paper, we consider the multiple-try
attack model, i.e., the attacker is able to guess the password
by many tries. This is a more practical situation, where we
quantify information flow with Shannon entropy, instead of
min-entropy.

8. Conclusions
This paper proposes a method to decrease the leakage of the

password checker by adding noise to the outcomes, i.e., the
noise misleads the attacker’s belief about the secret, and thus,
it increases the final uncertainty. This paper also discusses how
to apply this to real-world applications.
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