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Abstract: Full-waveform aerial laser scanning is a laser system that records the entire backscattered signal of the laser 

pulse and stores it in the system recorder for post-processing. Capturing the complete waveform of the backscatter signal 

enables distinguishing between neighborhood echoes of a range smaller than the pulse length. Full-waveform has shown 

potential to better describe land cover features through the additional physical information it can provide alongside the 

standard geometric information. To fully utilize full-waveform for enhanced object recognition and feature extraction, it is 

essential to develop an automatic and effective routine to manage and process full-waveform datasets in a manner which 

requires less human effort and reduces time needed to process large laser datasets efficiently. This research tackled this 

problem through introducing a novel processing strategy for full-waveform data based on a developed pulse detection 

methodto run through Matlab environment. The solution adopted a grid computing Condor-based approach, which showed 

significant potential to reduce the time and effort needed to process large datasets such as full-waveform aerial laser 

scanning to more than 300% in specific conditions. 
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1. Introduction 

Topographic aerial laser scanning (ALS) is a laser 

scanning system mounted on an airborne platform and 

provides range measurements to the Earth’s surface. It 

delivers a vertical accuracy of 5-10cm and decimeter-level 

plan metric accuracy, depending on the terrain type and 

flying height [1,2]. Land cover features are scanned either 

from a fixed wing or a helicopter platform in order to 

collect the necessary information to model the topographic 

surface [3]. A digital camera is usually flown alongside the 

ALS systems for orthophoto generation and data 

integration. This can be achieved by processing the 

photogrammetric information alongside the laser 

information to support laser range data for subsequent 

optimal interpretation.  

This can play a significant role in identifying land cover 

features in cases where the objects are found to be difficult 

to interpret from the blind range data only. However, this 

requires some extra effort to register and georeference the 

sensors after data collection and through post-processing 

analysis [3]. Topographic ALS systems are now fully 

operational to meet the needs of specific applications such 

as surface modeling [2]. In contrast to photogrammetry, 

ALS is an active system, which can operate during day and 

night. Both ALS and photogrammetry are able to produce a 

digital terrain model (DTM).With regard to the technical 

physical principles, ALS can be grouped into two main 

systems, discrete-return and full-waveform (FWF) [4,2]. 

Both systems are designed to estimate range measurements 

using the physical concept of the pulsed laser mechanism. 

When the receiver only provides the start and the end of a 

signal at a certain rise time of the echo, then the system is 

called discrete-return. However, if the complete digital 

signal is digitized with extra information about the echo 

shape, then the system is called full-waveform.  

FWF-ALS is unlike the discrete-return systems in that it 

records the entire backscattered signal of the laser pulse 

and stores it in the system recorder for post-processing 

[5,6]. Furthermore, complex and weak laser echoes can be 

detected towards improving modeling products such as 

DTMs [7]. In contrast with the discrete-return systems, 

which provide end users with a single range measure to the 

ground target, FWF stores the entire time history of the 

backscatter signal with a high sampling resolution as shown 

in Figure 1 [3]. This gives the user the opportunity to model 
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the received signal and applying a function that better fits 

with the physical trend towards robust range estimations 

and accurate data modeling [8].  

 

Figure 1.Simulation of raw FWF data show five emitted signals alongside 

their received backscatter digitized signal [6]. 

FWF analysis and post-processing may increase the 

accuracy and the resolution of the range measurements by 

providing end users with the chance to interpret the 

physical backscatter signals of the individual pulses [9]. 

This is achievable through pulse detection methods which 

give the user a significant opportunity to select the function 

which best fits the signal. In contrast with the discrete 

systems, FWF is applicable to determine the errors 

acquired from the limitations in the standard pulse 

detection methods that lead to inaccurate range 

measurements [7]. Following waveform post-processing, 

denser point cloud data are generated than those delivered 

from the discrete systems. This deliver a great potential for 

the most land cover applications towards optimal data 

modeling [6]. FWF analysis also provides additional 

information about the physical backscattering properties of 

the illuminated targets [10, 11]. The pulse width of the echo 

delivers information about surface roughness, slope, scan 

angle, or the depth of the volumetric object, while echo 

strength (amplitude) delivers information about target 

backscatter properties [12]. 

2. Literature Review 

2.1. Post-Processing of Full-Waveform ALS Data 

It is evident from the signal analysis literature that pulse 

detection is considered to be a challenging task with respect 

to retrieving information in a geometric form (e.g. 3D point 

clouds) [11,13]. Several methods have been developed to 

detect echoes from FWF signals. This includes threshold, 

constant fraction, peak, and center of gravity (COG) 

detection methods [13]. However, each method has its own 

weaknesses when applied to small-footprint FWF-ALS data, 

and may limit the final range accuracy [13]. Therefore, for 

high accuracy range resolution, it is necessary to adopt 

more sophisticated pulse detection methods.  

Gaussian decomposition is a popular pulse detection 

technique to model laser waveforms of approximate 

Gaussian distribution [12,5]. It was found that the Gaussian 

function (1) can best describe, and therefore effectively 

model, the small-footprint FWF-ALS data from the Riegl 

LMS-Q560 system [12,5]. Therefore, the Gaussian 

decomposition technique can be used fit the Gaussian 

function to the Riegl LMS-Q560 signals in order to detect 

all possible echoes within individual waveforms. 
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Where: 

� is the quantized amplitude values 

������  is the noise level in the waveform signal 

n  is the number of Gaussians 

	
is the amplitude of the i
th

 Gaussian 

x  is the samples time values 

xi  is the i
th

 Gaussian peak 

widthiis the pulse width of i
th

 Gaussian = √2 ! Ϭ
 
Ϭ
is the standard deviation of the i

th
 Gaussian  

The Gaussian pulse detection approach presumes that the 

laser pulses are transmitted with a Gaussian-like 

distribution and thus the received signal can be treated as a 

sum of multiple Gaussian pulses [12]. It aims to detect 

multiple echoes from individual waveforms as an 

amplitude-against-time measure. As a result of fitting the 

waveforms to the Gaussian function, multiple echoes can 

be detected and geometric and physical information can be 

extracted for individual echoes (Figure 2). This method can 

deliver accurate range resolution and provide a reliable 

solution as compared with other available methods. 

Consequently, accurate geo-referenced 3D point clouds 

alongside echo width and amplitude measurements can be 

provided to end users for individual echoes in addition to 

the total number of detected returns [14]. However, the 

Gaussian decomposition method is considered to be 

problematic in the case of complex and weak waveform 

signals [12,10].   

 

Figure 2. Fitting Gaussian function to detected FWF signal from the Riegl 

LMS-Q560: (Blue dots) recorded waveform signal; (Green dotted lines) 

fitted Gaussians per echo; (Red lines) sum of all Gaussian functions; (R) 

is the range to the sensor; (P) is the echo amplitude; (Sp)is the echo width 

[15]. 
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Motivated by overcoming the weaknesses in the 

available pulse detection methods, a Rigorous Gaussian 

pulse Detection (RGD) method was developed by reference 

[7]. This was motivated by the need to develop a 

sophisticated and reliable method, which could decompose 

complicated waveform signals. RGD was originally 

designed to improve range resolution and accuracy and 

overcome information loss due to limitations in range 

estimations from standard approaches [7]. The RGD 

approach also provides a solution to tackle complex 

overlapping waveforms and difficulties in detecting weak 

signals [13]. These two limitations are considered to be the 

main challenges faced by the standard pulse detection 

methods. RGD is an iterative technique based on Gaussian 

decomposition definition. It is implemented with rigorous 

initial values and applies a sophisticated iteration procedure 

[13]. The method can detect overlapping signals in complex 

waveforms by analyzing the second derivative of the 

Gaussian function. Figure 3 demonstrate the detection of 

visible and overlapping peaks with RGD from complex 

waveforms. However weak pulses are detected based on 

analysis of residuals derived from the least squares fitting 

procedure and the pulse width value delivered from 

individual echoes [7]. 

 

Figure 3. RGD methoddetecting overlapping peaks in a complex 

waveform from the Riegl LMS-Q560 system [13]. 

The method has proven to be capable of extracting a 

greater number of valid echoes from individual laser pulses 

than those extracted through standard available approaches 

[7]. Figure 4 demonstrates the performance of the RGD 

method against two popular algorithms available from 

leading commercial software. It shows that RGD 

outperforms the comparator algorithms by delivering extra 

valid echoes for DTM and canopy modeling applications as 

highlighted by red dots. Both complex and weak waveform 

pulses can be resolved with the RGD approach, which was 

validated through comparison to ground truth data. Refer to 

reference [7] for further details. Adding to this, the 

improved range resolution results from the RGD method 

shows particular potential when the vertical separation 

between targets is small (less than one pulse length). This 

can reduce the chance of overestimating and 

underestimating classification procedures and deliver more 

robust products such as DTM or canopy height models 

(CHM) [13]. 

 

Figure 4. RGD pulse detection method vs. algorithms from commercial 

software assessing an 80m profile section in a vegetated area: (a) center 

of gravity(COG) method (b) Gaussian pulse fitting (GPF) method (c) RGD 

method [13]. 

In addition to the 3D object location of multiple laser 

echoes, output from the RGD software, which was 

developed in-house at Newcastle University/ UK, delivers 

backscatter properties, including echo amplitude and width 

parameters. These parameters have demonstrated a 

capability to enhance available classification/filtering 

algorithms [16, 17]. However, managing and processing 

dense FWF datasets is a challenging task [18,19]. This is 

because of the dramatic increase in the data volume due to 

unlimited return echoes and delivers a serious problem in 

computing processing and storage capacity. However, 

organized management of computing resources can 

effectively improve computing usage, but more human 

effort is required [20]. Therefore, there is a high demand for 

an effective processing tool or strategy to reduce processing 

time for laser scanning data. 

2.2. Handling FWF-ALS Data 

The efficient handling of laser scanning data has been an 

issue since FWF systems first emerged. The stored 

waveform profiles delivered from a FWF sensor after a 

flight campaign of 1.6 hours with a mean pulse repetition 

frequency (PRF) of 50 kHz can occupy about 140 GB [18]. 

Therefore, managing this huge amount of information for 

further processing is considered to be a challenging task in 

the context of large flight campaigns.  

For efficient data management, effective resources 

should be utilized, where resources here refer to processor, 

memory, and disk space. There are three main types of 

resources available for processing approaches: single 

processor, symmetric multi-processor, and distributed 

processor. With the single processor, only one central 

processing unit (CPU) is used, with centralized memory 

and disk space. The symmetric processor (e.g. quad-core, 

dual-core) is efficient to use in some cases when the dataset 

is relatively large as the user can take advantage of the 

multi-core system design. The limitation of the symmetric 

processor is that all CPUs share the same memory, which 



8  Fanar Mansour Abed:  Processing Intensive Full-Waveform Aerial Laser Scanning Matlab Jobs through Condor 

 

can significantly slow the processing. However, the 

distributed processor system is considered to be the most 

efficient solution to run massive datasets, as all processors 

have their own dedicated memory but have to communicate 

with each other to access the centralized memory resource 

(e.g. network) [21]. Figure 5 shows the three mentioned 

resource types used in data managing and processing.  

Reference [22] developed the software package, OPALS, 

as a complete set of processing tools for ALS datasets. This 

software included multiple modules to process and 

visualize ALS data, including FWF for various applications. 

It is provided in Shell script for Linux users, patch for 

Windows, and also in Python code [23]. As the software 

modules are originally designed to run under a Linux 

environment, no graphical user interface (GUI) is available. 

The software can be downloaded from [24]. However, the 

software is originally designed for use with both single and 

symmetric processor types. 

Reference [18] introduced a toolkit called FullAnalyze to 

visualize and process laser scanning datasets, including 

FWF, as a 1D signal or in 3D point cloud format. This 

software is also applicable for either single or symmetric 

processor types and it was released in October 2009 as 

open source software [25].  

The software runs under a Linux environment, and 

requires a virtual Linux environment to be installed on the 

machine if the user decides to operate under Windows [25]. 

Further, all available commercial software designed for 

laser scanning data management and processing, such as 

TerraScan from Terrasolid [26] or RiAnalyze from Riegl 

[27], are designed to run under high specification single or 

symmetric processors. 

On the other hand, [19] demonstrate the potential of 

using a symmetrical (multi-core) processor to manage laser 

scanning datasets and improve performance against the 

single processor scenario. They processed raw laser 

scanning data by partitioning these data into multiple 

blocks, which have been interpolated individually and 

finally merged into one integrated Digital Elevation Model 

(DEM). Their approach achieved a powerful increase in 

speed of performance, and effective reduction in the overall 

processing time. However, the proposed technique is not 

the optimal solution for massive datasets.  

 

Figure 5. Resource types used in data management and processing: (a) single processor (b) symmetric multi-processor(c)distributed processor [21]. 

The most efficient processor system which is extremely 

powerful for handling massive datasets is the distributed 

system [28]. The key leveraging in the distributive 

resources is its compatibility to run independent parallel 

jobs on different physical computers and later integrate 

these jobs to deliver one combined solution. It is best suited 

to manage multiple independent processing operations 

where individual tasks are highly independent and do not 

require input from other operations. In this context, this 

mechanism can therefore efficiently meet the requirements 
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for laser scanning data processing. The most powerful 

processing technique which can efficiently manage the 

distributed processor system of large-scale resource sharing, 

is grid computing mechanism [29,20]. Grid computing is a 

technique of combining multi-computer resources to 

achieve one single goal [28]. It provides consistent, 

independent and flexible access to intensive computational 

capabilities in the presence of network connection to 

maintain the necessary resources [30]. The ideal solution to 

manage, process, visualizes, and also monitor powerful 

distributed jobs of massive datasets is through Condor. 

Condor is a well-known computing project which provides 

resource optimization and support for high- throughput 

computing techniques including grid computing on large-

scale distributed computing resources [31]. It can run a 

large number of jobs concurrently and provide high quality 

service with a high network usage [32]. Submitting jobs 

through Condor can be designed as illustrated in Figure 6. 

The process starts by designing a robust code that solves 

the current problem and ensures that the code is well 

designed to run in the Condor environment before 

submission. In certain cases, a compilation is needed 

against middleware on the Condor server, which can be 

managed through a third-party tool. Following a well-

structured submission plan, Condor can deploy the 

independent jobs to the computing resources within the 

network. So far Condor has proven to be extremely 

effective in improving the productivity of massive datasets 

[33, 34] and significantly reducing the time needed to 

generate the results [35], which is an important factor in the 

case of laser scanning datasets. 

 

Figure 6. Principles of the Condor project [21]. 

3. Dataset and Study Site 

Small-footprint FWF-ALS dataset was utilized to 

develop the methodology in this research. The data was 

captured with a 1550 nm wavelength Riegl LMS-Q560 

scanner. The technical specifications of this system are 

described in the Table 1.  

Table 1. Technical specifications of Riegl LMS-Q560 FWF-ALS system 

(Riegl, 2009). 

Laser wavelength 1.5 µm 

Laser beam divergence ≤ 0.5 mrad 

Scanning mechanism rotating polygon mirror 

Scan pattern parallel scan lines 

Scan angle range ± 22.5° = 45° total (± 30° = 60° total) 

Scan speed 10-160 lines/sec 

Angle measurement 

resolution 
0.001° 

Laser pulse repetition 

rate 
up to 120 kHz @ 45° scan angle 

Footprint size 0.5 m @ 1 km 

Pulse width at half 

maximum 
4 ns 

Minimum range 30 m 

Intensity 

measurements 

16 bit intensity information is provided for 

each echo signals 

The study site investigated and covered by this dataset is 

located on the south coast of England. It includes an urban 

area over Bournemouth city Centre, with additional data 

acquired at a rural site (Hurn) located to the north-east of 

the city and composed of natural terrain cover with various 

landforms. Figures 7 show the extents (red lines) of the 

Bournemouth study site, together with their flight lines 

marked in grey lines. 

The Bournemouth dataset is composed of nineteen flight 

lines with an average flying height of 350 m and was 

collected from a helicopter platform in May 2008. It offers 

a high point density with more than 15 points/m
2
 and a 

0.18 m footprint diameter size. The swath width and scan 

angle of the Bournemouth dataset is ~430 m and ±30° 

respectively. The dataset was directly geo-referenced 

through an on-board GNSS-IMU system. The 

Bournemouth dataset has been assessed as having an 

average RMS accuracy of 0.09 m in the urban area and 

0.12 m in the rural area (refer to [13]). The dataset, together 

with the trajectory information and orthophoto coverage, 

were provided by Ordnance Survey, Great Britain’s 

national mapping agency. 

In Bournemouth, nine flight lines (1-9) were captured for 

the rural site at Hurn while ten flight lines (10-19) cover the 

urban site. These flight lines which occupy more than 50 

GB storage and capsulated millions of points have been 

processed and analyzed to test the research methodology 

herein.
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Figure 7. Bournemouth study site, with red blocks representing the ground coverage. Urban area to the south-west and rural area to the north-east. 

4. Methodology 

Motivated by overcoming limitations in available post 

processing techniques, RGD method was selected as the 

optimal pulse detection algorithm to post process FWF-

ALS data in this research. For detailed information about 

the implemented routine in terms of assumptions, 

parameters, and thresholds adopted for the Bournemouth 

dataset, refer to [13]. 

Due to processing complexity, which stems from large 

datasets and the substantial number of echoes that the RGD 

method can detect [13], an effective processing strategy 

was developed using a grid computing technique. The new 

routine relies on high-throughput computing utilizing the 

Newcastle University PC network and taking advantage of 

Matlab functionality provided through the Matlab 

Distributed Computing Server [35]. Grid computing 

provides the opportunity to run large numbers of 

independent jobs concurrently [20,19]. This technique can 

be implemented through utilizing the intelligent processing 

Condor project [31,32].  
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Condor provides a powerful job invocation environment 

which is capable of successfully executing large sets of 

parameter sweep jobs. Parameter sweep operations relate to 

the execution of many similar jobs, which are run by 

changing only the input parameters. Therefore, adopting a 

Condor-based approach was essential in order to feasibly 

process the datasets in this research. Condor provides the 

ability to perform check pointing and migration of 

executions on remote computers where inputs and outputs 

from a user program are staged back to the submitting 

computer. Check pointing is an intelligent application 

which is often used in grid computing to save intermediate 

data on a reliable storage for a period of time during long 

term processing. This technique is basically used to recover 

the run in case of job failure rather than restart the 

application from the beginning [36]. This can effectively 

save computing time and provide more elastic processing 

workflow in cases of complicating computation and large 

datasets. However, this requires the user to compile his/her 

own code alongside the Condor libraries which run under a 

UNIX based operating system. This is something which is 

not always possible - such as when using a commercial 

package like Matlab. Therefore, it would be desirable to 

provide some equivalent functionality to check pointing, to 

help reduce failed execution time in Condor.  

For effective run time reduction, the execution routine 

implemented within Condor in this research is based on 

two main aspects. Firstly, the data can be used many times 

as soon as it is staged to the Condor computer, where data 

staging is a managing process between the submitting and 

the remote computers for efficient grid deployment [37]. 

Secondly, data generated on the Condor computer can be 

staged back to the submitting computer as soon as possible. 

That means the routine has separated the data staging part 

of the Condor job submission from the job deployment 

phase and provides a mechanism for returning data to the 

user while the code is still running on the remote computer. 

The user is required to provide new logic in the form of 

how to process the returned data and how to deal with 

incomplete returns when the job is evicted before complete 

execution.  

The application that is used within the Condor system to 

run the data is packaged into a compressed archive to 

facilitate transfer files and reduce time needed for 

submission. The Condor cluster at Newcastle is composed 

predominantly of ~1100 Windows computers (~3000 CPUs 

in total), thus the scripts are written as Windows Batch files. 

Therefore, these files are converted to UNIX shell scripts to 

be compatible with the Condor library’s operating system. 

The 7zip archive format (see [31] for details) is used for 

data compression as this was already deployed across the 

Newcastle Windows clusters. As the clusters work under 

the Windows operating system, the server then starts to 

submit Condor jobs containing archive and Java client to 

the cluster, as Java Script code is written into an HTML 

page and can be read with any browser regardless the 

computer operating system [38]. To prevent excessive load 

on the server, the number of jobs that can be launched at 

any one time and the frequency at which these are launched 

is limited. As each job starts to request sub-jobs from the 

server, the server can deploy new jobs into Condor until the 

pre-defined limit is reached.  

Following this, the Java client can request the next piece 

of work from the server side. As the link between data 

transfer and execution has now broken, and the data has 

already been staged to the server, requesting sub-jobs can 

be as small as possible with the client asking for further 

tasks without having to re-request data from the submitted 

computer or re-downloading the original dataset. The 

execution of the original application is invoked by Java 

which is able to send back the results of these sub-jobs to 

the server immediately on completion. The client is now 

able to contact the server for further sub-jobs and will 

terminate only when being instructed by the server or due 

to eviction of a Condor job from the host computer. Figure 

8 illustrates the overall architecture of the developed 

routine. 

The Matlab code has been compiled into a binary 

executable using the Matlab compiler. This code requires a 

number of configuration arguments. The data file, the index 

file which defines a unique index number for individual 

FWF echoes, the data point within this file to process, the 

path where to write the output and index data for this 

output file. All of these parameters will remain the same 

except for the data point to process. The shell script is 

passed through this index before invoking the Matlab 

executable. The code written for the client takes the output 

file and the index entry for this output file and returns them 

after successful execution. 

The presented technique essentially reverses the normal 

Condor push job model (sending successive jobs without 

any interaction with the client after submission) into a 

client based pull model (an efficient interaction between the 

client and the server computers controlled by the client). 

This is particularly useful in situations where the user has 

large datasets which require significant time to distribute to 

worker nodes, allowing nodes which already have the data 

to keep on requesting sub-jobs until either evicted or all 

sub-jobs are completed. The developed approach was used 

to process FWF-ALS datasets (Bournemouth 2008). The 

introduced technique was capable of reducing run time by 

100-300 % depending on dataset density and submission 

configurations, as it lends itself best to programs where a 

large data set is used repeatedly, which means that a large 

number of jobs can run concurrently on Condor.  

5. Results and Discussion 

The reason for using the RGD method to post-process 

FWF-ALS data in this research lies in its reliability as a 

pulse detection method to deliver higher range accuracy 

than other available routines. Furthermore, the RGD 

method was utilized because of its capability to resolve 

challenging signals and detect targets from complex 
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overlapping waveforms. This leads to enhanced 

representation of land cover features by translating the 

complete received energy into rigorous spatial and physical 

information. This algorithm has already been demonstrated 

to deliver a greater number of valid echoes from individual 

waveforms than those delivered from the standard 

approaches, leading to better descriptions of surface 

features. Thus, more accurate 3D data for diverse 

applications can be delivered, including terrain generation, 

3D modeling, forest mapping, etc.  

As the proper processing strategy to deliver optimal 

outputs, high-throughput computing was adopted to run the 

RGD method. The potential of this type of processing can 

be identified as the capability to run independent parallel 

jobs on different physical computers and later merge their 

output to deliver one combined solution. Therefore, it saves 

time and cost needed to run successive jobs on single 

computer with limited memory size, which can slow 

processing down considerably. This is basically relying on 

the efficiency of accessing independent memories and 

using a network for communication. Whereas the 

processing time is an important factor here to deliver FWF 

point cloud, the Condor workflow was adopted.  

 

Figure 8. The general architecture of the developed Condor-based FWF-ALS data post processing. 

However, with Condor based student clusters, such as the 

case in Newcastle University, large “cycle stealing” can 

occur, as the computers are not dedicated for high-

throughput computing only. In order to reduce network 

usage and the wastage of computation time that occurs in 

cases of eviction by student login, the new technique of 

returning data to the user while the code is still running on 

the remote computer was developed, as explained in the 

methodology section. The routine was developed in 

cooperation with the Digital Institute in Newcastle 

University to tackle problems in managing large datasets 

through the Condor system, which had less than six years 

history in the University network. 

This technique was modified to fulfill the needs for a 

model that keeps on processing until all jobs are completed, 

thus no data is lost due to computer eviction. As check 

pointing can provide reliable data storage for a period of 

time, the developed pull mode helped the user to re-request 

a new job upon eviction without wasting time to re-data 

transfer. As a result, this pull model allowed the running of 

a large number of jobs without the need for shared file 

space. This provides an advantage of using the free time on 

worker nodes more dynamically, such as in the case of non-

dedicated Condor environments, which has the potential to 

run large datasets. Furthermore, the developed routine 

addresses and analyses any log run errors that might occur, 

which helps the user to diagnose the problem for a potential 

manipulation while the code is still running remotely. The 

project shows significant and powerful potential to speed 

up the processing records to more than 300%, which can 

potentially increase with customized settings and larger 

network usage.     

6. Conclusions 

A new effective processing strategy for FWF-ALS data 

has been developed using a grid computing Condor-based 

technique. The presented technique shows potential in 

situations where large datasets such as lidar data are 

utilized. This is achieved by reversing the normal Condor 
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push job model into a client based pull model which helped 

to reduce processing time by 100-300 % in the case of the 

datasets investigated in this research. 

The discussion of the FWF post processing and data 

management shows the potential of the RGD method to 

post-process FWF data to deliver more rigorous estimations 

from the waveform signal and provide the user with 

additional valid echoes. Further, the RGD adoption has 

shown reliability through the implementation of the Condor 

pull model, using high-throughput computing and 

producing savings in terms of time and cost exerted to 

process massive datasets. The routine contributes in 

reducing network usage and wasted computation time by 

providing a successful processing environment for non-

detected Condor networks.  
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