

International Journal of Transportation Engineering and Technology
2021; 7(4): 97-103

http://www.sciencepublishinggroup.com/j/ijtet

doi: 10.11648/j.ijtet.20210704.12

ISSN: 2575-1743 (Print); ISSN: 2575-1751 (Online)

Extremely Fast “Solution” to the Large-Scale and Very
Large-Scale Vehicle Routing Problem

James Riechel

Center for Information Systems & Technology (CISAT), Claremont Graduate University (CGU), Claremont, the United States

Email address:

To cite this article:
James Riechel. Extremely Fast “Solution” to the Large-Scale and Very Large-Scale Vehicle Routing Problem. International Journal of

Transportation Engineering and Technology. Vol. 7, No. 4, 2021, pp. 97-103. doi: 10.11648/j.ijtet.20210704.12

Received: October 21, 2021; Accepted: November 8, 2021; Published: November 17, 2021

Abstract: A solution to the vehicle routing problem (VRP) is presented that takes only quadratic space, O(n
2
), and quadratic

time, O(n
2
), if n is the number of stops on a route. The input is assumed to be a list of stops of length n in longitude, latitude

format. The output is an origin-destination (OD) matrix of size O(n
2
), which takes O(n

2
) time to build. The element (i, j) in the

matrix is the approximate driving distance between stop i and stop j on the route. Each approximate driving distance takes

constant or O(1) time to compute. (The approximate driving distance appears in previous work by the author, published in

URISA GIS-Pro ‘19 and CalGIS 2020.) This OD matrix is well-suited for solving large-scale and very large-scale VRP

problems, since computing approximate driving distances is lightning fast. For instance, using real-world data, it took less than

one (1) second to produce a route with 5,156 stops. The OD matrix can be used with any exact or approximation algorithm to

find a route, including the nearest-neighbor approximation algorithm: Starting at an origin, the next closest stop is visited

repeatedly, ending at the destination once all stops have been visited. Determining the next stop to visit takes linear or O(n)

time to compute, and this is done O(n) times. This solution to the VRP is a polynomial-time, O(n
2
), approximation; it is not

exact, but is extremely fast.

Keywords: Vehicle Routing Problem (VRP), Approximate Driving Distance, Manhattan Distance,

Equirectangular Projection, Nearest-neighbor Approximation Algorithm

1. Introduction/Literature Review

The vehicle routing problem (VRP) is defined as follows:

Beginning at a depot, a route is formed by visiting all stops

before returning to the depot [1]. The VRP is a generalization

of the famous “traveling salesman” problem (TSP) [4].

Finding an optimal route in which travel distance is

minimized is known to be NP-hard [5]. Both the VRP and

TSP are NP-complete problems [7]. An approximate solution

is presented which uses the polynomial-time (P-time)

nearest-neighbor approximation algorithm [12]. The

contribution in this work is that an origin-destination (OD)

matrix is built on the fly with approximate driving distances

[8-10]. The OD matrix is usually a pre-computed input to the

VRP algorithm.

Here are several related works in the VRP published by

the Transportation Research Record (TRR): Wang et al.

(2013) consider the vehicle routing problem of

simultaneous deliveries and pickups with split loads and

time windows (VRPSDPSLTW) [15]. They formulate the

problem as a mixed-integer programming problem and use

a hybrid heuristic algorithm. Ripplinger (2005) considers

the case of the rural school vehicle routing problem.

Ripplinger develops a mathematic model, and a new

heuristic. His results are superior to existing VRP for the

pickup and drop-off of students in rural areas [11]. Tang

and Miller-Hooks (2006) define the VRP with solution

shape constraints. They propose an interactive heuristic

which when coupled with effective shape measures,

produces solutions with significantly improved layout [14].

Figliozzi (2010) considers the case of VRP for emissions

minimization (EVRP). He provides both a formulation and

solution to EVRP [2].

Large-scale routes have hundreds of stops, such as the

routes for package carriers like UPS, FedEx, DHL, OnTrac,

Amazon, and USPS. Very large-scale routes have thousands

 International Journal of Transportation Engineering and Technology 2021; 7(4): 97-103 98

of stops, such as the routes for garbage and recycling trucks.

The presented algorithm is a GIS solution to a GIS problem.

The math is close to trivial. A distance or an approximate

distance is really more of a concept or an idea than a

mathematic number or equation.

The presented algorithm makes possible solutions to the

VRP which were previously impossible. Computing routes

with a large or very large number of stops in a fraction of a

second forever changes route planning. Stops can be inserted

and deleted, and a new route produced in real-time. Feedback

from the client in the City of Chamblee, Georgia, indicates

that the new routes are superior to previous routes, which

were done partly “by hand.” Adding a stop changes the route,

but so can deleting one or more stops (it can change the order

of the remaining stops).

The rest of the paper is organized as follows:

1. Section 2: Materials and Methods

2. Section 3: Case Study

3. Section 4: Results

4. Section 5: Limitations/Discussion

5. Section 6: Conclusion/Future Work

6. Appendix: The source code used to find the route in the

case study for the City of Chamblee, Georgia

2. Materials and Methods

2.1. Approximate Driving Distance

Each line of the input file has a longitude, latitude pair (in

degrees) of a stop in the route. First, convert these from

degrees to radians. Then, compute the x, y, z coordinates of

each stop:

x = longitude * r * Cos(ϕ0)

y = latitude * r

z = elevation

where r is the radius of the Earth, and ϕ0 is a centrally

located latitude in the dataset. This forms an equirectangular

projection [3].

Let (xi, yi, zi) and (xj, yj, zj) be two stops in a route. The

approximate driving distance between them is:

distance(i, j) = Abs(xi – xj) + Abs(yi – yj) + Abs(zi – zj)

This approximate distance, the Manhattan distance [13], is

both a better approximation of the actual driving distance

than the Euclidean distance, and an order of magnitude faster

to compute than the Euclidean [8-10]. See Zeager and Stitz

(2016) for a description of Euclidean distance [16].

The Manhattan distance is extremely fast to compute:

Table 1. Execution speed of Manhattan distance, aka “approximate driving distance”.

Running time of 100 million calls (milliseconds) Operations per second

Manhattan distance, aka “approximate driving distance” 296 337,837,838

A pilot study was performed to determine how accurate Manhattan distances are compared to actual driving distances. A

nonrepresentative study of 200 green taxi cabs rides in New York City on January 1, 2016, starting at 12 AM EST, had the

following distribution:

Figure 1. Accuracy of Manhattan distance in NYC pilot study.

It was confirmed that this distribution is normal. On

average, the Manhattan distance is about 80% of the actual

driving distance, and the Manhattan sometimes overestimates

actual driving distance.

There are many reasons why Manhattan distance might

underestimate actual driving distance, including:

1. Traffic controls (U-turns, one-way streets)

2. Manmade obstacles (bridges)

3. Natural obstacles (lakes, hills, mountains)

4. Equirectangular projection

2.2. OD Matrix and the Nearest-Neighbor Approximation

Algorithm

As mentioned in the Abstract and Introduction, an OD

matrix is built using approximate driving distances. This is

important because computing approximate driving distances

is lightning fast [8-10]. Building the OD matrix takes O(n
2
)

99 James Riechel: Extremely Fast “Solution” to the Large-Scale and Very Large-Scale Vehicle Routing Problem

space and O(n
2
) time, where n is the number of stops on the

route.

Using this OD matrix, any exact or approximate algorithm

can be used to find a route but for the sake of simplicity, the

standard nearest-neighbor approximation algorithm is used.

First, find the first stop (the one closest to the depot), and

then successively the next closest stop, returning to the depot

after the final stop is visited. This takes O(n
2
) time, where n

is the number of stops on the route.

3. Case Study

Using data from the City of Chamblee, Georgia, a route

with 5,156 stops was computed in under one (1) second. It

was, however, necessary to expand the stack size of the

executable, because of the size of the OD matrix which was

over 26.5 million cells (5,156 rows, and 5,156 columns). The

client was satisfied with the route computed.

If actual driving distances were used instead in the case

study, the computation would take around 308 virtual days

instead of less than one second (1s), if we assume the

computation of each actual driving distance takes around one

virtual second:

5,156 rows times 5,156 columns

= 26,584,336 cells

= 26,584,336 virtual seconds

= 443,072 virtual minutes

= 7,385 virtual hours

= 308 virtual days

4. Results

The map on the following page shows the produced route

for the case study. The truck depot is located at the red star,

stops are shown as blue dots, and the visitation order starting

at the depot is given in unclassed colors (yellow to orange to

red):

No truck could visit all 5,156 stops in one day. From what

is understood, daily routes for each truck visit around 1,100

to 1,200 stops.

But the master route of 5,156 stops is a good test case for

the presented algorithm. It is amazing that it completes in

less than one second (<1s).

Figure 2. Truck depot (red star), stops (blue dots), visitation order (yellow to orange to red).

 International Journal of Transportation Engineering and Technology 2021; 7(4): 97-103 100

5. Limitations/Discussion

The main advantage of this solution to the large-scale or

very large-scale VRP is its improved speed. Its main

drawback is its 20% lower accuracy. Approximate driving

distances are retained only to find the order of stops on a

route. Once the route is determined, it is important to use

other tools, such as driving directions in ArcGIS, Waze, or

Google Maps to fine tune the route.

Li et al. (2016) introduce the “six Vs” of Geospatial Big

Data: volume, variety, velocity, veracity, visualization, and

visibility [6]. In a world filled with Big Data, where the

volume of data points to compute distances between, and the

velocity at which these distances are expected to be

computed, are both extremely high, a fast algorithm for

computing approximate distances may be the only choice.

This introduces the issue of veracity: How reliably accurate

these approximate distances are.

A number of optimizations were skipped in the case study

because they were unnecessary. Since the client’s route was

produced in less than one (1) second, compiler optimization

flags were not used. Also, software floating-point operations

were used, not hardware which are faster. There might be one

or two optimizations in the code itself that were not

implemented because it was deemed unnecessary.

6. Conclusion/Future Work

It is impossible to gauge how “good” the presented

solution to the VRP is because it cannot be compared to the

exact solution, which would require Factorial (5,156) or

5,156! time. This amount of time triggers an Overflow in the

Calculator program built into Windows 10 Pro. The exact

solution would likely take millions of years to compute.

However, additional quantitative and qualitative data can be

collected, such as:

1. Gallons of fuel saved using the new routes

2. Time saved using the new routes

3. Interviews with managers, truck drivers, and other

employees

Such data has not yet been collected, but if the opportunity

arises it will be collected in the future.

A serial algorithm has been developed to “solve” the VRP

(see Appendix). A next step could be to parallelize this serial

algorithm to get good speedup on larger problems than the

one presented here, which computed a “master route” with

5,156 stops in under one second (<1s).

It should be possible to “solve” other NP-complete

problems using this solution to the VRP. All it takes is a

translation or transformation from another NP-complete

problem space to this VRP problem space, and back again

after a solution to the VRP is computed.

The accuracy of the VRP algorithm should be explored,

perhaps with a smaller problem with a known exact solution.

Finally, the VRP algorithm can be implemented as a

Python toolkit within ArcGIS Pro.

Acknowledgements

Carlo Frate of the City of Chamblee, Georgia, who

provided wonderful test data for the presented algorithm

Professors Brian Hilton and Warren Roberts of the Center

for Information Systems & Technology (CISAT) at

Claremont Graduate University (CGU) for all their help and

guidance.

Appendix

A1. First Source Code File, “stop.h”

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

using namespace std;

class Stop {

 public:

 int OBJECTID;

 string Name; // address

 double Duration;

 string RouteName;

 string Sequence;

 string CurbApproach;

 string Driver;

 double POINT_X; // longitude in degrees

 double POINT_Y; // latitude in degrees

 int Zone2020;

 double longitude, latitude; // in radians

 double x, y, z; // in meters

 void read_row_from_file(ifstream&);

 void set_xyz(double, double, double);

 void output_row();

 double approximate_distance(double, double, double);

};

A2. Second Source Code File, “stop.cpp”

#include "stop.h"

#define PI (3.14159265359)

#define DEG2RAD(deg) (deg/180.0*PI)

#define RAD2DEG(rad) (rad/PI*180.0)

void Stop::read_row_from_file(ifstream& input_file) {

101 James Riechel: Extremely Fast “Solution” to the Large-Scale and Very Large-Scale Vehicle Routing Problem

 string line;

 getline(input_file, line);

 stringstream s(line);

 string word;

 getline(s, word, ',');

 OBJECTID = stoi(word);

 getline(s, Name, ',');

 std::string::size_type pos;

 //getline(s, Duration, ',');

 getline(s, word, ',');

 Duration = stod(word, &pos);

 getline(s, RouteName, ',');

 getline(s, Sequence, ',');

 getline(s, CurbApproach, ',');

 getline(s, Driver, ',');

 getline(s, word, ',');

 POINT_X = stod(word, &pos);

 getline(s, word, ',');

 POINT_Y = stod(word, &pos);

 getline(s, word, '\n');

 Zone2020 = stoi(word);

 longitude = DEG2RAD(POINT_X);

 latitude = DEG2RAD(POINT_Y);

}

void Stop::set_xyz(double x_mult, double y_mult, double

elevation) {

 x = x_mult * longitude;

 y = y_mult * latitude;

 z = elevation;

}

void Stop::output_row() {

 std::cout.precision(20);

 std::cout << OBJECTID << ',' << Name << ',' <<

Duration

 << ',' << RouteName << ',' << Sequence << ',' <<

CurbApproach << ',' <<

 Driver << ',' << POINT_X << ',' << POINT_Y << ','

<< Zone2020 <<

 std::endl;

}

double Stop::approximate_distance(double x2, double y2,

double z2) {

 return(fabs(x - x2) + fabs(y - y2) + fabs(z - z2));

}

A3. Third Source Code File, “main.cpp”

#include "math.h"

#include "stop.cpp"

#define EARTHRADIUS (6371000)

main() {

 const int number_of_stops = 5156;

 const double depot_longitude = DEG2RAD(-84.291861);

 const double depot_latitude = DEG2RAD(33.887694);

 const double elevation = 304.8; // meters

 ifstream input_file("ServiceLocations2020.csv");

 string line;

 getline(input_file, line);

 //Stop Stops[number_of_stops];

 Stop* Stops = new Stop[number_of_stops];

 for (int i = 0; i < number_of_stops; i++) {

 Stops[i].read_row_from_file(input_file);

 }

 input_file.close();

 // compute Phi_0

 double Phi_0 = 0.0;

 for (int i = 0; i < number_of_stops; i++) {

 Phi_0 += Stops[i].latitude;

 }

 Phi_0 = Phi_0 / ((double) number_of_stops);

 double cos_Phi_0 = cos(Phi_0);

 double x_mult = EARTHRADIUS * cos_Phi_0;

 double y_mult = EARTHRADIUS;

 for (int i = 0; i < number_of_stops; i++) {

 Stops[i].set_xyz(x_mult, y_mult, elevation);

 }

 International Journal of Transportation Engineering and Technology 2021; 7(4): 97-103 102

 // Build Origin-Destination Matrix M:

 //double M[number_of_stops][number_of_stops];

 double** M = new double* [number_of_stops];

 for (int i = 0; i < number_of_stops; i++) {

 M[i] = new double[number_of_stops];

 }

 for (int i = 0; i < number_of_stops; i++) {

 for (int j = 0; j < number_of_stops; j++) {

 double delta_x = fabs(Stops[i].x - Stops[j].x);

 double delta_y = fabs(Stops[i].y - Stops[j].y);

 double delta_z = fabs(Stops[i].z - Stops[j].z);

 M[i][j] = delta_x + delta_y + delta_z;

 }

 }

 double depot_x = depot_longitude * x_mult;

 double depot_y = depot_latitude * y_mult;

 double depot_z = elevation;

 // Compute the route:

 int visited[number_of_stops];

 for (int i = 0; i < number_of_stops; i++) {

 visited[i] = 0; // False

 }

 // Find first stop:

 int first_stop = 0;

 double shortest_distance =

 Stops[0].approximate_distance(depot_x, depot_y,

depot_z);

 for (int i = 1; i < number_of_stops; i++) {

 double approx_distance =

 Stops[i].approximate_distance(depot_x, depot_y,

depot_z);

 if (approx_distance < shortest_distance) {

 first_stop = i;

 shortest_distance = approx_distance;

 }

 }

 // Okay, first_stop is our first node to visit

 int Route[number_of_stops];

 for (int i = 0; i < number_of_stops; i++) {

 Route[i] = 0;

 }

 Route[0] = first_stop;

 visited[first_stop] = 1; // True

 int previous_stop = first_stop;

 // Find the remaining stops:

 int first_j = 0;

 for (int i = 1; i < number_of_stops; i++) {

 int found_first = 0; // False

 while (!found_first) {

 if (!(visited[first_j])) found_first = 1; // True

 else first_j++;

 }

 double shortest_distance = M[previous_stop][first_j];

 int next_stop = first_j;

 for (int j = (first_j + 1); j < number_of_stops; j++) {

 if (!visited[j]) {

 double approx_distance = M[previous_stop][j];

 if (approx_distance < shortest_distance) {

 shortest_distance = approx_distance;

 next_stop = j;

 }

 }

 }

 Route[i] = next_stop;

 visited[next_stop] = 1; // True

 previous_stop = next_stop;

 }

 // Output route to standard output:

 std::cout << "Visit

#,OBJECTID,Name,Duration,RouteName,Sequence,CurbAp

proach,Driver,POINT_X,POINT_Y,Zone2020" << std::endl;

 for (int i = 0; i < number_of_stops; i++) {

103 James Riechel: Extremely Fast “Solution” to the Large-Scale and Very Large-Scale Vehicle Routing Problem

 std::cout << i << ',';

 Stops[Route[i]].output_row();

 }

 delete[] Stops;

 for (int i = 0; i < number_of_stops; i++) {

 delete[] M[i];

 }

 delete[] M;

}

References

[1] Dantzig, G. B., & Ramser, J. H. (1959). The Truck
Dispatching Problem. Management Science, 6 (1), 80–91.
https://doi.org/10.1287/mnsc.6.1.80

[2] Figliozzi, M. (2010). Vehicle Routing Problem for Emissions
Minimization. Transportation Research Record: Journal of
the Transportation Research Board, 2197 (1), 1–7.
https://doi.org/10.3141/2197-01

[3] Hargitai, H., Willner, K., & Hare, T. (2019). Fundamental
Frameworks in Planetary Mapping: A Review. In H. Hargitai
(Ed.), Planetary Cartography and GIS (pp. 75–101). Springer
International Publishing. https://doi.org/10.1007/978-3-319-
62849-3_4

[4] Karp, R. M. (1972). Reducibility among Combinatorial
Problems. In R. E. Miller, J. W. Thatcher, & J. D. Bohlinger
(Eds.), Complexity of Computer Computations: Proceedings
of a symposium on the Complexity of Computer Computations,
held March 20–22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, and sponsored
by the Office of Naval Research, Mathematics Program, IBM
World Trade Corporation, and the IBM Research
Mathematical Sciences Department (pp. 85–103). Springer
US. https://doi.org/10.1007/978-1-4684-2001-2_9

[5] Lenstra, J. K., & Kan, A. H. G. R. (1981). Complexity of
vehicle routing and scheduling problems. Networks, 11 (2),
221–227. https://doi.org/10.1002/net.3230110211

[6] Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S.,
Coltekin, A., Pettit, C., Jiang, B., Haworth, J., Stein, A., &
Cheng, T. (2016). Geospatial big data handling theory and

methods: A review and research challenges. ISPRS Journal of
Photogrammetry and Remote Sensing, 115, 119–133.
https://doi.org/10.1016/j.isprsjprs.2015.10.012

[7] Papadimitriou, C. H. (1977). The Euclidean travelling
salesman problem is NP-complete. Theoretical Computer
Science, 4 (3), 237–244. https://doi.org/10.1016/0304-
3975(77)90012-3

[8] Riechel, J. (2019). A fast algorithm for computing
approximate distances in the Cartesian plane. Proceedings of
URISA GIS-Pro ‘19, New Orleans, LA.
https://urisa.library.esri.com/cgi-bin/koha/opac-
detail.pl?biblionumber=183148&query_desc=kw%2Cwrdl%3
A%20riechel

[9] Riechel, J. (2020a). Comparing Manhattan, Euclidean, and
Actual Driving Distances. Proceedings of CalGIS 2020, Long
Beach, CA.
https://drive.google.com/file/d/1_wgjePJH6LXM6OAYHg-
PJkr2o-wVr8AK/view?usp=sharing

[10] Riechel, J. (2020b). Extending Manhattan, Euclidean, and
Actual Driving Distances into 3D. Unpublished.
https://drive.google.com/file/d/16rkw9Ysn8BWfT7CpfvlnlaS
wUgBw4Y4v/view?usp=sharing

[11] Ripplinger, D. (1922). Rural School Vehicle Routing Problem.
Transportation Research Record, 6.

[12] Rosenkrantz, D. J., Stearns, R. E., & Lewis, I., Philip M.
(1977). An Analysis of Several Heuristics for the Traveling
Salesman Problem. SIAM Journal on Computing, 6 (3), 563–
581. https://doi.org/10.1137/0206041

[13] Singh, A., Yadav, A., Block, A. E., Rana, A., Block, E., &
Floor, G. (2013). K-means with Three different Distance
Metrics. International Journal of Computer Applications, 67
(10), 13–17. https://doi.org/doi:10.5120/11430-6785

[14] Tang, H., & Miller-Hooks, E. (1964). Interactive Heuristic for
Practical Vehicle Routing Problem with Solution Shape
Constraints. Transportation Research Record, 10.

[15] Wang, Y., Ma, X., Lao, Y., Wang, Y., & Mao, H. (2013).
Vehicle Routing Problem: Simultaneous Deliveries and
Pickups with Split Loads and Time Windows. Transportation
Research Record: Journal of the Transportation Research
Board, 2378 (1), 120–128. https://doi.org/10.3141/2378-13

[16] Zeager, J., & Stitz, C. (2016). College Algebra.
http://dspace.calstate.edu/handle/10211.3/180387

