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Abstract: A solution to the vehicle routing problem (VRP) is presented that takes only quadratic space, O(n
2
), and quadratic 

time, O(n
2
), if n is the number of stops on a route. The input is assumed to be a list of stops of length n in longitude, latitude 

format. The output is an origin-destination (OD) matrix of size O(n
2
), which takes O(n

2
) time to build. The element (i, j) in the 

matrix is the approximate driving distance between stop i and stop j on the route. Each approximate driving distance takes 

constant or O(1) time to compute. (The approximate driving distance appears in previous work by the author, published in 

URISA GIS-Pro ‘19 and CalGIS 2020.) This OD matrix is well-suited for solving large-scale and very large-scale VRP 

problems, since computing approximate driving distances is lightning fast. For instance, using real-world data, it took less than 

one (1) second to produce a route with 5,156 stops. The OD matrix can be used with any exact or approximation algorithm to 

find a route, including the nearest-neighbor approximation algorithm: Starting at an origin, the next closest stop is visited 

repeatedly, ending at the destination once all stops have been visited. Determining the next stop to visit takes linear or O(n) 

time to compute, and this is done O(n) times. This solution to the VRP is a polynomial-time, O(n
2
), approximation; it is not 

exact, but is extremely fast. 

Keywords: Vehicle Routing Problem (VRP), Approximate Driving Distance, Manhattan Distance,  

Equirectangular Projection, Nearest-neighbor Approximation Algorithm 

 

1. Introduction/Literature Review 

The vehicle routing problem (VRP) is defined as follows: 

Beginning at a depot, a route is formed by visiting all stops 

before returning to the depot [1]. The VRP is a generalization 

of the famous “traveling salesman” problem (TSP) [4]. 

Finding an optimal route in which travel distance is 

minimized is known to be NP-hard [5]. Both the VRP and 

TSP are NP-complete problems [7]. An approximate solution 

is presented which uses the polynomial-time (P-time) 

nearest-neighbor approximation algorithm [12]. The 

contribution in this work is that an origin-destination (OD) 

matrix is built on the fly with approximate driving distances 

[8-10]. The OD matrix is usually a pre-computed input to the 

VRP algorithm. 

Here are several related works in the VRP published by 

the Transportation Research Record (TRR): Wang et al. 

(2013) consider the vehicle routing problem of 

simultaneous deliveries and pickups with split loads and 

time windows (VRPSDPSLTW) [15]. They formulate the 

problem as a mixed-integer programming problem and use 

a hybrid heuristic algorithm. Ripplinger (2005) considers 

the case of the rural school vehicle routing problem. 

Ripplinger develops a mathematic model, and a new 

heuristic. His results are superior to existing VRP for the 

pickup and drop-off of students in rural areas [11]. Tang 

and Miller-Hooks (2006) define the VRP with solution 

shape constraints. They propose an interactive heuristic 

which when coupled with effective shape measures, 

produces solutions with significantly improved layout [14]. 

Figliozzi (2010) considers the case of VRP for emissions 

minimization (EVRP). He provides both a formulation and 

solution to EVRP [2]. 

Large-scale routes have hundreds of stops, such as the 

routes for package carriers like UPS, FedEx, DHL, OnTrac, 

Amazon, and USPS. Very large-scale routes have thousands 
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of stops, such as the routes for garbage and recycling trucks. 

The presented algorithm is a GIS solution to a GIS problem. 

The math is close to trivial. A distance or an approximate 

distance is really more of a concept or an idea than a 

mathematic number or equation. 

The presented algorithm makes possible solutions to the 

VRP which were previously impossible. Computing routes 

with a large or very large number of stops in a fraction of a 

second forever changes route planning. Stops can be inserted 

and deleted, and a new route produced in real-time. Feedback 

from the client in the City of Chamblee, Georgia, indicates 

that the new routes are superior to previous routes, which 

were done partly “by hand.” Adding a stop changes the route, 

but so can deleting one or more stops (it can change the order 

of the remaining stops). 

The rest of the paper is organized as follows: 

1. Section 2: Materials and Methods 

2. Section 3: Case Study 

3. Section 4: Results 

4. Section 5: Limitations/Discussion 

5. Section 6: Conclusion/Future Work 

6. Appendix: The source code used to find the route in the 

case study for the City of Chamblee, Georgia 

 

 

2. Materials and Methods 

2.1. Approximate Driving Distance 

Each line of the input file has a longitude, latitude pair (in 

degrees) of a stop in the route. First, convert these from 

degrees to radians. Then, compute the x, y, z coordinates of 

each stop: 

x = longitude * r * Cos(ϕ0) 

y = latitude * r 

z = elevation 

where r is the radius of the Earth, and ϕ0 is a centrally 

located latitude in the dataset. This forms an equirectangular 

projection [3]. 

Let (xi, yi, zi) and (xj, yj, zj) be two stops in a route. The 

approximate driving distance between them is: 

distance(i, j) = Abs(xi – xj) + Abs(yi – yj) + Abs(zi – zj) 

This approximate distance, the Manhattan distance [13], is 

both a better approximation of the actual driving distance 

than the Euclidean distance, and an order of magnitude faster 

to compute than the Euclidean [8-10]. See Zeager and Stitz 

(2016) for a description of Euclidean distance [16]. 

The Manhattan distance is extremely fast to compute: 

Table 1. Execution speed of Manhattan distance, aka “approximate driving distance”. 

 
Running time of 100 million calls (milliseconds) Operations per second 

Manhattan distance, aka “approximate driving distance” 296 337,837,838 

A pilot study was performed to determine how accurate Manhattan distances are compared to actual driving distances. A 

nonrepresentative study of 200 green taxi cabs rides in New York City on January 1, 2016, starting at 12 AM EST, had the 

following distribution: 

 

Figure 1. Accuracy of Manhattan distance in NYC pilot study. 

It was confirmed that this distribution is normal. On 

average, the Manhattan distance is about 80% of the actual 

driving distance, and the Manhattan sometimes overestimates 

actual driving distance. 

There are many reasons why Manhattan distance might 

underestimate actual driving distance, including: 

1. Traffic controls (U-turns, one-way streets) 

2. Manmade obstacles (bridges) 

3. Natural obstacles (lakes, hills, mountains) 

4. Equirectangular projection 

2.2. OD Matrix and the Nearest-Neighbor Approximation 

Algorithm 

As mentioned in the Abstract and Introduction, an OD 

matrix is built using approximate driving distances. This is 

important because computing approximate driving distances 

is lightning fast [8-10]. Building the OD matrix takes O(n
2
) 



99 James Riechel:  Extremely Fast “Solution” to the Large-Scale and Very Large-Scale Vehicle Routing Problem  

 

space and O(n
2
) time, where n is the number of stops on the 

route. 

Using this OD matrix, any exact or approximate algorithm 

can be used to find a route but for the sake of simplicity, the 

standard nearest-neighbor approximation algorithm is used. 

First, find the first stop (the one closest to the depot), and 

then successively the next closest stop, returning to the depot 

after the final stop is visited. This takes O(n
2
) time, where n 

is the number of stops on the route. 

3. Case Study 

Using data from the City of Chamblee, Georgia, a route 

with 5,156 stops was computed in under one (1) second. It 

was, however, necessary to expand the stack size of the 

executable, because of the size of the OD matrix which was 

over 26.5 million cells (5,156 rows, and 5,156 columns). The 

client was satisfied with the route computed. 

If actual driving distances were used instead in the case 

study, the computation would take around 308 virtual days 

instead of less than one second (1s), if we assume the 

computation of each actual driving distance takes around one 

virtual second: 

5,156 rows times 5,156 columns 

= 26,584,336 cells 

= 26,584,336 virtual seconds 

= 443,072 virtual minutes 

= 7,385 virtual hours 

= 308 virtual days 

4. Results 

The map on the following page shows the produced route 

for the case study. The truck depot is located at the red star, 

stops are shown as blue dots, and the visitation order starting 

at the depot is given in unclassed colors (yellow to orange to 

red): 

No truck could visit all 5,156 stops in one day. From what 

is understood, daily routes for each truck visit around 1,100 

to 1,200 stops. 

But the master route of 5,156 stops is a good test case for 

the presented algorithm. It is amazing that it completes in 

less than one second (<1s). 

 

Figure 2. Truck depot (red star), stops (blue dots), visitation order (yellow to orange to red). 
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5. Limitations/Discussion 

The main advantage of this solution to the large-scale or 

very large-scale VRP is its improved speed. Its main 

drawback is its 20% lower accuracy. Approximate driving 

distances are retained only to find the order of stops on a 

route. Once the route is determined, it is important to use 

other tools, such as driving directions in ArcGIS, Waze, or 

Google Maps to fine tune the route. 

Li et al. (2016) introduce the “six Vs” of Geospatial Big 

Data: volume, variety, velocity, veracity, visualization, and 

visibility [6]. In a world filled with Big Data, where the 

volume of data points to compute distances between, and the 

velocity at which these distances are expected to be 

computed, are both extremely high, a fast algorithm for 

computing approximate distances may be the only choice. 

This introduces the issue of veracity: How reliably accurate 

these approximate distances are. 

A number of optimizations were skipped in the case study 

because they were unnecessary. Since the client’s route was 

produced in less than one (1) second, compiler optimization 

flags were not used. Also, software floating-point operations 

were used, not hardware which are faster. There might be one 

or two optimizations in the code itself that were not 

implemented because it was deemed unnecessary. 

6. Conclusion/Future Work 

It is impossible to gauge how “good” the presented 

solution to the VRP is because it cannot be compared to the 

exact solution, which would require Factorial (5,156) or 

5,156! time. This amount of time triggers an Overflow in the 

Calculator program built into Windows 10 Pro. The exact 

solution would likely take millions of years to compute. 

However, additional quantitative and qualitative data can be 

collected, such as: 

1. Gallons of fuel saved using the new routes 

2. Time saved using the new routes 

3. Interviews with managers, truck drivers, and other 

employees 

Such data has not yet been collected, but if the opportunity 

arises it will be collected in the future. 

A serial algorithm has been developed to “solve” the VRP 

(see Appendix). A next step could be to parallelize this serial 

algorithm to get good speedup on larger problems than the 

one presented here, which computed a “master route” with 

5,156 stops in under one second (<1s). 

It should be possible to “solve” other NP-complete 

problems using this solution to the VRP. All it takes is a 

translation or transformation from another NP-complete 

problem space to this VRP problem space, and back again 

after a solution to the VRP is computed. 

The accuracy of the VRP algorithm should be explored, 

perhaps with a smaller problem with a known exact solution. 

Finally, the VRP algorithm can be implemented as a 

Python toolkit within ArcGIS Pro. 
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Appendix 

A1. First Source Code File, “stop.h” 

#include <iostream> 

#include <fstream> 

#include <string> 

#include <sstream> 

using namespace std; 

 

class Stop { 

 

   public: 

 

      int OBJECTID; 

      string Name; // address 

      double Duration; 

      string RouteName; 

      string Sequence; 

      string CurbApproach; 

      string Driver; 

      double POINT_X; // longitude in degrees 

      double POINT_Y; // latitude in degrees 

      int Zone2020; 

 

      double longitude, latitude; // in radians 

 

      double x, y, z; // in meters 

 

   void read_row_from_file(ifstream&); 

 

   void set_xyz(double, double, double); 

 

   void output_row(); 

 

   double approximate_distance(double, double, double); 

}; 

A2. Second Source Code File, “stop.cpp” 

#include "stop.h" 

 

#define PI (3.14159265359) 

#define DEG2RAD(deg) (deg/180.0*PI) 

#define RAD2DEG(rad) (rad/PI*180.0) 

 

void Stop::read_row_from_file(ifstream& input_file) { 
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   string line; 

 

   getline(input_file, line); 

 

   stringstream s(line); 

   string word; 

 

   getline(s, word, ','); 

   OBJECTID = stoi(word); 

 

   getline(s, Name, ','); 

 

   std::string::size_type pos; 

 

   //getline(s, Duration, ','); 

   getline(s, word, ','); 

   Duration = stod(word, &pos); 

 

   getline(s, RouteName, ','); 

 

   getline(s, Sequence, ','); 

 

   getline(s, CurbApproach, ','); 

 

   getline(s, Driver, ','); 

 

   getline(s, word, ','); 

   POINT_X = stod(word, &pos); 

 

   getline(s, word, ','); 

   POINT_Y = stod(word, &pos); 

 

   getline(s, word, '\n'); 

   Zone2020 = stoi(word); 

 

   longitude = DEG2RAD(POINT_X); 

   latitude = DEG2RAD(POINT_Y); 

 

} 

 

 

void Stop::set_xyz(double x_mult, double y_mult, double 

elevation) { 

 

   x = x_mult * longitude; 

   y = y_mult * latitude; 

   z = elevation; 

} 

 

void Stop::output_row() { 

 

   std::cout.precision(20); 

 

   std::cout << OBJECTID << ',' << Name << ',' << 

Duration  

      << ',' << RouteName << ',' << Sequence << ',' << 

CurbApproach << ',' << 

      Driver << ',' << POINT_X << ',' << POINT_Y << ',' 

<< Zone2020 <<  

      std::endl; 

} 

 

double Stop::approximate_distance(double x2, double y2, 

double z2) { 

 

   return(fabs(x - x2) + fabs(y - y2) + fabs(z - z2)); 

} 

A3. Third Source Code File, “main.cpp” 

#include "math.h" 

#include "stop.cpp" 

 

#define EARTHRADIUS (6371000) 

 

main() { 

 

   const int number_of_stops = 5156; 

 

   const double depot_longitude = DEG2RAD(-84.291861); 

   const double depot_latitude = DEG2RAD(33.887694); 

   const double elevation = 304.8; // meters 

 

   ifstream input_file("ServiceLocations2020.csv"); 

   string line; 

   getline(input_file, line); 

 

   //Stop Stops[number_of_stops]; 

   Stop* Stops = new Stop[number_of_stops]; 

 

   for (int i = 0; i < number_of_stops; i++) { 

 

      Stops[i].read_row_from_file(input_file); 

   } 

 

   input_file.close(); 

 

   // compute Phi_0 

   double Phi_0 = 0.0; 

   for (int i = 0; i < number_of_stops; i++) { 

 

      Phi_0 += Stops[i].latitude; 

   } 

   Phi_0 = Phi_0 / ((double) number_of_stops); 

 

   double cos_Phi_0 = cos(Phi_0); 

   double x_mult = EARTHRADIUS * cos_Phi_0; 

   double y_mult = EARTHRADIUS; 

 

   for (int i = 0; i < number_of_stops; i++) { 

 

      Stops[i].set_xyz(x_mult, y_mult, elevation); 

   } 
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   // Build Origin-Destination Matrix M: 

 

   //double M[number_of_stops][number_of_stops]; 

   double** M = new double* [number_of_stops]; 

   for (int i = 0; i < number_of_stops; i++) { 

       M[i] = new double[number_of_stops]; 

   } 

 

   for (int i = 0; i < number_of_stops; i++) { 

 

      for (int j = 0; j < number_of_stops; j++) { 

 

         double delta_x = fabs(Stops[i].x - Stops[j].x); 

         double delta_y = fabs(Stops[i].y - Stops[j].y); 

         double delta_z = fabs(Stops[i].z - Stops[j].z); 

 

         M[i][j] = delta_x + delta_y + delta_z; 

      } 

   } 

 

   double depot_x = depot_longitude * x_mult; 

   double depot_y = depot_latitude * y_mult; 

   double depot_z = elevation; 

 

   // Compute the route: 

 

   int visited[number_of_stops]; 

   for (int i = 0; i < number_of_stops; i++) { 

 

      visited[i] = 0; // False 

   } 

 

   // Find first stop: 

 

   int first_stop = 0; 

 

   double shortest_distance =  

 

      Stops[0].approximate_distance(depot_x, depot_y, 

depot_z); 

 

   for (int i = 1; i < number_of_stops; i++) { 

 

      double approx_distance =  

 

         Stops[i].approximate_distance(depot_x, depot_y, 

depot_z); 

 

      if (approx_distance <  shortest_distance) { 

 

         first_stop = i; 

         shortest_distance = approx_distance; 

      } 

   } 

 

   // Okay, first_stop is our first node to visit 

 

   int Route[number_of_stops]; 

 

   for (int i = 0; i < number_of_stops; i++) { 

 

      Route[i] = 0; 

   } 

 

   Route[0] = first_stop; 

   visited[first_stop] = 1; // True 

 

   int previous_stop = first_stop; 

 

   // Find the remaining stops: 

 

   int first_j = 0;  

 

   for (int i = 1; i < number_of_stops; i++) { 

 

      int found_first = 0; // False 

 

      while (!found_first) { 

 

         if (!(visited[first_j])) found_first = 1; // True 

         else first_j++; 

      } 

 

      double shortest_distance = M[previous_stop][first_j]; 

 

      int next_stop = first_j; 

 

      for (int j = (first_j + 1); j < number_of_stops; j++) { 

 

         if (!visited[j]) { 

 

            double approx_distance = M[previous_stop][j]; 

 

            if (approx_distance < shortest_distance) { 

 

               shortest_distance = approx_distance; 

               next_stop = j; 

            } 

         } 

      }  

       

      Route[i] = next_stop; 

      visited[next_stop] = 1; // True 

      previous_stop = next_stop; 

 

   } 

 

   // Output route to standard output: 

 

   std::cout << "Visit 

#,OBJECTID,Name,Duration,RouteName,Sequence,CurbAp

proach,Driver,POINT_X,POINT_Y,Zone2020" << std::endl; 

 

   for (int i = 0; i < number_of_stops; i++) { 
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      std::cout << i << ','; 

      Stops[Route[i]].output_row(); 

   } 

 

   delete[] Stops; 

   for (int i = 0; i < number_of_stops; i++) { 

       delete[] M[i]; 

   } 

   delete[] M; 

} 
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