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Abstract: Viscosity’s implicit algorithm for finding a common element of the set of fixed points for nonlinear operators and
the set of solutions of variational inequality problems have been investigated by many authors in different settings in Hilbert and
Banach space. In most cases, they consider the following study of viscosity implicit double midpoint, generalized viscosity in
the class of nonexpansive and asymptotically nonexpansive mappings. The implicit midpoint rule can effectively solve ordinary
differential equations. Meanwhile, many authors have used viscosity iterative algorithms for finding common fixed points for
nonlinear operators and solutions of variational inequality problems. Recently, the convergence rate and comparison viscosity
implicit iterative algorithm has been studied widely. Under suitable conditions imposed on the control parameters, it is shown
in this paper that certain two implicit iterative sequences {ωn} and {ξn} converge to the same fixed point of an asymptotically
nonexpansive mapping in Hilbert spaces without comparison. It is also proven that {ωn} and {ξn} converge strongly to the same
solution, which also solves the variational inequality problem. The results presented in this paper improve and extend some
recent corresponding results in the literature.
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1. Introduction
Considering H to be a real Hilbert space and E be a

nonempty closed convex subset of H, T : E → E be a
nonexpansive mapping with a nonempty fixed point set F(T ).
The following iteration method is known as the viscosity
approximation method: for arbitrarily chosen ξ0 ∈ E

ξn+1 = αnψ(ξn) + (1− αn)T ξn, n ≥ 0, (1)

where ψ : E → E is a contraction and {αn} is a sequence
in (0, 1). Under some certain conditions, the sequence {ξn}
converges strongly to a point z ∈ F (T ) which solves the
variational inequality (V I)

〈(I − ψ)z, ξ − z〉 ≥ 0, ξ ∈ F (T ), (2)

where
I is the identity of H . Many authors studied iterative

sequence for the implicit midpoint rule because of it’s
significant for solving ordinary differential equations; see [6]-
[2], John T [8], Mendy et al [9], [7] and the references therein.
Recently, Xu et al [3], Aibinu et al, [1] proposed the following
viscosity implicit midpoint rule (VIMR) for nonexpansive
mappings:

ξn+1 = αnψ(ξn) + (1− αn)T
(ξn + ξn+1

2

)
, n ≥ 0, (3)

In 2015, Ke and Ma [13] proposed the generalized viscosity
implicit rules of nonexpansive mappings in Hilbert spaces as
follows:
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ξn+1 = αnψ(ξn) + (1− αn)T (δnξn + (1− δn)ξn+1), n ≥ 0, (4)

and

ωn+1 = αnψ(ωn) + βnωn + γnT (δnωn + (1− δn)ωn+1), n ≥ 0, (5)

They proved that the generalized viscosity implicit rules 4 and 5 converge strongly to a fixed point of T under certain
assumptions, which also solved the V I(2).

In 2016, motivated by the work of Xu [3], Zhao et al [6] proposed the following implicit midpoint rule for asymptotically
nonexpansive mappings:

ξn+1 = αnψ(ξn) + (1− αn)T n
(ξn + ξn+1

2

)
, n ≥ 0, (6)

where T is an asymptotically nonexpansive mapping. They proved that the sequence {ξn} converges strongly to a fixed point of
T , which, in addition, also solves the V I(2). If in equations 4 and 5, letting δn = 1

2 , then we have equation 6, if T n = T in an
nonexpansive mapping, and equation 7 respectively.

ωn+1 = αnψ(ωn) + βnωn + γnT n
(ωn + ωn+1

2

)
, n ≥ 0, (7)

In 2017, He et al [12] studied the following iterative

ξn+1 = αnψ(ξn) + (1− αn)T n(βnξn + (1− βn)ξn+1), n ≥ 0 (8)

in the setting of a Hilbert space and proved that the sequence
{ξn} converges strongly to ξ∗ = PF (T )ψ(ξ∗) which is also
the unique solution of the following V I

〈(I − ψ)ξ, v − ξ〉 ≥ 0,∀v ∈ F (T ) (9)

Question 1.1. Its now so important to asked this question.
It is possible for the two iterative mentioned in 4 and 5
to be converge to the same fixed point of asymptotically
nonexpansive mappings in Hilbert space and will be the
solution to the variational inequality?

Under suitable conditions imposed on the control
parameters, the analytical proof is given to show that the two
sequences converge to the same fixed point of asymptotically

nonexpansive mappings.It is therefore, of interest to give
affirmative answer to the question. Moreover, it is shown
analytically that the sequences 4 and 5 converges to the same
fixed point of T .

The proved is been divided into different steps in section
three. These results are improvement and extension of some
recent corresponding results announced.

2. Preliminaries

In the sequel, we always assume that H is a real Hilbert
space and E is a nonempty, closed, and convex subset of H .

Definition 2.1. A mapping T : E → E is said to be:
a) nonexpansive if

‖T ξ − T ω‖ ≤ ‖ξ − ω‖∀ξ, ω ∈ E; (10)

b) asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with lim
n→∞

kn = 1 such that

‖T nξ − T nω‖ ≤ kn‖ξ − ω‖∀ξ, ω ∈ E and ∀n ∈ N; (11)

c) contraction if there exists the contractive constant α ∈ [0, 1) such that

‖T ξ − T ω‖ ≤ λ‖ξ − ω‖ ∀ξ, ω ∈ E; (12)

Lemma 2.1. (The demiclosedness principle [5]) . Let H be
a Hilbert space, E be a nonempty closed convex subset of H ,
and T : E → E be a asymptotically nonexpansive mapping
with Fix(T ) 6= ∅. If {ξn} is a sequence in E such that {ξn}
weakly converges to u and {(I −T )ξn} converges strongly to
0, then ξ = T (ξ)

Lemma 2.2. [4]). Assume that {θn} is a sequence of
nonnegative real numbers such that

θn+1 ≤ (1− ηn)θn + δn

for all n ∈ N, where {ηn} ⊆ (0, 1) and {δn} ⊆ R are two
sequences satisfying the following conditions:
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(i)
∞∑

n=1

ηn =∞

(ii) lim sup
n→∞

δn
ηn
≤ 0 or

∞∑
n=1

|δn| <∞

Then lim
n→∞

θn = 0

Then the sequence {θn} converges to 0.

3. Main Result
We now prove the following new result.

Theorem 3.1. Let E be a nonempty closed convex subset a real Hilbert space H, T : E → E be asymptotically nonexpansive
mappings with the same sequence {kn} ⊆ [1,∞) such that limn→∞ kn = 1, F ix(T ) 6= ∅ and ψ : E → E be a contraction
mapping with the contractive constant λ ∈ [0, 1). Define two sequences {ξn} and {ωn} in E as follows:

ξn+1 = αnψ(ξn) + (1− αn)T n(δnξn + (1− δn)ξn+1), n ≥ 0, (13)

and

ωn+1 = αnψ(ωn) + βnωn + γnT n(δnωn + (1− δn)ωn+1), n ≥ 0, (14)

where αn, βn, γn, δn ∈ (0, 1) satisfying the following conditions,
A1 αn + βn + γn = 1

A2
∞∑

n=0

αn =∞

A3 0 < ε ≤ δn ≤ δn+1 < 1 for all n ≥ 0
A4 lim

n→∞
γn = 1 and lim

n→∞
αn = lim

n→∞
βn = lim

n→∞
δn = 0

Then the sequence {ξn} and {ωn} strongly converges to a common fixed point p of T , which is also the unique solution of the
following variational inequality

〈(I − ψ)η, q − η〉 ≥ 0 q ∈ F (T ), η ∈ H. (15)

Remark 3.1. The real sequences that satisfies the above conditions are αn =
1

n
, βn =

1

n
and γn = 1− 2

n
Proof. Step 1 Letting p ∈ Fix(T ),then we will show that both the sequence 13 and 14 are both bounded.

‖ωn+1 − p‖ = ‖αnψ(ωn) + βnωn + γnT n(δnωn + (1− δn)ωn+1)− p‖
≤ αn‖ψ(ωn)− ψ(p)‖+ αn‖ψ(p)− p‖+ βn‖ωn − p‖
+ γnδn‖T nωn − T np‖+ γn(1− δn)‖T nωn+1 − T np‖ (16)
≤ αnλ‖ωn − p‖+ αn‖ψ(p)− p‖+ βn‖ωn − p‖
+ γnδnkn‖ωn − p‖+ γn(1− δn)kn‖ωn+1 − p‖

From the last inequality we have the following

‖ωn+1 − p‖ ≤
(λαn + βn + γnknδn)

1− γnkn(1− δn)
‖ωn − p‖+

αn

1− γnkn(1− δn)
‖ψ(p)− p‖ (17)

Since γn, δn ∈ (0, 1), 1− γnkn(1− δn) > 0 and lim
n→∞

kn = 1. From the condition (A1), we have

‖ωn+1 − p‖ ≤ 1− 1− λαn − βn − γn
1− γn(1− δn)

‖ωn − p‖+
βn

1− γn(1− δn)
‖ψ(p)− p‖

]
‖ωn+1 − p‖ ≤ 1− αn(1− λ)

1− γn(1− δn)
‖ωn − p‖+

αn(1− λ)

1− γn(1− δn)

1

(1− λ)
‖ψ(p)− p‖

]
‖ωn+1 − p‖ ≤ max

{
‖ωn − p‖,

1

(1− λ)
‖ψ(p)− p‖

}
Therefore by mathematical induction, we have

‖ωn+1 − p‖ ≤ max
{
‖ω0 − p‖,

1

(1− λ)
‖ψ(p)− p‖

}
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Now, from 13, we have

‖ξn+1 − p‖ = ‖αnψ(ξn) + (1− αn)T n(δnξn + (1− δn)ξn+1)− p‖
≤ αn‖ψ(ξn)− ψ(p)‖+ αn‖ψ(p)− p‖
+ (1− αn)δn‖T nξn − T np‖+ (1− αn)(1− δn)‖T nξn+1 − T np‖
≤ αnλ‖ξn − p‖+ αn‖ψ(p)− p‖
+ (1− αn)δnkn‖ξn − p‖+ (1− αn)kn(1− δn)‖ξn+1 − p‖

(18)

From the last inequality we have the following

‖ξn+1 − p‖ ≤
(λαn + (1− αn)knδn)

1− (1− αn)kn(1− δn)
‖ξn − p‖+

αn

1− (1− αn)kn(1− δn)
‖ψ(p)− p‖

(19)

Since δn ∈ (0, 1), [1− (1− αn)kn(1− δn)] > 0 and lim
n→∞

kn = 1, we have

‖ξn+1 − p‖ ≤ 1− ((1− λ)αn)

δ + (1− δn)αn
‖ξn − p‖+

αn

δ + (1− δn)αn
‖ψ(p)− p‖

≤ max
{
‖ξn − p‖,

1

(1− λ)
‖ψ(p)− p‖

}
(20)

Therefore by mathematical induction, we can see that both the sequences {ξn}, {ωn} are bounded and also
{ψ(ωn)} and {ψ(ξn)}.

Step 2 We now prove that both the sequence {ξn}, {ωn} converges p if and only if {ξn+1}, {ωn+1} converges to p as n → ∞.
That is lim

n→∞
‖ξn+1 − p‖ = lim

n→∞
‖ωn+1 − p‖ = 0

‖ωn+1 − p‖ = ‖ωn+1 − T np+ T np− p‖
= ‖αnψ(ωn) + βnωn + γnT n(δnωn + (1− δn)ωn+1)− (βn + αn + γn)T np‖+ ‖p− T np‖
≤ αn‖ψ(ωn)− T np‖+ βn‖ωn − p‖+ βn‖p− T np‖
+ γnδnkn‖ωn − p‖+ γnδnkn‖p− T np‖+ γnkn(1− δn)‖ωn+1 − p‖
+ γnkn(1− δn)‖p− T np‖+ ‖p− T np‖ (21)

≤ αn

1− γnkn(1− δn)
‖ψ(ωn)− T np‖+

(βn + γnδnkn)

1− γnkn(1− δn)
‖ωn − p‖+

(βn + γnkn + 1)

1− γnkn(1− δn)
‖p− T np‖

≤ αn

1− γnkn(1− δn)
‖ψ(ωn)− T np‖+

(βn + γnδnkn)

1− γnkn(1− δn)
‖ωn − p‖+

(βn + γnkn + 1)

1− γnkn(1− δn)
‖p− T np‖

Again from 13, we have

‖ξn+1 − p‖ = ‖ξn+1 − T np+ T np− p‖
= ‖αnψ(ξn) + (1− αn)T n(δnξn + (1− δn)ξn+1)− T np+ T np− p‖
≤ αn‖ψ(ξn)− T np‖+ (1− αn)δn‖T nξn − T np‖+ (1− αn)(1− δn)‖T nξn+1 − T np‖+ ‖T np− p‖
≤ αn‖ψ(ξn)− T np‖+ (1− αn)δnkn‖ξn − p‖+ (1− αn)(1− δn)kn‖ξn+1 − p‖+ ‖T np− p‖

≤ αn

1− (1− αn)(1− δn)kn
‖ψ(ξn)− T np‖ (1− αn)δnkn

1− (1− αn)(1− δn)
‖ξn − p‖

+
1

1− (1− αn)(1− δn)kn
‖T np− p‖ (22)

Since lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

δn = 0, and with the fact that ‖T np − p‖ ≤ kn‖p − p‖ = 0, we then conclude that

from 21 and 22, lim
n→∞

‖ξn+1− p‖ = lim
n→∞

‖ωn+1− p‖ = 0. This implies that lim
n→∞

‖ξn− p‖ = lim
n→∞

‖ωn− p‖ = 0. Then
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its clear that

‖ωn+1 − ξn+1‖ = ‖ωn+1 − p+ p− ξn+1‖
≤ ‖ωn+1 − p‖+ ‖p− ξn+1‖ (23)

Then taking limits on both sides, we have

lim
n→∞

‖ωn+1 − ξn+1‖ ≤ lim
n→∞

‖ωn+1 − p‖+ lim
n→∞

‖p− ξn+1‖ = 0 (24)

This implies that
lim
n→∞

‖ωn − ξn‖ ≤ lim
n→∞

‖ωn − p‖+ lim
n→∞

‖p− ξn‖ = 0 (25)

Next, we shown that the implicit iterative sequences 13 and 14 converge to the same fixed point of a asymptotically
nonexpansive mapping T .

‖ωn+1 − ξn+1‖ = ‖αnψ(ωn) + βnωn + γnT n(δnωn + (1− δn)ωn+1)

−
[
αnψ(ξn) + (1− α)T n(δnξn + (1− δn)ξn+1)

]
‖

≤ ‖αnψ((ωn)− ψ(ξn)) + βn(ωn − T n(δnξn + (1− δn)ξn+1))

+ γn[T n(δnωn + (1− δn)ωn+1)− T n(δnξn + (1− δn)ξn+1)‖
≤ αn‖ψ(ωn)− ψ(ξn)‖+ βn‖ωn − T n(δnξn + (1− δn)ξn+1)‖
+ γn[‖T n(δnωn + (1− δn)ωn+1)− T n(δnξn + (1− δn)ξn+1)‖]
≤ αnλ‖ωn − ξn‖+ βn‖ωn − T n(δnξn + (1− δn)ξn+1)‖
+ γnkn[‖δnωn + (1− δn)ωn+1 − δnξn − (1− δn)ξn+1‖]
≤ αnλ‖ωn − ξn‖+ βn‖ωn − T n(δnξn + (1− δn)ξn+1)‖
+ γnknδn‖ωn − ξn‖+ γnkn(1− δn)‖ωn+1 − ξn+1‖ (26)

‖T n(δnξn + (1− δn)ξn+1)‖ = ‖T n(δnξn + (1− δn)ξn+1)− T np+ T np‖
≤ ‖T n(δnξn + (1− δn)ξn+1)− T np‖+ ‖T np− p‖+ ‖p‖
≤ δn‖T n(ξn − p)‖+ (1− δn)‖T n(ξn+1 − p)‖
+ ‖T np− p‖+ ‖p‖
≤ δnkn‖ξn − p‖+ (1− δn)kn‖ξn+1 − p‖+ ‖p‖
≤ δnkn‖ξn − p‖+ (1− δn)kn‖ξn+1 − p‖+ ‖p‖

Again since, from induction 20, the sequence {ξn} are bounded, then it follows that {ωn} and {T n(δnξn + (1 −
δn)ξn+1)} are both bounded. Now setting Q = max ‖ωn − T n(δnξn + (1− δn)ξn+1)‖ in 26, we have the following

‖ωn+1 − ξn+1‖ ≤
(αnλ+ γnknδn)

1− γnkn(1− δn)
‖ωn − ξn‖+

Qβn
1− γnkn(1− δn)

≤
(

1− βn + (1− λ)αn

1− γnkn(1− δn)

)
‖ωn − ξn‖+

Qβn
1− γnkn(1− δn)

≤
(

1− (1− λ)αn

1− γnkn(1− δn)

)
‖ωn − ξn‖+

Qβn
1− γnkn(1− δn)

≤
(

1− (1− λ)αn

1− γnkn(1− δn)

)
‖ωn − ξn‖+

Qβn(1− λ)αn

1− γnkn(1− δn)(1− λ)αn

With definition that the lim
n→∞

αn = lim
n→∞

βn = 0, we then conclude that from 25, that lim
n→∞

‖ωn+1 − ξn+1‖ = 0. This
implies that the sequences 13 and 14 converges to the same fixed point.
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Step 3 We now prove that the sequence {ωn+1} converges to {ωn} as n→∞. That is lim
n→∞

‖ωn+1 − ωn‖ = 0

‖ωn+1 − ωn‖ = ‖ωn+1 − T nωn + T nωn − ωn‖
≤ ‖αnψ(ωn) + βnωn + γnT n(δnωn + (1− δn)ωn+1)− (βn + αn + γn)T n‖+ ‖T nωn − ωn‖
≤ ‖αnψ(ωn)− αnT nωn‖+ ‖βnωn − βnT nωn‖+ γn(1− δn)‖T nωn+1 − T nωn‖+ ‖T nωn − ωn‖
≤ αn‖ψ(ωn)− T nωn‖+ βn‖ωn − T nωn‖+ γn(1− δn)kn‖ωn+1 − ωn‖+ ‖T nωn − ωn‖

‖ωn+1 − ωn‖ ≤
αn

1− γn(1− δn)kn
‖ψ(ωn)− T nωn‖+

βn + 1

1− γn(1− δn)kn
‖ωn − T nωn‖ (27)

‖T nωn − ωn‖ ≤ kn‖ωn − ωn‖ = 0 (28)

Let M :> max
{
‖ψ(ωn)− T nωn‖

}
, then we have

‖ωn+1 − ωn‖ ≤
αnM

1− γn(1− δn)kn
+

βn + 1

1− γn(1− δn)kn
‖ωn − T nωn‖ (29)

From 29 and with the definition of {αn} in 3.1 A4, we can see that ‖ωn+1 − ωn‖ → 0. This means that ωn+1 →
ωn or lim

n→∞
‖ωn+1 − ωn‖ = 0

With the same computational, with the definition of {αn} in 3.1 A4, we can see that ‖ξn+1 − ξn‖ → 0. This means that
ξn+1 → ξn or lim

n→∞
‖ξn+1 − ξn‖ = 0

Again we then show that lim
n→∞

∥∥∥ωn − T (ωn)
∥∥∥ = 0. Estimating as follows we have

‖ωn − T nωn‖ = ‖ωn − ωn+1 + ωn+1 − T nωn‖
≤ ‖ωn − ωn+1‖+ ‖ωn+1 − T nωn‖

≤ ‖ωn − ωn+1‖+ ‖αnψ(ωn) + βnωn + γnT n(δnωn + (1− δn)ωn+1)− T nωn

∥∥∥
≤ ‖ωn − ωn+1‖+ αn‖ψ(ωn)− T nωn‖+ βn‖ωn − T nωn‖+ γn(1− δn)kn‖ωn+1 − ωn‖

≤ 1 + γn(1− δn)kn
1− βn

‖ωn − ωn+1‖+
αn

1− βn
‖ψ(ωn)− T nωn‖

From 29 and with the definition of {αn} in A4 of 3.1 , we can see that

lim
n→∞

‖ωn − T nωn‖ = 0

Using the fact that

lim
n→∞

‖ωn − T (ωn)‖ ≤ lim
n→∞

‖ωn − T nωn‖+ lim
n→∞

‖T nωn − T ωn‖

≤ lim
n→∞

‖ωn − T nωn‖+ lim
n→∞

k1‖T n−1ωn − ωn‖ (30)

Proving that lim
n→∞

‖Tn−1ωn − ωn‖ = 0, we have the following estimation

‖T n−1(ωn)− ωn‖ = ‖ωn − T n−1(ωn)‖
= ‖αn−1ψ(ωn−1) + βn−1ωn−1 + γn−1T n−1(δn−1ωn−1 + (1− δn−1)ωn

−(βn−1 + αn−1 + γn−1)T n−1ωn‖
≤ αn−1‖ψ(ωn−1)− T n−1ωn‖+ βn−1‖ωn−1 − T n−1ωn‖
+ γn−1(1− δn−1)k1‖ωn − ωn−1‖.
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With the assumption of {αn}, {βn} and lim
n→∞

‖ωn+1 − ωn‖ = 0, we can conclude that

lim
n→∞

‖T n−1ωn − ωn‖ = 0 (31)

Therefore from 30

lim
n→∞

‖ωn − T (ωn)‖ ≤ lim
n→∞

‖ωn − T nωn‖+ lim
n→∞

k1‖T n−1ωn − ωn‖ = 0

With the same computational, and assumption of {αn}, {βn} and lim
n→∞

‖ξn+1 − ξn‖ = 0, we can conclude that

lim
n→∞

‖T n−1ξn − ξn‖ = 0 (32)

and also

lim
n→∞

‖ξn − T (ξn)‖ ≤ lim
n→∞

‖ξn − T nξn‖+ lim
n→∞

k1‖T n−1ξn − ξn‖ = 0 (33)

Step 4 In this step, we will show that τω(xn) ⊆ Fix(T ), where
τω(ξn) := {ξ ∈ H : there exist a subsequence of {ξn} converges weakly to ξ}.
Suppose that ξ ∈ wω(xn). Then there exists a subsequence {ξni

} of {ξn} such that ξni
⇀ ξ as i → ∞ . From 33, we

have
lim
i→∞

∥∥∥(I − T )ξni

∥∥∥ = lim
n→∞

∥∥∥ξni
− T ξni

∥∥∥ = 0.

This implies that {(I − T )ξni
} converges strongly to 0. By using Lemma 2.1, we have T ξ = ξ, and so ξ ∈ Fix(T ).

Step 5 Now from the inequality 43, we will show that

lim sup
n→∞

〈p− ψ(p), p− ωn〉 ≤ 0, (34)

where p ∈ F (T ) is the unique fixed point of PF (T ) ◦ ψ, that is, p = qF (T )(ψ(z)). Since {ωn} is bounded, there exists a
subsequence {ωni

} of {ωn} such that ωni
⇀ ω as i→∞ for some ω ∈ H and

lim sup
n→∞

〈p− ψ(p), p− ωn〉 = lim
i→∞
〈p− ψ(p), p− ωni

〉 (35)

From Step 4, we get y ∈ F (T ). By using inequality 2.1, we obtain

lim sup
n→∞

〈p− ψ(p), p− ωn〉 = lim
i→∞
〈p− ψ(p), p− ωni

〉

= 〈p− ψ(p), p− y〉 ≤ 0

Again

lim sup
n→∞

〈p− ψ(p), p− ξn〉 ≤ 0, (36)

where p ∈ F (T ) is the unique fixed point of PF (T ) ◦ ψ, that is, p = qF (T )(ψ(z)). Since {ξn} is bounded, there exists a
subsequence {ξni} of {ξn} such that ξni ⇀ ξ as i→∞ for some ξ ∈ H and

lim sup
n→∞

〈p− ψ(p), p− ξn〉 = lim
i→∞
〈p− ψ(p), p− ξni〉 (37)

From Step 4, we get x ∈ F (T ). By using inequality 2.1, we obtain

lim sup
n→∞

〈p− ψ(p), p− ξn〉 = lim
i→∞
〈p− ψ(p), p− ξni

〉

= 〈p− ψ(p), p− ξ〉 ≤ 0

This complete the proof.

Theorem 3.2. Let E be a nonempty closed convex subset a real Hilbert space H, T : E → E be asymptotically nonexpansive
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mappings with the same sequence {kn} ⊆ [1,∞) such that limn→∞ kn = 1, F ix(T ) 6= ∅ and ω be a constant. Define two
sequences {ξn} and {ωn} in E as follows:

ξn+1 = αnΞ + (1− αn)T n(δnξn + (1− δn)ξn+1), n ≥ 0, (38)

and

ωn+1 = αnκ+ βnωn + γnT n(δnωn + (1− δn)ωn+1), n ≥ 0, (39)

where αn, βn, γn, δn ∈ (0, 1) satisfying conditions A1−A4 and ψ(ξn) = Ξ and ψ(ωn) = κ, then the sequence {ξn} and {ωn}
strongly converges to a common fixed point p of T , which is also the unique solution of the following variational inequality

〈(I − ψ)η, q − η〉 ≥ 0 q ∈ F (T ), η ∈ H. (40)

Taking δn = 0
The following corollaries holds:
Corollary 3.1. Let E be a nonempty closed convex subset a real Hilbert space H, T : E → E be asymptotically nonexpansive

mappings with the same sequence {kn} ⊆ [1,∞) such that limn→∞ kn = 1, F ix(T ) 6= ∅ and ψ : E → E be a contraction
mapping with the contractive constant λ ∈ [0, 1). Define two sequences {ξn} and {ωn} in E as follows:

ξn+1 = αnψ(ξn) + (1− αn)T n(ξn+1), n ≥ 0, (41)

and

ωn+1 = αnψ(ωn) + βnωn + γnT n(ωn+1), n ≥ 0, (42)

where αn, βn, γn ∈ (0, 1) satisfying conditions A1 − A4 with δn = 0, then the sequence {ωn} and {ξn} strongly converges to
a common fixed point p of T , which is also the unique solution of the following variational inequality

〈(I − ψ)η, q − η〉 ≥ 0 q ∈ F (T ), η ∈ H. (43)

4. Conclusion

In this paper, we have obtained the strong convergence of a
viscosity asymptotically nonexpansive approximation method
for finding a common fixed point. Two implicit iterative
algorithms were stated, and it was proven that they all converge
to the same fixed point through asymptotically nonexpansive
mappings in Hilbert space under certain conditions, and an
affirmative result was obtained which answered the question.
It was also proven that the results obtained here converges to
the same unique solution to both the iterative algorithm, which
also solved the variational inequality stated in the theorem.
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