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Abstract: Numerov method is one of the most widely used algorithms in physics and engineering for solving second order 

ordinary differential equations. The numerical solution of this method has been improved by different authors by using 

different starting formulas but in recent years, there has been a dearth in that trend which informed the introduction of a two-

step third-derivative block method in this paper to start Numerov method with the aim of getting better results than previous 

approaches. The selection of the steplength as two is to have a uniform basis for comparison with other existing two-step 

starting formula in literature. Although, the accuracy of the two-step method adopted in this article was enhanced by the 

introduction of higher derivative. Hence, this paper presents a two-step third-derivative block method which displayed better 

accuracy when adopted for starting Numerov method as shown in the numerical results. Thus, the third-derivative block 

method, as a starting formula, is seen to be quite suitable for starting Numerov method when applied to physical models.  
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1. Introduction 

This paper considers the solution of the second order 

initial value problem of the form 

( ) ( ) ( )'' , ,  ,  'y f x y y a y aα β= = =       (1) 

where α  and β  are constants. 

Previously, the differential equations of the form (1) above 

have been solved by reduction to a system of two first order 

initial value problems. However, this approach involves both 

human and computational burden and hence the need to 

introduce direct numerical methods for the solution of (1) 

and the Numerov method is one of such direct methods. 

The Numerov method as given below, 

( )
2

2 1 1 22 10 10
12

n n n n n n

h
y y y f f f+ + + += − + + +   (2) 

is a very efficient two-step method for directly solving 

second-order differential equations of the form (1) and a 

suitable example is the Schrodinger equation as discussed by 

[7, 15, 17], and the Poisson equation as discussed in [11]. 

Also, some studies have shown that Numerov-type methods 

also being applied 2D Quasi-linear Elliptic Boundary Value 

Problems [10], 2D biharmonic and triharmonic equations [9] 

amongst many others. Hence, the importance of the Numerov 

method cannot be overemphasized and the presentation of a 

formula that will adequately start it to give better accuracy is 

an area of interest which is the aim of this paper. 

The Numerov method has an order of accuracy of four 

with a corresponding error constant of 1
6 240

C = − . In the 

paper by [1], it was stated that this level of accuracy that the 

Numerov method possesses together with its application to 

(1) resulting in a tridiagonal set of algebraic equations has 

made the method popular. However, the question on how to 

adequately start the method and the quest to discover a better 

starting value dates back to the work of [6]. [6] observed that, 

for the application of the Numerov method in solving (1), 

there is a need for two previous values of the solution in 

order to calculate a new one. Hence, [6] adopted a starting 

formula of order three obtained using Taylor series approach. 

[16] also developed a parallel algorithm with the aim of 

increasing the accuracy of the Numerov method. This 
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algorithm was further extended by [1] who presented a 

formula for starting the Numerov method more accurately 

using an order four hybrid method developed based on 

multistep collocation approach to start the method. However, 

since the work of [1], there has been a dearth to the 

presentation of algorithms to adequately start the Numerov 

method which presents the area of interest in this paper. 

The Numerov method, as widely known, is a two-step 

method and it is suitable to develop a two-step method to 

adequately start it with better accuracy. However, there is 

need to boost the two-step starting method with the 

introduction of higher derivative which gives rise to the two-

step third-derivative method. 

It is observed that very few contributions in literature exist 

on the application of higher derivative method; however, this 

method dates back to the early 40s as discussed by [3]. In his 

work, the author stated some particular cases of the 

introduction of second derivative in a first order linear 

multistep method which includes the method of order four 

considered by [12] and in connection with stiff equations by 

[2] amongst others. [3] developed a second derivative 

method to solve stiff first order ordinary differential 

equations and stated that the motivation for introducing the 

second derivative is to generate results with better accuracy 

when the method is applied to solve stiff first order initial 

value problems. 

Similarly, in recent works, [5] developed a third-derivative 

method (TDM) to solve second order initial and boundary 

value problems and also, [14] developed a fourth derivative 

method (FDM) to solve third order boundary value problems. 

In their separate works, the introduction of higher derivative 

gave results with very good accuracy when compared with 

exact solution of the differential equation considered. Hence, 

the motivation to adopt a two-step higher derivative method 

for starting the Numerov method with expected accuracy. 

This paper presents a third-derivative block method which 

is also a two-step method as the Numerov method for starting 

the Numerov method and obtaining better level of accuracy 

than previously proposed starting methods. The outline for 

this article is as follows: the derivation of the third-derivative 

block method is shown in Section 2 and its numerical results 

are shown in Section 3, the discussion of results is given in 

Section 4 and the article is concluded in Section 5. 

2. Derivation of the Third-Derivative 

Block Method  

The discrete scheme for the third-derivative block method 

is derived from the linear multistep method form given below 

1 2 2

2

0 0 0

n j n j j n j j n j

j j j

y y f gα β λ+ + + +
= = =

= + +∑ ∑ ∑   (3) 

where 

( )', ,n j n j n j n jf f x y y+ + + += , 

( ) ( )( ), , '
n j

df x y x y x
g

dx
+ = , 

which by notation is 

( )', ,n j n j n j n jg g x y y+ + + += . 

Expanding individual terms in (3) using Taylor series 

expansion and substituting the expansions back in (3) gives 

the following written in matrix form as below (coefficients of 
( )m

ny x  are equated) 

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

3

4 2 2

5 3 3 2 2

6 4 4 3 3

7 5 5 4 4

0

1

2!

0

3!
1

2

24! 2! 2!

2 2
0

5! 3! 3! 2! 2!

2 2 1

6! 4! 4! 3! 3!

22 2

7! 5! 5! 4! 4!

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 1 1 0 0 0

0 0 2 1 1 1

0 0 0 2

0 0 0

0 0 0

0 0 0

h

h

h h h

h h h h h

h h h h h

h h h h h

h

h h

h h

α

α

β

β

β

λ

λ

λ

 
  
  
  
  
  
  
  
  
  
 
 
  

 

( )

( )

( )

( )

( )

( )

2

3

4

5

6

7

2

2!

2

3!

2

4!

2

5!

2

6!

2

7!

1

2

h

h

h

h

h

h

h

=

 
 
 
 
 
 
 
 
 
 

  
  

 
 

. 

The values of 0 1 0 1 2 0 1,  ,  ,  ,  ,  ,  α α β β β λ λ  and 2λ  are 

obtained using matrix inverse method as given below 

( )

( )2 2 2 3 3

0 1 0 1 2 0 1 2

2 11 2
15 15 15 40 40

, , , , , , ,

1, 2, , , , ,0, .

T

T
h h h h h

α α β β β λ λ λ

= − −
    (4) 

Substituting (4) in (3) gives the discrete scheme 

( )
( )

2

3

2 1 1 215

240

2 2 11 2

.

h
n n n n n n

h
n n

y y y f f f

g g

+ + + +

+

= − + + + +

+ −
  (5) 

The additional methods needed to obtain the desired block 

are to be obtained from 

1 2 2

0 0 0

1 2 2

1

0 0 0

1 2 2

2

0 0 0

'

'

'

n j n j j n j j n j

j j j

n j n j j n j j n j

j j j

n j n j j n j j n j

j j j

y y f g

y y f g

y y f g

α β λ

α β λ

α β λ

+ + +
= = =

+ + + +
= = =

+ + + +
= = =

= + +

= + +

= + +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

,  (6) 

where each of the terms in (6) are similarly expanded using 

Taylor series expansion and substituting these expansions 

back in (6) gives a series of linear equations system that can 

be solved using matrix inverse approach to obtain the 

unknown derivatives.  
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The substitution of the obtained coefficients into (6) provides 

the derivatives of the discrete scheme as presented below 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2

2

2

' 1
1 1 242

1 21680

' 1
1 1 1 21680

1 2840

' 1
2 1 1 270

1 21680

13 7

59 128 11 ,

187 616 37

16 76 5 ,

11 63 31

53 128 10 .

h
n n n n n nh

h
n n n

h
n n n n n nh

h
n n n

h
n n n n n nh

h
n n n

y y y f f f

g g g

y y y f f f

g g g

y y y f f f

g g g

+ + +

+ +

+ + + +

+ +

+ + + +

+ +

= − + + − − −

+ − + +

= − + + + +

+ − −

= − + + + +

+ + −

 (7) 

Combining the equations formulated in the discrete 

scheme derived in equation (5) together with the derivatives 

obtained in equation (7), gives an expression that can be 

presented in the following matrix form 

( )
( )

( )
( )

( )

2

3

2

2

1

1

2

'1

1

'1

2

1 215

240

' 1

1 242

1 21680

1

1 21680

840

2 1 0 0

0 0 0

0 1 0

0 0 1

2 11 2

13 7

58 128 11

187 616 37

16

n

nh

nh

nh

h

n n n n

h

n n

h

n n n n nh

h

n n n

h

n n n nh

h

n

y

y

y

y

y f f f

g g

y y f f f

g g g

y f f f

g

+

+

+

+

+ +

+

+ +

+ +

+ +

−

−

−

−

− + + +

+ −

− − + − − −

+ − + +
=

− + + +

+ −

  
  
  
  
  

  

( )
( )

( )2

1 2

1

1 270

1 21680

76 5

11 63 31

53 128 10

n n

h

n n n nh

h

n n n

g g

y f f f

g g g

+ +

+ +

+ +

−

− + + +

+ + −

 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

Adopting matrix inverse method, 
1x A B−=  where 

1

1

1

2 1 0 0

0 0 0

0 1 0

0 0 1

h

h

h

A

−

−

−

−

 
 
 =
 
 
 

, 

( )
( )

( )
( )

( )
( )

( )

2

3

2

2

2

1 215

240

' 1

1 242

1 21680

1

1 21680

1 2840

1

1 270

11680

2 11 2

13 7

58 128 11

187 616 37

16 76 5

11 63 31

53 128 10

h

n n n n

h

n n

h

n n n n nh

h

n n n

h

n n n nh

h

n n n

h

n n n nh

h

n n n

y f f f

g g

y y f f f

g g g
B

y f f f

g g g

y f f f

g g g

+ +

+

+ +

+ +

+ +

+ +

+ +

+ +

− + + +

+ −

− − + − − −

+ − + +
=

− + + +

+ − −

− + + +

+ + −( )
2

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 , 

' '

1 2 1 2, , ,
T

n n n nx y y y y+ + + + =    is determined and expressed 

as given below 

( )
( )

( )
( )

( )
( )

2

3

2

3

2

'

1 1 242

1 21680

'

2 1 2105

1 2105

' '

1 1 2240

1 2240

' '

2 15

13 7

59 128 11 ,

2 79 112 19

10 16 4 ,

101 128 11

13 40 3 ,

7 16

h
n n n n n n

h
n n n

h
n n n n n n

h
n n n

h
n n n n n

h
n n n

h
n n n n

y y hy f f f

g g g

y y hy f f f

g g g

y y f f f

g g g

y y f f

+ + +

+ +

+ + +

+ +

+ + +

+ +

+

= + + + +

+ − −

= + + + +

+ − −

= + + +

+ − −

= + +( ) ( )2

1 2 215
7 .h

n n nf g g+ + ++ + −

 (8) 

The block method in equation (8) is the new two-step 

third-derivative starting formula to implement the Numerov 

method. 

Note that the starting formula proposed by [6] takes the 

form given below 

( )2'

1 1 224
7 6h

n n n n n ny y hy f f f+ + += + + + − , (9) 

while the starting formula from [1] takes the form 

( )2

3

2

'

1 1 2360
89 186 128 33 .h

n n n n n nn
y y hy f f f f+ + ++

= + + + − +  (10) 

3. Basic Properties of the  

Third-Derivative Block Method 

The properties tested for the block method will be limited 

to the required to ensure convergence. This follows from the 

conditions stated by [4] that a linear multistep method is 

convergent if it is consistent and zero-stable. 

Definition 3.1. A linear multistep method is consistent if it 

has order 1p ≥   

The obtain the order of the third-derivative block method, 

the correctors in equation (8) above are considered and the 

linear operators defined as 

( )
( )

( )
( )

2

3

2

3

'

1 242

1 1

1 21680

'

1 2105

2 2

1 2105

13 7
,

59 128 11

2 79 112 19

10 16 4

h
n n n n n

n
h

n n n

h
n n n n n

n
h

n n n

y hy f f f
L y

g g g

y hy f f f
L y

g g g

+ +
+

+ +

+ +
+

+ +

 + + + +
= −  

+ − −  

 + + + +
= −  

+ − −  

 (11) 

following the concept of [8]. 

Expanding individual terms in (11) using Taylor series 

expansions defined as  
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( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

'

          '' ...
2!

'' '' ''' ...

''' ''' ...

n j n n n

n

n j n n n

iv

n j n n n

y y x jh y x jh y x

jh
y x

f y x jh y x jh y x

g y x jh y x jh y x

+

+

+

= + = +

+ +

= + = + +

= + = + +

 (12) 

Then substituting (12) in (11) and collecting like terms 

gives (11) in the form 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 1

2 0 1

' ... ...

' ... ...

pp

n p n

pp

n p n

L C y x C hy x C h y x

L C y x C hy x C h y x

= + + + +

= + + + +
 

To satisfy Definition 3.1, the block method has order 

1p ≥  if 3 0C =  since the error constant for the block 

method is expected at 2 0pC + ≠ . 

Thus for the expression of 1L ,  

0

1

2

3

1 1 0

1 1 0

1 13 7 1
0

2! 42 42 42

1 7 2 59 128 11
0

3! 42 42 1680 1680 1680

C

C

C

C

= − =
= − =

= − − − =

= − − − + + =

 

and for expression 2L   

0

1

2

2

3

3

1 1 0

2 2 0

2 79 112 19
0

2! 105 105 105

2 112 38 10 16 4
0

3! 105 105 105 105 105

C

C

C

C

= − =
= − =

= − − − =

= − − − + + =

 

Hence, the block method is consistent. 

Moving on to the property of zero-stability, first equation 

(11) is coined to take the form  

2 1 1 2 1 2nk n n nk n nkI Y A Z B F B F C G C G= + + + +
 

where 

1

2 1

2

' 13
1421

1' 79
105

7 591
142 42 1680

2 119 10112
2105 105 105

1

2

1 0 0 1
,  ,  ,  

0 1 0 1

0
,  ,  ,  

0

0
,  ,  ,  

0

,  

n

nk

n

nn

n n

nn

n

nk

n

n

n

n

y
I Y A

y

fy
Z B F

fy

f
B F C

f

g
G C

g

+

+

−−

+

+

−

    = = =    
    

     
= = =     

   

    
= = =    

    

 
= = 
 

128 11
11680 1680

16 4
2105 105

,  
n

nk

n

g
G

g

+

+

− −   
=   − −   

 

Now, the third-derivative block method is zero-stable if the 

roots of the characteristic polynomial ( ) 2 1p r rI A= −  are 

simple or less than one. Upon substitution,  

( ) ( )1 0 0 1
1

0 1 0 1
p r r r r

   
= − = −   

   
 

with roots 0,1r =  and this implies the block method is zero-

stable. 

On satisfying all criteria for convergence, the third-derivative 

block method is said to be convergent and hence suitable for 

application to solve ordinary differential equations. 

4. Numerical Results 

In this section, two second order ordinary differential 

equations will be considered, which are already solved in 

literature by past authors. Comparison will be made by 

computing the absolute value difference between the exact 

solution and the computed solution.  

Problem 1 

( ) ( )'' ,  0 1 ' 0 ,  0.1y y y y h= − = = =  

Exact Solution: ( ) cos siny x x x x= +  

Source:[1] 

Problem 2 

( ) ( )'' 100 ,  0 1,  ' 0 10,  0.01y y y y h= = = − =  

Exact Solution: ( ) 10 xy x e−=  

Source: [1] 

Table 1. Absolute Errors for Problem 1 where starting values are provided 

for the Numerov method using (8), (9) and (10). 

x  Starting Value (9) Starting Value (10) Starting Value (8) 

0.10 2.07E-07 6.92E-09 6.28E-13 
0.20 4.07E-07 1.76E-08 4.56E-09  

0.30 6.12E-07 1.62E-08 4.54E-09 
0.40 8.17E-07 4.37E-08 9.69E-09 

0.50 1.02E-06 1.20E-07 9.55E-09 

0.60 1.22E-06 1.87E-07 1.50E-08 
0.70 1.41E-06 3.07E-07 1.46E-08 

0.80 1.60E-06 4.19E-07 2.00E-08 

0.90 1.76E-06 5.79E-07 1.93E-08 
1.00  1.92E-06 7.27E-07 2.43E-08 

Table 2. Absolute Errors for Problem 2 where starting values are provided 

for the Numerov method using (8), (9) and (10). 

x   Starting Value (9) Starting Value (10) Starting Value (8) 

0.10  2.04E-07 4.96E-09 5.29E-13 
0.20 4.15E-07 1.49E-08 3.77E-09 

0.30  6.33E-07 6.68E-09 3.78E-09 
0.40  8.61E-07 2.40E-08 6.93E-09 

0.50  1.10E-06 6.77E-07  7.04E-09 

0.60  1.35E-06 1.08E-07  9.74E-09 
0.70  1.62E-06 1.77E-07  1.00E-08 

0.80  1.91E-06 2.32E-07  1.24E-08 

0.90  2.22E-06 3.13E-07  1.29E-08 
1.00 2.56E-06 3.95E-07 1.52E-08 
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5. Discussion of Results 

These numerical problems considered are the same 

considered in the work of [1]. With reference to Table 1 and 

Table 2 above, although the starting value adopted by [1] as 

seen in equation (10) is also a two-step method but with one 

hybrid point 3
2

, this two-step third-derivative method 

performs better having closer accuracy to the exact solution. 

In the same vein, the two-step third-derivative method also 

gives more accurate results than the two step starting formula 

by [6] as stated in equation (9). 

6. Conclusion 

This paper presents a new approach for starting Numerov 

method with better accuracy. The starting method presented 

by [1, 6] and the third-derivative method presented in this 

paper are all two-step methods which gives a good basis for 

the comparison of these starting values. However, from the 

results in Tables 1 and 2, the accuracy of the new starting 

formula on the Numerov block method shows better 

accuracy. Hence, this new starting method (third-derivative 

block method) is a better formula for adequately starting the 

Numerov method. 
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