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Abstract: In X-type bracing structures generally it does not take into account the structural contribution of the 

compressed member, since it is assumed to have a negligible compressive strength; it considered that the stretched member 

takes the total stress. In the following we analyse as the stretched diagonal, joined in the middle to the compressed one, 

improves the structural behaviour of this both with respect to the buckling in-plane or out-of -plane of the structure. First 

we recall the link between the Euler buckling load of a rod free and braced depending on the stiffness k of the brace. Then 

we analyse the in-plane and out-of-plane buckling of the rod and, for the two situations, we value the increase of the 

buckling load due to the elastic brace. In the end for both cases we show in what condition the stretched rod causes that the 

compressed one buckles in the second mode. 
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1. Introduction 

The bracing elements in steel structures have the twofold 

function to take the structural actions due to horizontal loads, 

such as wind and earthquake, and to ensure the overall 

stability of the building to which they belong, so you need to 

have a high stiffness to limit maximum displacements. 

To ensure bracing good stiffness and to control the 

weights lattice girders with X-type wall bracing are used. 

For these girders the structural contribution of the 

compressed rods is ignored, since it is assumed to have a 

negligible compressive strength, while the structural 

function is assigned only to the stretched one. 

The purpose of this paper is to define how the stretched 

rod contributes to reduce the compressed rod effective 

length, connected to it, to increase its Euler buckling load 

and therefore the possibility of the compressed rod to 

effectively contribute to the bracing strength. 

We recall from the problem of  the compressed rod 

elastically braced raised in [1] for different cases that was 

later taken, among others, in [2], [3], [4], [5] with reference 

to civil and industrial buildings and to steel bridges in [6] [7] 

[8] [9]. 

Then we consider the contribution of the stretched rod to 

the stability of the compressed one as a displacement 

constraint in-plane and out-of -plane of the structure. 

In both situations we look for the condition for which the 

effective length of the compressed rod can be considered 

equal to half of the geometric length. 

2. Stability of an Elastically Braced 

Compressed Rod 

With reference to the bracing structure shown in [Fig.1] 

we outline the compressed diagonal braced in the middle by 

an elastic constraint [Fig.2].  

 

Figure 1. X-type bracing structure 
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Figure 2. Static scheme for the compressed diagonal 

It is well known that, with reference to a changed 

equilibrium shape and for small displacement y (z), we have: 

EJy”(z)= -Fy(z) + kycz/2   (1) 

that putting 

a2= F/EJ     (2) 

leads to 

y”(z) + a2y(z)= a2kycz/2F    (3) 

and, using the boundary conditions y(0)=0 e y(l/2)= yc, to 

the general solution in term of displacement 

y(z)=(yc/sin al/2) (1 – kl/4F) sin az + kycz/2F  (4) 

The further boundary condition y’(l/2)= 0 leads to 

(yc/sin al/2) (1 – kl/4F) a cos az + kyc/2F= 0  (5) 

and for yck/2F≠0 it becomes 

al/2 – tg al/2= 2aF/k    (6) 

and also from [1] 

(t-tg t)/t3= 16PE/π2kl    (7) 

in which 

t= al/2       (8) 

and PE is the Euler buckling load of the compressed rod not 

braced. 

Numerically solving the (7) we obtain t and from (8) 

Pcr= PE 4t2/ π
2

    (9) 

where 4t
2
/ π

2 
represents the Euler buckling load increase of  

the compressed rod due to the elastic constraint. 

3. Bracing in-Plane Stability of the 

Compressed Rod 

In the following we want to give an account of what is 

generally considered in the project and also admitted by 

some technical codes [10], [11], for which, with reference to 

X-type diagonals connected to each other at the middle, the 

buckling length in the plane of the beam is equal to 0.5l and 

then  

Pcr = 4 PE. 

From the (9) we obtain 

4PE= PE 4t2/ π2
    (10) 

from which results t= π 

and 

(t-tg t)/t3= 0.1015   (11) 

Now with reference to the (7) and considering k= 2EAs/ls , 

where As and ls  are the area and  the length of the tensile 

rod respectively, it becomes 

(t-tg t)/t
3
= 16PE/π

2
(2EAs/ls)lc  (12) 

where lc is the length of the unbraced compressed rod. 

Now from the expression of the Euler buckling load and 

of the inertia radius 

PE=π2EJ/lc
2  i2=J/Ac 

the (12) is reduced to  

(t-tg t)/t3= 8∆A/λ2∆l    (13) 

with ∆A=Ac/As, ∆l=lc/ls and λ 
is the slenderness of the 

unbraced compressed rod. 

If we equalize the left-hands of (11) e (13) we obtain 

∆A= 0.0127λ2∆l   (14) 

that connects the areas of the stretched and compressed rods 

with the respective lengths to ensure that the stretched rod 

carries out a brace such that the effective length of the 

compressed rod results 0.5l 

If we consider ∆A in the interval 60<=λ<=250, limits 

between the squat and slender truss, and we remark that for 

X-type diagonals ∆l=1 from (14) it derives 

∆A(60) = 45.72 e As= 2.20%Ac 

∆A(250)= 793.75eAs= 0.126%Ac 

Therefore it is enough a weak constraint to reduce the rod 

effective length to 0.5l. 

For an example we think of a section bar L90x9, 300 cm 

in length, with area Ac= 15.5 cm
2
 and inertia radius imin= 

1.76 cm; the slenderness is λ= 170 and so from (14) results 

As= 0.271%Ac and As= 0.042 cm2. 

A rod of 2.3 mm in diameter is enough to efficaciously 

brace the compressed rod and to impose that its effective 

length is equal to 0.5l. 



International Journal of Science, Technology and Society 2014; 2(4): 69-72 71 

 

4. Bracing Out-of-Plane Stability of the 

Compressed Rod 

In general in the structural design of X-type bracing we 

ignore the structural behaviour of the compressed diagonal, 

considered to have negligible capacity, and the whole 

resistance is entrusted to the stretched diagonal. 

However the stretched rod elastically braces the 

compressed one with a own stiffness k, that depends to its 

traction force Ns and to its bending stiffness EJ/l
3
. 

Also in this case it is possible to refer to the (7) 

(t-tg t)/t3= 16PE/π2kl 

where k, from [3], is 

k= 4Ns/ls {1/[1- tanh(asls/2)/(asls/2)]}= 4 Ns/ls β  (15) 

where  

as
2= Ns/EJs    (16) 

and 

β={1/[1- tanh(asls/2)/(asls/2)]}   (17) 

We remark that for Js →0 β =1 so, from (17) , we obtain 

the stiffness k of a rope tight from Ns. 

Replacing now the (15) in the (7) we have 

(t-tg t)/t3=( 4/π2β)(∆F/∆l)   (18) 

in which 

∆F=PE/Ns     (19) 

and if ∆l= 1 then 

(t-tg t)/t3= (4/π2β)∆F   (20) 

The determining of t and Pcr, from the (9), of the 

compressed rod elastically braced depends on ∆F e β, that 

depends on ∆F too, in fact from the (8) 

t2= as
2l2/4= (Ns /EJ)l2/4   (21) 

and also 

as
2l2/4= (Ns /PE)π2/4    (22) 

from which 

asl/2= (∆F)-1/2π/2   (23) 

Then the (17) changes into 

β={1/[1- tanh(∆F)-1/2π/2/(∆F)-1/2π/2)]} (24) 

in this way, defined ∆F , we can fix β, t and, from the (9), the 

new Euler buckling load Pcr of the elastically braced 

compressed rod  

Pcr= PE 4t2/ π2 

and the relative new effective length 

l0= (π /2t)lc     (25) 

From the (25) derives that the compressed rod buckle in 

the second mode, l0= 0.5lc, when t = π and then from the (20) 

follows 

(4/π2β)∆F= 0.1013 

that numerically solved gives rise to 

∆F= PE/Ns= 0.4    (26) 

and also to 

Ns= 2.35 PE    (27) 

so for ∆F> 0.425 the compressed rod buckles in the second 

mode. 

We remark that also for smaller tight force, ∆F= 1 o ∆F= 

0.5, the effective length of the compressed rod is lower than 

0.6lc. 

Now since the (27) links the stress Ns of the tensile rod 

with the Euler buckling load PE of the not braced 

compressed, it is necessary to check if the value of Ns, 

requisite to secure the brace for the compressed rod, isn’t a 

strength limit for the same stretched rod. 

So with reference to the steel design stress fd and the Euler 

critical stress σcr,E(λ)= PE/Ac= π
2
E/λ2

 of the compressed rod 

the (27) changes in 

fd= 2.35σcr,E(λ) Ac/As= 2.35σcr,E(λ)∆A (28) 

or 

σcr,E(λ)= fd/2.35∆A   (29) 

Now solving for λ, the slenderness of the not braced 

compressive rod, we can obtain the value of the length l 

besides the stretched rod leads efficaciously the function of 

constraint so that the compressed one buckles in the second 

mode. 

For lower values of λ the stretched rod can’t make the 

brace function as for the value of Ns would exceed the steel 

mechanical strength. 

5. Conclusions 

In the X-type diagonal bracing the stretched rod carry on a 

leading role for the structural capacity of the compressed 

one, that generally is ignored. 

With reference to the compressed rod elastic stability in 

the structure in-plane, it has been found as the hypothesis of 

an effective length equal to the half of its geometrical length 

is admissible, in fact is enough a stretched rod with the area 

equal to the 2.2% of the compressed rod  to manage it to 

buckle in the second mode. 

The stretched rod carries on an important role with 

reference to the out-of-plane compressed rod stability too.  

Its action, that depends from ∆F=PE/Ns, is considerable 

already for ∆F values near to the unit; in fact for ∆F=1 the 

Euler buckling load of the brace compressed rod is Pcr= 
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2.89PE.  

If the stretched rod stress is Ns= 2.35PE then Pcr= 4PE and 

the compressed rod buckles in the second mode. 

It is necessary to note that as the stretched rod stress Ns, 

useful to impose the buckling in the second mode, is linked 

to PE, the more PE is high the more Ns must be high. So it is 

necessary of course to give always a look to the strength 

check of the stretched rod in order that the maximum stress 

doesn’t exceed the steel design stress fd. 
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