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Abstract: The dynamic nature of vehicular ad-hoc networks (VANETs) makes performance comparisons hard, because 

network conditions cannot be replicated. This paper introduces PepNet (Parallel Experiment Platform for VANET), a VANET 

testbed where multiple experimental configurations run simultaneously on identical network conditions. PepNet exploits Xen 

and Gentoo to provide a virtualized environment at every node. Atop the virtualized environment, multiple virtual guests, 

each are carrying an independent experiment, run in parallel sharing the same physical resources. The contributions of this 

paper are three-fold. (1) Virtual machines run various experiments simultaneously, so that each set of experiments encounters 

identical network conditions and thus produces consistent results. (2) Fewer physical machines are required. (3) Experiments 

are more consistent, easier to control, and the results are easier to interpret. To demonstrate the efficacy of PepNet, two 

well-known ad-hoc routing protocols, AODV and OLSR, are tested. Experiments confirm the results published in several 

previous studies, while the new testbed is more efficient and gives more consistent results. 
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1. Introduction 

Testbeds play a key role in ad hoc network research, 

be-cause a wireless medium has physical characteristics that 

cannot easily be simulated. Over the years, many kinds of 

testbeds have been developed. Performing testbed expe-

ri-ments in a mobile ad hoc network (MANET), however, is 

challenging. 

The first challenge in a MANET testbed is the cost due to 

mobility. Devices require continuous power supply, human 

monitoring, and mobility support. Therefore, even a simple 

MANET experiment is costly to conduct. In addition, when 

evaluating performance among protocols or applications, the 

cost of experiments increases proportionally to the number 

of different scenarios, which causes mobile experiments to 

be short and limited to few rounds. 

Another challenge for MANET testbed experiments is 

topology control. This becomes more difficult in a vehi-

cu-lar ad hoc network (VANET), where the topology 

changes are much faster than in a traditional MANET. 

Convention-ally, vehicles are integrated with wireless de-

vices to estab-lish Vehicle to Vehicle (V2V) communication, 

and are dri-ven around to provide mobility for the experi-

ments [1]-[6]. Nevertheless, this can result in inconsistent 

environmental conditions. For example, suppose the objec-

tive is to com-pare two routing protocols. The common 

approach is to run experiments with routing protocols A and 

B separately. However, the results are generally not fairly 

compared, because in ten minutes the external interference 

may have changed, the motion pattern of the various ve-

hicles in-volved in the experiments may have changed (for 

example, due to unpredictable traffic lights), and the radio 

propaga-tion may have changed (say, due to mobile ob-

stacles beyond experimental control). 

Simulations provide an alternative approach to evaluate 

VANET research to solve the inconsistency problem in 

testbed experiments. Simulators such as ns-2, Opnet, and 

QualNet allow researchers to repeat experiments with 

dif-ferent protocols configured, which ensure consistency. 

The whole system is under full control and thus one can 

adjust a few parameters and keep the rest unchanged. 

However, simulators assume accurate modeling of physical 

characte-ristics such as mobility/traffic patterns, radio 

propagation models, and external interferences. 

As to mobility patterns, since vehicles do not move 

ran-domly, it is unrealistic to use simplified mobility pat-

terns such as random walk, random direction, or random 

way-point. The most common approach is to collect 

traf-fic/mobility traces first and then run the simulations 
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based on those traces. Traffic/mobility traces can be gener-

ated by traffic simulators, public transportation schedules, 

and real-time logs [7]. Such an approach allows one to 

evaluate the performance by simulations using complex and 

realistic mobility patterns. 

Nevertheless, problems still remain in radio propagation 

models and external interferences. A common approach to 

simulate the radio propagation is to use well-established 

statistical models, which mostly do not account for static 

obstacles such as buildings and moving obstacles such as 

trucks. A model that estimates signal coverage through 

ex-isting maps is available in [8]. However, attenuation 

caused by dynamic factors such as moving obstacles is still 

diffi-cult to reproduce. A naive solution, similar to what is 

often done for the mobility model, is to collect channel 

condition logs from real experiments. This is extremely 

costly since it records noise level and signal strength for all 

node pairs every milli- or even micro-second throughout the 

experi-ment. A simplified version of this naive solution was 

pro-posed in [9], which records only channel connectivity. 

Nonetheless, connectivity itself is still not accurate enough 

to represent real channel conditions. These lo-

ca-tion-dependent and time-varying physical characteristics 

inevitably make simulations inaccurate. 

Testbed approaches are the only way to conduct VANET 

experiments with high fidelity, but the dynamic nature of 

VANETs result in experimental inconsistency. Though it is 

possible to repeat enough experiments until the uncon-

troll-able factors ``even out", this significantly increases the 

cost. 

This paper addresses these challenges by leveraging the 

resource sharing of virtual machines to perform parallel 

experiments. Its three major contributions are as follows. (1) 

Pepnet, a virtual machine based VANET testbed, compares 

different protocols under the same topology and channel 

conditions. (2) Virtual machines allow parallel experi-ments 

to be conducted with fewer physical machines. (3) The ex-

perimental results are easier to compare because of the ex-

periment consistency. To demonstrate PepNet, two well- 

known ad-hoc routing protocols, AODV and OLSR, are 

tested. Our experiments confirm the results from sever-al 

previous studies, while our testbed requires fewer physi-cal 

resources and gives more consistent results. 

The rest of the paper is organized as follows. Previous 

studies on testbeds and simulations are introduced in 

Sec-tion 2. Section 3 describes the platform details. Virtua-

liza-tion overhead is evaluated in Section 4. Comparisons 

be-tween AODV and OLSR are reported in Section 5. Fi-

nally, conclusions and future extensions are presented in 

Section 6. 

2. Related Work 

Testbeds play a key role in ad hoc network research, 

be-cause a wireless medium has physical characteristics that 

cannot easily be simulated. Over the years, many kinds of 

testbeds have been developed. Performing testbed expe-

ri-ments in a mobile ad hoc network (MANET), however, is 

challenging. 

VANET is an emerging technology that improves safety 

and provides comfort and convenience for vehicle drivers 

and passengers. Recently, many new protocols were 

pro-posed to address problems introduced by the new 

commu-nication schemes that VANET enables, namely, 

Vehicle to Vehicle (V2V) communication and Vehicle to 

Infrastructure (V2I) communication. Routing is a particu-

larly important issue since routes are changing all the time in 

both V2V and V2I communications. As a result, several 

routing protocols were proposed for different application 

needs [10]-[13]. However, no previous study provides a fair, 

accurate, and consistent evaluation. 

The Wireless Signal Propagation Emulator developed by 

CMU [14] accurately emulates wireless signal propagation 

in a physical space. The emulator senses signals generated 

by known wireless sources through the antenna port, 

sub-jects the signals to the same effects that occur in a real 

physical space (e.g. attenuation, multi-path fading, etc), and 

feeds the combined signals back into wireless cards. The 

emulator, however, has limitations in reproducing arbitrary 

motion patterns. In addition, although the propagation sce-

nario is more realistic, it is still artificially created as op-

posed to be measured in real life. 

Orbit [15] is a testbed that combines an indoor radio grid 

emulator and an outdoor field trial network. This testbed is 

available for use either via remote or on site access. As for 

mobility support, the outdoor testbed is grounded, while the 

indoor emulator only supports virtual grid mobility. D. 

Rastogi et al. present a comparison between AODV and 

OLSR, performed through the Orbit indoor testbed [16]. The 

result indicates that AODV performs better than OLSR in 

terms of stability. However, because the radio propaga-tion 

model differs from the real world, Orbit cannot simu-late 

wireless interferences. 

The department of computer science at University 

Upp-sala has opened to the community the Ad hoc Protocol 

Evaluation Testbed (APE Testbed) [17]. APE is an en-

cap-sulated execution environment with tools for post 

test-run data analysis, which is like a small Linux package 

with ad hoc configuration and network traffic analysis tools.  

Lundgred et al. used APE to evaluate the performance of 

AODV and OLSR with up to 37 nodes along indoor 

hall-ways and athletic fields in [18]. The result shows 

AODV performs better than OLSR in this high mobility 

scenario. To the best of our knowledge, there is no VANET 

experi-ments use APE testbed. 

Many academic facilities have mesh network testbeds that 

use AODV or OLSR to perform layer 3 routing. Some of the 

mesh testbeds are deployed in real environments, such as 

MIT RoofNet, Berlin Roof Net, and Mesh Net-working 

from Microsoft Research [19]-[21]. These systems provide 

experimental results in real world channel condi-tions, but 

lack node mobility. Several vehicular experiments and 

testbeds have been proposed [1]-[6]. However, none of them 

compared performance among different routing protocols, 
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because realistic mobility in vehicle experiments is hard to 

replicate. 

To summarize, recent testbeds provide convincing 

chan-nel conditions, but do not support repeatable, compli-

cated mobility at the same time. In this paper, a novel ap-

proach is used to perform parallel experiments. Thus the 

mobility and channel conditions do not need to be repro-

duced in order to compare different routing protocols. 

3. Overview of PepNet 

When several experiments are performed simultaneously 

in a single run, even if mobility patterns and channel con-

di-tions are not reproducible, experiments performed at the 

same time experience the same environmental conditions. 

The main objective of this study is to construct a platform 

for concurrent experiments. 

Our platform has two design goals. (1) The platform is 

simple to setup with commodity equipments. (2) All pro-

to-col and application implementations can be directly ap-

plied in our platform without significant changes. A Parallel 

Experiment Platform for VANET (PepNet) is built to ad-

dress these principles. PepNet has multiple virtual machines 

running on every mobile node. Each virtual machine runs 

one experimental configuration, and all virtual machines at a 

mobile node share hardware resources and have identical 

mobility. In additions, each virtual machine fulfills the sys-

tem requirement for one experiment. The following sections 

first describe the hardware platform and subsequently the 

software setup details. 

3.1. Hardware Platform 

PepNet nodes are common commercial laptops with an 

Intel Core 2 Duo CPU, 2GB of RAM and a 120GB hard 

drive. Each laptop is instrumented with a Ubiquiti SRC 

wireless card with Atheros 802.11 wifi chipsets (AR5004). 

The Atheros 802.11 wifi chipset is supported by the open 

source Linux madwifi driver [22], which allows many 

cus-tomized settings including fixed channel selection, 

trans-mission power adjustment, and monitor mode support. 

For our experiments, all physical wireless cards are in ad hoc 

mode, using channel 1 only. The transmission power is set to 

the hardware supported maximum (19dbm). The wireless 

card is connected to a magnetic mount antenna with an 8dB 

nominal gain. Each laptop is also equipped with a GPS 

receiver to track the positions of the nodes during the expe-

riments. Figure 1 shows an example of a node setup on a 

vehicle. 

3.2. Software Platform 

Each PepNet node runs the Linux Gentoo distribution 

(kernel version 2.6.21) patched with Xen [23][24] Xen is an 

open source industry standard virtualization environment 

that allows several virtual machines (Xen guests) to share 

hardware as shown in Fig. 2. One virtual network interface 

card (eth0) in every guest operating system and the physical 

wireless card in the host operating system (Xen host) are 

connected together through a Linux virtual bridge. This 

bridge handles all incoming and outgoing wireless traffic, so 

Xen guests route as if they are directly connected to the 

wireless network interface. An advantage of the bridging 

approach is that Xen host needs not know what routing 

protocols are run in the Xen guest environment. 

 
Fig. 1. Node setup on a vehicle 

 
Fig. 2. Software Platform 

In addition to the first bridge, a second bridge allows the 

communication between host and guest without interfering 

with experimental traffic. A preliminary experiments found 

time drifts between the Xen host and guests even with the 

synchronization Xen provided. For better time synchro-

ni-zation, the second bridge enables the Network Time 

Proto-col (NTP) to correct the time drift between Xen host 

and guests clocks. The second bridge also passes geo-

graphical information to Xen guests. The Xen host is con-

nected to the GPS device by gpsd [25], an open source 

daemon that provides a network socket interface for re-

trieving location information. Through the Ethernet bridge, 

Xen guests can access GPS information via gpsd. This al-

lows the use of applications and protocols that require GPS 

information. 

Xen guest on another physical machine. The bottom part 
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shows the source and destination of each scenario, and the 

processing performance at each interface. 

4. PepNet Overhead Evaluation 

Virtualization introduces two types of additional over- 

head, which may effect experiment results: 

Virtualization Overhead: Virtualization adds an extra 

software processing layer between applications and 

hard-ware. In addition, hardware resources are used to run 

the virtual machines. Therefore, system performance is 

worse than a regular Linux system. 

Sharing Overhead: When multiple virtual machines 

transmit at the same time, they contend for the same physical 

hardware. This contention lowers the maximum throughput 

the hardware can achieve and increases the packet drop rate. 

This section quantifies the "safe zone" of the PepNet such 

that the overhead does not significantly affect the validity of 

the experiment results. 

4.1. Virtualization Overhead 

Figure 3 shows the end-to-end packet delivery process on 

the Xen virtual machine. After the physical wireless inter-

face at the Xen host receives the packet, it is forwarded to a 

virtual interface via the virtual bridge at the Xen host. Then, 

every packet received at this virtual interface is copied to the 

destination Xen guest. Similarly, outgoing packets go 

through the reverse process and have additional processing 

overhead in the virtual environment. 

 
Fig. 3. Virtualization Overhead experiment scenarios. The upper part 

shows the packet delivery environment from one Xen guest to another 

The bottleneck of our system was examined by con-

si-dering four experiments: (1) Linux (Xen host) to Linux, (2) 

Linux to Xen guest, (3) Xen guest to Linux, (4) Xen guest to 

Xen guest. The Linux system here refers to the Xen host OS 

without running virtual machines in it. In every scenario, the 

sender generates and sends to the receiver bursty traffic of 

10k and 100k UDP packets, each of which contains 1000 

bytes payload. For every set of the scenarios, a "checkpoint" 

is set at every interface and both UDP send-er/receiver ap-

plications. The experiment results are shown in Table 1 and 

Table 2. 

Table 1. VM OVERHEAD EVALUATION (PACKET DELIVERY RATIO). 

CheckPoint Sender A B C D E F G H Reciever 

Scenario 1 (10K) 1 N/A N/A N/A 1 1 N/A N/A N/A 1 

Scenario 2 (10K) 1 N/A N/A N/A 1 0.995 0.995 0.995 0.995 0.995 

Scenario 3 (10K) 1 1 1 1 1 0.646 N/A N/A N/A 0.646 

Scenario 4 (10K) 1 1 1 1 1 0.617 0.617 0.617 0.617 0.617 

Scenario 1 (100K) 1 N/A N/A N/A 1 1 N/A N/A N/A 1 

Scenario 2 (100K) 1 N/A N/A N/A 1 0.976 0.955 0.974 0.988 0.988 

Scenario 3 (100K) 1 1 1 1 1 0.653 N/A N/A N/A 0.653 

Scenario 4 (100K) 1 1 1 1 1 0.655 0.646 0.645 0.649 0.648 

Table 2. VM OVERHEAD EVALUATION (LATENCY IN SECONDS). 

CheckPoint Sender A B C D E F G H Reciever 

Scenario 1 (10K) 4.596 N/A N/A N/A 4.596 4.628 N/A N/A N/A 4.628 

Scenario 2 (10K) 4.683 N/A N/A N/A 4.679 4.724 4.724 4.724 4.724 4.720 

Scenario 3 (10K) 4.678 4.623 4.623 4.623 4.621 4.797 N/A N/A N/A 4.811 

Scenario 4 (10K) 4.434 4.431 4.431 4.429 4.428 4.503 4.503 4.503 4.503 4.602 

Scenario 1 (100K) 51.78 N/A N/A N/A 51.784 51.832 N/A N/A N/A 51.831 

Scenario 2 (100K) 54.899 N/A N/A N/A 54.896 55.055 55.055 55.055 55.055 60.052 

Scenario 3 (100K) 49.489 49.489 49.486 49.485 49.485 51.289 N/A N/A N/A 51.264 

Scenario 4 (100K) 54.711 54.709 54.707 54.705 54.704 54.753 54.753 54.753 54.753 54.752 
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Each column represents a different checkpoint, and each 

row represents the combination of the scenario and the traf-

fic load. The (10K) and (100K) tags in each row represent 

the number of packets generated. Table 1 shows the packet 

delivery ratio, which is the number of packets received at a 

checkpoint divided by the number of packets generated at 

the sender. Table 2 is the interval between the first packet 

and the last packet received at every checkpoint in seconds. 

Theses numbers were collected by running the packet sniffer 

tshark [26] at every interface. 

Comparing the packet delivery ratio sequentially at all 

interfaces in Table I, there is a steep decrease between 

checkpoint D and E in scenarios 3 and 4, where the packets 

originate from the Xen guest instead of the Xen host. On the 

contrary, when packets originate from Xen host in sce-narios 

1 and 2, packets entering the outgoing interface D are suc-

cessfully transmitted to checkpoint E with high probability. 

The transmission between checkpoint D and E is carried out 

by two 802.11 wireless cards. This shows that when bursty 

packets are generated on the same operating system as the 

physical interface, the Xen host has better scheduling to 

handle packets, so fewer packets are dropped at the wireless 

device. 

Next, the reliability of the Xen system is considered. 

In-side the sending machine, there is no packet loss at any 

checkpoint, as shown in scenario 3 and 4. In addition, a test 

between the Xen host and guest using iperf shows the 

bandwidth between Xen host and guests are more than 

8Gb/s, which is significantly larger than the wireless 

band-width. Therefore, the Xen host and guest communica-

tion in the sending node is 100% reliable. 

On the other hand, some packet loss is found inside the 

receiving machine, in scenario 2 and 4 with 100K bursty 

traffic. However, the total number of receiving packets at 

each interface is not always decreasing. From row scenario 2 

(100K) and scenario 4 (100K) , columns G and H, more 

packets are received at the last interface than the virtual 

bridge. This contradictory result implies that tshark is 

probably not 100% accurate. The experiments show that 

tshark has at least 4% error, as some packets that are not 

sniffed at one interface appear later in another interface. 

Although this complicates the result, packet counts sniffed at 

every interface inside the receiving node are still close to 

each other. This suggests that after packets are received at 

the physical interface of the receiving node, they are 

deli-vered to the application with a high probability. 

Table 2 shows the interval between the first packet and the 

last packet sniffed at every interface. This number re-mains 

fairly constant among all interfaces for every scena-rio. 

Because all interfaces besides the two wireless devices have 

little packet loss, the processing time at each virtual interface 

does not contribute much to the delay, according to queueing 

theory. It also implies the next bottleneck be-sides wireless 

devices processing in the experiments is the UDP packet 

generator. In addition, scenario 1 on row 1 and row 5 

represents the performance of the native Linux sys-tem, 

which shows the network interface card achieved 17.8Mb/s 

while transmitting 10k packets, and 15.4Mb/s while trans-

mitting 100k packets. 

Finally, different loads of UDP Constant Bit Rate (CBR) 

traffic is used to examine the threshold of the system in order 

to find the "safe zone" to perform experiments. The CBR 

traffic is generated by the UDP application with 1000-byte 

packets with a fixed interval instead of bursty traffic. The 

network configuration is the same as scenario 4: traffic 

generated from one Xen guest and delivered to another Xen 

guest on a different node. The results are shown in Figure 4. 

The outgoing interface can handle at least 10Mb/s of traffic 

without introducing massive end-to-end packet loss. We 

conclude that the Xen system is reliable when the wireless 

traffic load is under 10Mb/s. 

 
Fig. 4. Overhead introduced by Xen virtualization: packet delivery ratio 

while performing the VM to VM experiment with different loads of CBR 

traffic. 

4.2. Sharing Overhead  

On our virtualized platform, multiple Xen guests share 

physical resources. It is therefore important to understand 

the maximum network load at which the sharing causes 

performance drops or excessive delays. In our setup, the Xen 

host connects multiple Xen guests to the physical net-work 

interface through a Linux network bridge. The oper-ating 

system provides a share of CPU time to the virtual machines, 

and thus to the read and write locks on the net-work bridge. 

The bridge queue policy is First In First Out (FIFO) coupled 

with the fair share of the locks that avoids starvation and 

provides fair sharing of the resources. This section exams 

the capacity when multiple virtual machines are run at a 

single node. 

Two sets of experiments were performed: (1) many- 

to-one, and (2) one - to-many. The experimental traffic is 

generated from Xen guest(s) in one machine and deliver to 

other Xen guest(s) at another machine. For the many-to-one 

scenario, different numbers of Xen guests are run on a single 

Xen sending machine. They simultaneously send UDP traf-

fic to a single Xen guest at the receiving machine. In the 

one-to-many experiments, multiple applications run to-

gether at a single Xen guest, and each sends UDP traffic to 

different receiving Xen guests, while all receiving Xen 
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guests are located at a single Xen receiving machine. Every 

Xen guest run the same CBR traffic in every experiments. 

Each traffic is composed of 1000-byte payload UDP packets 

with a fixed interval determined by the aggregated 

throughput. Experiments finish when an aggregated 100k 

packets are sent. 

The first goal in this section is to understand how the 

number of Xen guests affects the network capacity. Figure 5 

shows the packet delivery ratio with different numbers of 

Xen guests in both scenarios. The overall packet delivery 

ratios among different numbers of Xen guests are almost 

identical. This shows that the system can handle at least five 

concurrent virtual machines without introducing sig-nificant 

overhead. Moreover, in the one-to-many experi-ments, the 

packet delivery ratio slightly increases as the number of 

virtual machine increases. It is probably because running 

multiple applications slightly increases the packet genera-

tion time. Therefore, the physical devices have longer time 

to handle each packet and in turn achieve higher delivery 

ratios. 

 

(a) Many to one 

 

(b) One to many 

Fig. 5. Overhead introduced by Xen virtualization: packet delivery ratio as 

a function of UDP CBR for multiple UDP flows generated at different 

virtual machines. 

Another important issue is the fairness among the virtual 

systems when the network is fully loaded. Even though the 

number of virtual machine does not affect the aggregated 

throughput, the network resource may not be shared fairly. 

Figure 6 demonstrates the case of five concurrent virtual 

machines, where each line represents a different UDP flow. 

The packet delivery ratio for each UDP flow is defined as the 

packets received at the destination application layer divided 

by the packets sent. When the traffic is under 10Mb/s, every 

sender attains close to 100% delivery. As the aggregate 

throughput increases, virtual machines start to contend for 

physical resources; consequently, all virtual machines suffer 

from similar percentage of packet loss. The maximum dif-

ference of packet delivery ratio among all UDP flows in 

many-to- one experiments is 11%, where as the ratio is 6% 

in the one-to-many experiments. This shows that Xen pre-

vents a single Xen guest from dominating the networking 

device when contention happens. 

 

(a) Many to one 

 

(b) One to many 

Fig. 6. Xen fairness evaluation: packet delivery ratio for different Xen guest 

pair while running 5 VMs in parallel. 

To sum up, multiple Xen guests can utilize the bandwidth 

well if aggregated throughput is under 10Mb/s. When con-

gestion happens, bandwidth is shared by all Xen guests with 

reasonable fairness. 

5. Field Experiments 

PepNet is used to perform comparisons between two well 

known ad hoc routing protocols, AODV and OLSR. We 

varied the use of AODV and OLSR (singularly or concur-

rently), interference nodes and the number of mobile nodes 

to perform eight rounds of 20-minute experiments. Table 3 

reports the configuration for each experiment. Section 5.1 

presents the details of the setup for each experiment round, 

and Section 5.2 presents the comparison result between two 
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protocols. AODV is a reactive protocol, which allows it to 

perform better route selection than OLSR in a frequently 

changing topology [27]. This has been verified by numerous 

simulations and testbeds with limited mobility support. 

PepNet achieves the same conclusion in real world traffic, 

with fewer experimental resources. 

5.1. Experimental Setup 

The experiments were performed around the UCLA En-

gineering IV building with eight different network confi-

gurations described in the following subsections. 

Table 3. Experiment Rounds Summary 

Experiment Name AODV OLSR Interface 
Mobile 

Number 

Round 1 X   1 

Round 2  X  1 

Round 3 X  X 1 

Round 4  X X 1 

Round 5 X X  1 

Round 6 X X X 1 

Round 7 X X  2 

Round 8 X X X 2 

5.1.1. Xen Host Setup 

Mactrace: Each Xen host ran a mactrace tool that broad-

casts a hello beacon every 200 ms, which contains position 

and timestamp information. These hello beacons were used 

to construct the network connectivity matrix over time for 

best route investigations. 

Tshark: Each Xen host ran tshark to log all packet sniffed 

at the wireless interface. 

Synchronization: All the systems are synchronized via 

NTP. This allows temporal correlation among the trace logs 

with the precision of ten macro-seconds. 

5.1.2. Xen Guest Setup 

Routing Protocols: Each node, ran two Xen guests in ad-

dition to the Xen host. One Xen guest ran an implementation 

of the ad hoc on demand distance vector routing (AODV) 

AODV-UU [28][29], and the other Xen guest used the Op-

timized Link State Routing (OLSR) [30][31]. Tables 4 and 5 

summarize the parameters of AODV and OLSR. These 

variables are based on the previous work in [16] and account 

for the vehicular scenario used in the experiments. 

Table 4. AODV parameters 

Hello message interval 500ms 

Allow hello loss 2 

Delete period 1s 

Active route timeout 2s 

 

Table 5. OLSR parameters 

Hello message interval 500ms 

Hello message validity time 1s 

Topology Control (TC) message interval 1s 

Topology Control (TC) message validity 2s 

 

Network Traffic: A simple application generated a con-

stant UDP stream of 50-byte data segments every 150ms. 

Each packet contained a packet sequence number and the 

timestamp when the packet was created. The traffic source 

and destination pairs are described in the next paragraph. 

5.1.3. Topology and Interference Setup  

Figure 7 shows the bird's-eye view of the physical to-

pology setup. Four fixed nodes remained at the same place 

for all eight experiments. The antennas of these nodes were 

placed on top of a 1.5 meter stand to ensure good signal 

propagation. The mobile nodes were placed on vehicles and 

their antenna was placed on the top of the cars to avoid 

interference due to the automobile body. The four fixed 

nodes, represented by the {\it pin icon} in Figure \ref{fig_4}, 

were placed at the four corners of the building. The resulting 

rectangle was approximately 60 meters wide (East-West) 

and approximately 50 meters long (North-South). Each 

fixed node was in line of sight with the nodes placed at 

neighboring corners. Therefore, neighbor nodes were con-

nected and diagonal connections are blocked by the build-

ing. 

Half of the experiments used two interference nodes in-

dicated by the wave icon in Figure 7. These interference 

nodes generated layer-2 bursty broadcast traffic of random 

length uniformly distributed from 0 to 100 packets of ran-

dom size uniformly distributed from 50 to 1000 bytes. After 

each burst, they idled for a random period of time uniformly 

distributed in the interval of [0,30] seconds. 

 
Fig. 7. Bird’s-eye view of topology setting for all experiment rounds 

5.1.4. Experiment Traffic Setup  

The summary of the 8 rounds of experiments is reported 

in table 3. AODV alone was used in rounds 1 and 3; OLSR 

alone in was used in rounds 2 and 4; both AODV and OLSR 

were used in parallel in rounds 5 through 8. Traffic gener-

ated from the Xen guest running AODV were delivered to 
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the Xen guest which also ran AODV at the receiving ma-

chine, and similarly with to OLSR. 

In the single mobile node scenarios, the test traffic was 

generated from the mobile node and delivered to one of the 

four fixed nodes. After sending packet for two minutes, the 

UDP traffic paused for one minute, and then repeated the 

process to another fixed node in a round-robin manner. In 

the two mobile node scenario, both mobile nodes moved 

clockwise with different speeds. When two mobile nodes 

met, the faster mobile node overtook the slower one. The 

faster mobile node sent UDP stream to the slower mobile 

node for two minutes, paused for one minute, and then re-

peated the same process. Each round lasted for 20 minutes, 

which contained seven 2-minute sub-sessions. 

5.2. Experimental Result  

This section covers three areas: (1) the mactrace tool 

showed the dynamics of the VANET experiment environ-

ment, (2) sequential experiments with AODV and OLSR did 

not provide consistent performance comparisons, and (3) 

parallel experiments consistently provided comparable re-

sults. 

5.2.1. VANET Dynamics   

The network topology of the experiment is reflected by 

the optimal hop count, which is defined as the shortest hop 

count from one node to another. During the experiment, 

mactrace periodically broadcasted beacon packets. Every 

other node received the beacon packet and recorded the 

existence of a one-way connectivity at that time. Using the 

mactrace log, the network connectivity matrix was con-

structed, and the shortest hop counts between any two nodes 

at any given time was obtained by running a shortest path 

algorithm. 

Figure 8 shows the optimal hop count from the moving 

node to one fixed node in round 1 and round 2 for 10 minutes. 

Because the four fixed nodes formed a complete cycle, the 

theoretical optimal hop count is 2 hops. However, some 

uncontrollable factors such as other cars blocking the signal 

line of sight or random wireless noises interfered with the 

optimal route and resulted in unpredictable behavior. Ac-

cording to Figure 8, the optimal hop count repeatedly al-

ternated between 1 and 2, and occasionally reached 3 hops in 

both round 1 and round 2, the single-mobile-node scenarios. 

The result shows network topology looks considerably 

steady in these rounds. 

 
Round 1 

 
Round 2 

Fig 8. Network connectivity: optimal hop count from mobile sender to one 

fixed node over time for experiment round 1, 2 

The two-mobile-node scenarios were more complicated, 

and the optimal hop count from the faster mobile node to the 

slower mobile node is shown in Figure 9. To quantify the 

difference between two rounds, 64% of the time in round 7 

the optimal hop count was 1, while only 45% of the time in 

round 8 the optimal hop count was 1. Moreover, the topol-

ogy change in round 8 happened more frequently than round 

7. The optimal hop count in round 7 changed 58 times, while 

in round 8 changes it changed 84 times. If we consider a 

successful hop count change to be the one that lasts at least 

for 5 seconds, round 7 contained 6 successful hop count 

changes, while round 8 contained 13 successful hop count 

changes. This shows that even in a simple experiment en-

vironment -- two cars circling four fixed nodes around a 

building --is still difficult to control the network topology. 

 
Round 7 

 
Round 8 

Fig. 9. Network connectivity: optimal hop count from mobile sender to 

another mobile receiver over time for experiment round 7, 8 

5.2.2. Sequential Experiments 

The experiment in rounds 1 through 4 study the perfor-

mance comparison between AODV and OLSR, with and 

without the artificial interference signal. Experiment rounds 

1 through 4 were run sequentially, and their results are 

shown in Figure 10. The performance metrics used here are 

the packet hop count distribution and the packet delivery 

ratio. The packet hop count is the number of hops that a 

successfully received packet takes to reach the destination. 

The packet delivery ratio is the total number of packets 
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received divided by the total number sent. 

Figures 10(a) and 10(c) show the packet hop count dis-

tribution. In general, protocols with better route selection 

have a smaller hop count because they react to topology 

changes faster. Figure 10(a) shows that OLSR performed 

slightly better in hop count selection than AODV in a 

20-minute experiment. On the other hand, 10(c) draws the 

opposite conclusion. The packet delivery ratio comparison 

for the first four rounds is shown in Figures 10(b) and 10(d) 

AODV had a better packet delivery ratio than OLSR, al-

though in the first two rounds AODV performed 10% better 

and in the next two rounds AODV performed only 1% better. 

Therefore, even with considerably controlled mobility (one 

mobile node circling four fixed nodes), the environmental 

changes still increased experiment dynamics, and running 

single protocol experiments (no parallelization) for the 

purpose of evaluating alternate protocol was misleading. A 

traditional way to solve this problem is to ``even out" the 

external influences by repeating experiments multiple times 

with longer durations. However, performing real VANET 

experiments is costly. 

 
Fig. 10. Non-parallel experiments: round 1 though 4 

5.2.3. Parallel Experiments   

This section shows that the experimental results of the 

four parallelized experiments provided better consistency 

than the sequential experiments. 

Figure 11 shows the results of the parallel experiments in 

the-single-mobile node scenario, rounds 5 and 6.  Figures 

11(a) and 11(c) present the packet hop count distribution for 

both AODV and OLSR in experiments rounds 5 and 6, and 

Figures 11(c) and 11(d) show the packet delivery ratio.  We 

note that AODV consistently outperformed OLSR in the 

single mobile node scenario because AODV exhibited better 

hop count selection and higher packet delivery ratio in both 

rounds. Moreover, this conclusion can be safely drawn only 

because both protocols experienced the same environment 

condition so the dynamic environment factors were elimi-

nated. 

 
Fig. 11. Single mobile node parallel experiments: round 5 and 6 

Next, consider the two-mobile-node scenarios that have 

uncontrollable connectivity patterns, as shown in Figure 

8(b). The result in Figure 12 shows parallelized experiments 

still provided consistent results. Figure 12 shows the packet 

hop count distribution and the packet delivery ratio for both 

protocols in rounds 7 and 8. AODV still consistently out-

performed OLSR both in terms of the hop count and the 

packet delivery ratio. This result shows parallel experiments 

delivered accurate result in a single experiment run even 

when the mobility pattern is uncontrolled. 

 
Fig. 12. Two mobile node parallel experiments: rounds 7 and 8 

Finally, a part of the parallelized experiments show that 

performing sequential experiments may lead to false con-

clusions. According to Figure 12, the environment in round 
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8 was noisier than round 7 because the packet delivery ratio 

dropped by 15%. Suppose only protocol OLSR were eva-

luated in round 7, and only AODV were evaluated in round 8; 

then, after two 20-minute of experiments, OLSR would have 

outperformed AODV in both the packet delivery ratio and 

the hop selection, which would be a false conclusion, shown 

in Figure 13. This shows sequential experiments do not 

guarantee a controlled experiment environment, and paral-

lelized experiments battle the uncontrollable experiment 

factors efficiently. 

 
Fig. 13. False Evaluation: an incorrect result when two protocols running 

in two sequential experiments are compared (OLSR Round 7/ AODV Round 

8). 

6. Conclusion and Future Work 

A new virtual machine based testbed, PepNet, addresses 

the inconsistency issues in VANET performance evaluation. 

By running experiments concurrently, protocols or applica-

tions encounter identical topology, channel conditions, and 

external interferences, avoiding difficulties in reproducing 

identical environments. Besides, there are two additional 

benefits of running parallel experiments in virtual envi-

ronment. First, virtual machines provide a complete oper-

ating system so protocol implementations with different 

system requirements can be run in parallel. Second, expe-

riments are performed with a single set of hardware, greatly 

reducing hardware cost. These benefits make virtualization a 

cost efficient way to conduct VANET experiments. 

Another contribution of this paper is to understand the 

virtualization overhead so that experiments can be designed 

accordingly. Section IV shows that Xen can handle 10Mb/s 

traffic reliably. In addition, the checkpoint experiments 

show that the bottleneck is the wireless interface card lo-

cated at the sender node. Our experiments also found the 

tshark error at the receiving virtual machine, which makes it 

hard to quantify the receiving node error rate.  Experimen-

tal results also show that when aggregate throughput does 

not exceed the threshold, Xen supports up to 5 parallel vir-

tual machines without introducing significant overhead. It is 

our next goal to seek a solution for the high packet loss rate 

to improve the performance of virtual machines. 

Finally, several field experiments demonstrated the im-

portance of parallel experiments. With only two mobile 

nodes, the network topology is already quite complex and 

hard to reproduce. Sequential experiments in a simple sce-

nario do not provide a consistent comparison result, while 

parallel experiments provide consistency at all times. Our 

next goal is to perform medium scale experiments involving 

more than two vehicles in real urban environments and see 

whether parallel experiments still maintain consistency. 

We plan to install multiple wireless cards in the Xen host, 

say WiMax, 3G and software defined radios, in addition to 

WiFi. This approach should enable opportunistic network-

ing, with more sophisticated experiments for which paralle-

lization will be critical. 

Acknowledgements 

To Be decided 

 

References 

[1] A. Festag, H. Hartenstein, A. Sarma and R. Schmitz, 
“FleetNet: Bringing carto-car communication into real 
world”, in Proc. 11th ITS World Congress, October 2004. 

[2] M. Jerbi, S.-M. Senouci, M. Al Haj, “Extensive experimental 
characterization of communications in vehicular ad hoc 
networks within different environments”, in Proc. IEEE VTC 
2007. doi:10.1109/WCNC.2008.577. 

[3] R. Mangharam, J.J. Meyers, R. Rajkumar, D.D. Stancil, J.S. 
Parikh, H. Krishnan and C. Kellum, “A multi-hop mobile 
networking test-bed for telematics”, in Proc. SAE World 
Congress, 2005. citeseer doi: 10.1.1.65.9415.  

[4] MyCarEvent Project “http://www.mycarevent.com/”. 

[5] CVeT Testbed “http://www.vehicularlab.org/testbed.php”. 

[6] C. Pinart, P. Sanz, I. Lequerica, D. Garc’?a, I. Barona, and D. 
S’anchez-Aparisi, “DRIVE: a reconfigurable testbed for 
advanced vehicular services and communications”, Tri-
dentCom ’08, Innsbruck, Austria. 

[7] Valery Naumov, Rainer Baumann and Thomas Gross, “An 
Evaluation of Inter-Vehicle Ad Hoc Networks Based on 
Realistic Vehicular traces”, MobiHoc ’06, May 22-25, 2006. 
doi:10.1145/1132905.1132918. 

[8] E. Giordano, R. Frank, G. Pau, and M. Gerla, “Corner: a 
realistic urban propagation model for VANET”, in The Se-
venth International Conference on Wireless On-demand 
Network Systems and Services (WONS), 2010. 
doi:10.1109/WONS.2010.5437133. 

[9] K.C. Lee , S. Lee , R. Cheung , U. Lee and M. Gerla, “First 
Experience with CarTorrent in a Real Vehicular Ad Hoc 
Network Testbed”, in Proc. VANET MOVE, May 2007. 
doi:10.1109/MOVE.2007.4300814. 

[10] J. Bernsen and D. Manivannan, “Unicast routing protocols 
for vehicular adhoc networks: A critical comparison and 
classification”, Pervasive and Mobile Computing 5 (2009) 
1-18. doi:10.1016/j.pmcj.2008.09.001. 

[11] C. Lochert, B. Scheuermann and M. Mauve, “Probabilistic 
Aggregation for Data Dissemination in VANETs”, VANET 
2007:Proceedings of the 4th ACM International Workship on 
Vehicular Ad Hoc Networks. doi:10.1145/1287748.1287750. 

[12] A. Bachir and A. Benslimane, “A Multicast Protocol in Ad 



20 Jui-Ting Weng et al.: Running consistent, parallel experiments in vehicular environment 

 

hoc Networks Inter-Vehicle Geocast”, in Proc. 58th IEEE 
Vehicular Technology Conference, Orlando, USA, October 
2003. doi:10.1109/VETECS.2003.1208832 . 

[13] Y.C. Tseng, S.Y. Ni, Y.S. Chen, and J.P. Sheu, “The broadcast 
storm problem in a mobile ad hoc network”, Wirel. Netw., vol. 
8, no. 2/3, pp. 153-167, Mar.-May 2002. 
doi:10.1023/A:1013763825347.  

[14] CMU wireless emulator 
“http://www.cs.cmu.edu/~emulator/”. 

[15] ORBIT: Open-Access Research Testbed for Next-Generation 
Wireless Networks, “http://www.orbit-lab.org/”. 

[16] Devashish Rastogi, Sachin Ganu, Yanyong Zhang, Wade 
Trappe, and Charles Graff, “A comparative study of AODV 
and OLSR on the ORBIT testbed”, Milcom 2007. 
doi:10.1109/MILCOM.2007.4455056 

[17] APE testbed “http://apetestbed.sourceforge.net/”. 

[18] R. S. Gray and D. Kotz, “Outdoor experimental comparison 
of four ad hoc routing algorithms”, MSWiM ’04. 
doi:10.1145/1023663.1023703. 

[19] MIT ROOFNET “http://pdos.csail.mit.edu/roofnet/”. 

[20] Berlin Roof Net (BRN) 
“http://sar.informatik.hu-berlin.de/research/projects/2005-Be
rlinRoofNet/berlin roof net.htm”. 

[21] Microsoft Research: Mesh Networking 
“http://research.microsoft.com/en-us/projects/mesh/”. 

[22] MadWifi project “http://madwifi-project.org/”. 

[23] Xen “http://www.xen.org/”. 

[24] Gentoo “http://www.gentoo.org/”. 

[25] GPSD “http://gpsd.berlios.de/”. 

[26] Wireshark “http://www.wireshark.org/”. 

[27] P. Apparao, S. Makineni, D. Newell, “Characterization of 
network processing overheads in Xen”, VTDC ’06. 
doi:10.1109/VTDC.2006.3. 

[28] AODV-UU “http://core.it.uu.se/core/index.php/AODV-UU”. 

[29] RFC 3561: Ad hoc On-Demand Distance Vector (AODV) 
Routing. 

[30] RFC 3626: Optimized Link State Routing Protocol (OLSR). 

[31] OLSRD “http://www.olsr.org/”

 


