

International Journal of Sensors and Sensor Network
2013; 1(1) : 10-20

Published online February 20, 2013 (http://www.sciencepublishinggroup.com/j/ijssn)

doi: 10.11648/j. ijssn.20130101.12

Running consistent, parallel experiments in vehicular
environmen

Jui-Ting Weng, Ian Ku, Giovanni Pau, Mario Gerla

Computer Science Department of University of California, Los Angeles, Los Angeles, USA

Email address:
jtweng@cs.ucla.edu (Jui-Ting Weng), ianku@cs.ucla.edu (I. Ku), gpau@cs.ucla.edu (G. Pau), gerla@cs.ucla.edu (M. Gerla)

To cite this article:
Jui-Ting Weng, Ian Ku, Giovanni Pau, Mario Gerla. Running Consistent Parallel Experiments in Vehicular Environment. International

Journal Sensors and Sensor Network. Vol. 1, No. 1, 2013, pp. 10-20. doi: 10.11648/j.ijssn.20130101.12

Abstract: The dynamic nature of vehicular ad-hoc networks (VANETs) makes performance comparisons hard, because

network conditions cannot be replicated. This paper introduces PepNet (Parallel Experiment Platform for VANET), a VANET

testbed where multiple experimental configurations run simultaneously on identical network conditions. PepNet exploits Xen

and Gentoo to provide a virtualized environment at every node. Atop the virtualized environment, multiple virtual guests,

each are carrying an independent experiment, run in parallel sharing the same physical resources. The contributions of this

paper are three-fold. (1) Virtual machines run various experiments simultaneously, so that each set of experiments encounters

identical network conditions and thus produces consistent results. (2) Fewer physical machines are required. (3) Experiments

are more consistent, easier to control, and the results are easier to interpret. To demonstrate the efficacy of PepNet, two

well-known ad-hoc routing protocols, AODV and OLSR, are tested. Experiments confirm the results published in several

previous studies, while the new testbed is more efficient and gives more consistent results.

Keywords: VANET, Testbed

1. Introduction

Testbeds play a key role in ad hoc network research,

be-cause a wireless medium has physical characteristics that

cannot easily be simulated. Over the years, many kinds of

testbeds have been developed. Performing testbed expe-

ri-ments in a mobile ad hoc network (MANET), however, is

challenging.

The first challenge in a MANET testbed is the cost due to

mobility. Devices require continuous power supply, human

monitoring, and mobility support. Therefore, even a simple

MANET experiment is costly to conduct. In addition, when

evaluating performance among protocols or applications, the

cost of experiments increases proportionally to the number

of different scenarios, which causes mobile experiments to

be short and limited to few rounds.

Another challenge for MANET testbed experiments is

topology control. This becomes more difficult in a vehi-

cu-lar ad hoc network (VANET), where the topology

changes are much faster than in a traditional MANET.

Convention-ally, vehicles are integrated with wireless de-

vices to estab-lish Vehicle to Vehicle (V2V) communication,

and are dri-ven around to provide mobility for the experi-

ments [1]-[6]. Nevertheless, this can result in inconsistent

environmental conditions. For example, suppose the objec-

tive is to com-pare two routing protocols. The common

approach is to run experiments with routing protocols A and

B separately. However, the results are generally not fairly

compared, because in ten minutes the external interference

may have changed, the motion pattern of the various ve-

hicles in-volved in the experiments may have changed (for

example, due to unpredictable traffic lights), and the radio

propaga-tion may have changed (say, due to mobile ob-

stacles beyond experimental control).

Simulations provide an alternative approach to evaluate

VANET research to solve the inconsistency problem in

testbed experiments. Simulators such as ns-2, Opnet, and

QualNet allow researchers to repeat experiments with

dif-ferent protocols configured, which ensure consistency.

The whole system is under full control and thus one can

adjust a few parameters and keep the rest unchanged.

However, simulators assume accurate modeling of physical

characte-ristics such as mobility/traffic patterns, radio

propagation models, and external interferences.

As to mobility patterns, since vehicles do not move

ran-domly, it is unrealistic to use simplified mobility pat-

terns such as random walk, random direction, or random

way-point. The most common approach is to collect

traf-fic/mobility traces first and then run the simulations

 International Journal of Sensors and Sensor Networks 2012, 1(1) : 10-20 11

based on those traces. Traffic/mobility traces can be gener-

ated by traffic simulators, public transportation schedules,

and real-time logs [7]. Such an approach allows one to

evaluate the performance by simulations using complex and

realistic mobility patterns.

Nevertheless, problems still remain in radio propagation

models and external interferences. A common approach to

simulate the radio propagation is to use well-established

statistical models, which mostly do not account for static

obstacles such as buildings and moving obstacles such as

trucks. A model that estimates signal coverage through

ex-isting maps is available in [8]. However, attenuation

caused by dynamic factors such as moving obstacles is still

diffi-cult to reproduce. A naive solution, similar to what is

often done for the mobility model, is to collect channel

condition logs from real experiments. This is extremely

costly since it records noise level and signal strength for all

node pairs every milli- or even micro-second throughout the

experi-ment. A simplified version of this naive solution was

pro-posed in [9], which records only channel connectivity.

Nonetheless, connectivity itself is still not accurate enough

to represent real channel conditions. These lo-

ca-tion-dependent and time-varying physical characteristics

inevitably make simulations inaccurate.

Testbed approaches are the only way to conduct VANET

experiments with high fidelity, but the dynamic nature of

VANETs result in experimental inconsistency. Though it is

possible to repeat enough experiments until the uncon-

troll-able factors ``even out", this significantly increases the

cost.

This paper addresses these challenges by leveraging the

resource sharing of virtual machines to perform parallel

experiments. Its three major contributions are as follows. (1)

Pepnet, a virtual machine based VANET testbed, compares

different protocols under the same topology and channel

conditions. (2) Virtual machines allow parallel experi-ments

to be conducted with fewer physical machines. (3) The ex-

perimental results are easier to compare because of the ex-

periment consistency. To demonstrate PepNet, two well-

known ad-hoc routing protocols, AODV and OLSR, are

tested. Our experiments confirm the results from sever-al

previous studies, while our testbed requires fewer physi-cal

resources and gives more consistent results.

The rest of the paper is organized as follows. Previous

studies on testbeds and simulations are introduced in

Sec-tion 2. Section 3 describes the platform details. Virtua-

liza-tion overhead is evaluated in Section 4. Comparisons

be-tween AODV and OLSR are reported in Section 5. Fi-

nally, conclusions and future extensions are presented in

Section 6.

2. Related Work

Testbeds play a key role in ad hoc network research,

be-cause a wireless medium has physical characteristics that

cannot easily be simulated. Over the years, many kinds of

testbeds have been developed. Performing testbed expe-

ri-ments in a mobile ad hoc network (MANET), however, is

challenging.

VANET is an emerging technology that improves safety

and provides comfort and convenience for vehicle drivers

and passengers. Recently, many new protocols were

pro-posed to address problems introduced by the new

commu-nication schemes that VANET enables, namely,

Vehicle to Vehicle (V2V) communication and Vehicle to

Infrastructure (V2I) communication. Routing is a particu-

larly important issue since routes are changing all the time in

both V2V and V2I communications. As a result, several

routing protocols were proposed for different application

needs [10]-[13]. However, no previous study provides a fair,

accurate, and consistent evaluation.

The Wireless Signal Propagation Emulator developed by

CMU [14] accurately emulates wireless signal propagation

in a physical space. The emulator senses signals generated

by known wireless sources through the antenna port,

sub-jects the signals to the same effects that occur in a real

physical space (e.g. attenuation, multi-path fading, etc), and

feeds the combined signals back into wireless cards. The

emulator, however, has limitations in reproducing arbitrary

motion patterns. In addition, although the propagation sce-

nario is more realistic, it is still artificially created as op-

posed to be measured in real life.

Orbit [15] is a testbed that combines an indoor radio grid

emulator and an outdoor field trial network. This testbed is

available for use either via remote or on site access. As for

mobility support, the outdoor testbed is grounded, while the

indoor emulator only supports virtual grid mobility. D.

Rastogi et al. present a comparison between AODV and

OLSR, performed through the Orbit indoor testbed [16]. The

result indicates that AODV performs better than OLSR in

terms of stability. However, because the radio propaga-tion

model differs from the real world, Orbit cannot simu-late

wireless interferences.

The department of computer science at University

Upp-sala has opened to the community the Ad hoc Protocol

Evaluation Testbed (APE Testbed) [17]. APE is an en-

cap-sulated execution environment with tools for post

test-run data analysis, which is like a small Linux package

with ad hoc configuration and network traffic analysis tools.

Lundgred et al. used APE to evaluate the performance of

AODV and OLSR with up to 37 nodes along indoor

hall-ways and athletic fields in [18]. The result shows

AODV performs better than OLSR in this high mobility

scenario. To the best of our knowledge, there is no VANET

experi-ments use APE testbed.

Many academic facilities have mesh network testbeds that

use AODV or OLSR to perform layer 3 routing. Some of the

mesh testbeds are deployed in real environments, such as

MIT RoofNet, Berlin Roof Net, and Mesh Net-working

from Microsoft Research [19]-[21]. These systems provide

experimental results in real world channel condi-tions, but

lack node mobility. Several vehicular experiments and

testbeds have been proposed [1]-[6]. However, none of them

compared performance among different routing protocols,

12 Jui-Ting Weng et al.: Running consistent, parallel experiments in vehicular environment

because realistic mobility in vehicle experiments is hard to

replicate.

To summarize, recent testbeds provide convincing

chan-nel conditions, but do not support repeatable, compli-

cated mobility at the same time. In this paper, a novel ap-

proach is used to perform parallel experiments. Thus the

mobility and channel conditions do not need to be repro-

duced in order to compare different routing protocols.

3. Overview of PepNet

When several experiments are performed simultaneously

in a single run, even if mobility patterns and channel con-

di-tions are not reproducible, experiments performed at the

same time experience the same environmental conditions.

The main objective of this study is to construct a platform

for concurrent experiments.

Our platform has two design goals. (1) The platform is

simple to setup with commodity equipments. (2) All pro-

to-col and application implementations can be directly ap-

plied in our platform without significant changes. A Parallel

Experiment Platform for VANET (PepNet) is built to ad-

dress these principles. PepNet has multiple virtual machines

running on every mobile node. Each virtual machine runs

one experimental configuration, and all virtual machines at a

mobile node share hardware resources and have identical

mobility. In additions, each virtual machine fulfills the sys-

tem requirement for one experiment. The following sections

first describe the hardware platform and subsequently the

software setup details.

3.1. Hardware Platform

PepNet nodes are common commercial laptops with an

Intel Core 2 Duo CPU, 2GB of RAM and a 120GB hard

drive. Each laptop is instrumented with a Ubiquiti SRC

wireless card with Atheros 802.11 wifi chipsets (AR5004).

The Atheros 802.11 wifi chipset is supported by the open

source Linux madwifi driver [22], which allows many

cus-tomized settings including fixed channel selection,

trans-mission power adjustment, and monitor mode support.

For our experiments, all physical wireless cards are in ad hoc

mode, using channel 1 only. The transmission power is set to

the hardware supported maximum (19dbm). The wireless

card is connected to a magnetic mount antenna with an 8dB

nominal gain. Each laptop is also equipped with a GPS

receiver to track the positions of the nodes during the expe-

riments. Figure 1 shows an example of a node setup on a

vehicle.

3.2. Software Platform

Each PepNet node runs the Linux Gentoo distribution

(kernel version 2.6.21) patched with Xen [23][24] Xen is an

open source industry standard virtualization environment

that allows several virtual machines (Xen guests) to share

hardware as shown in Fig. 2. One virtual network interface

card (eth0) in every guest operating system and the physical

wireless card in the host operating system (Xen host) are

connected together through a Linux virtual bridge. This

bridge handles all incoming and outgoing wireless traffic, so

Xen guests route as if they are directly connected to the

wireless network interface. An advantage of the bridging

approach is that Xen host needs not know what routing

protocols are run in the Xen guest environment.

Fig. 1. Node setup on a vehicle

Fig. 2. Software Platform

In addition to the first bridge, a second bridge allows the

communication between host and guest without interfering

with experimental traffic. A preliminary experiments found

time drifts between the Xen host and guests even with the

synchronization Xen provided. For better time synchro-

ni-zation, the second bridge enables the Network Time

Proto-col (NTP) to correct the time drift between Xen host

and guests clocks. The second bridge also passes geo-

graphical information to Xen guests. The Xen host is con-

nected to the GPS device by gpsd [25], an open source

daemon that provides a network socket interface for re-

trieving location information. Through the Ethernet bridge,

Xen guests can access GPS information via gpsd. This al-

lows the use of applications and protocols that require GPS

information.

Xen guest on another physical machine. The bottom part

 International Journal of Sensors and Sensor Networks 2012, 1(1) : 10-20 13

shows the source and destination of each scenario, and the

processing performance at each interface.

4. PepNet Overhead Evaluation

Virtualization introduces two types of additional over-

head, which may effect experiment results:

Virtualization Overhead: Virtualization adds an extra

software processing layer between applications and

hard-ware. In addition, hardware resources are used to run

the virtual machines. Therefore, system performance is

worse than a regular Linux system.

Sharing Overhead: When multiple virtual machines

transmit at the same time, they contend for the same physical

hardware. This contention lowers the maximum throughput

the hardware can achieve and increases the packet drop rate.

This section quantifies the "safe zone" of the PepNet such

that the overhead does not significantly affect the validity of

the experiment results.

4.1. Virtualization Overhead

Figure 3 shows the end-to-end packet delivery process on

the Xen virtual machine. After the physical wireless inter-

face at the Xen host receives the packet, it is forwarded to a

virtual interface via the virtual bridge at the Xen host. Then,

every packet received at this virtual interface is copied to the

destination Xen guest. Similarly, outgoing packets go

through the reverse process and have additional processing

overhead in the virtual environment.

Fig. 3. Virtualization Overhead experiment scenarios. The upper part

shows the packet delivery environment from one Xen guest to another

The bottleneck of our system was examined by con-

si-dering four experiments: (1) Linux (Xen host) to Linux, (2)

Linux to Xen guest, (3) Xen guest to Linux, (4) Xen guest to

Xen guest. The Linux system here refers to the Xen host OS

without running virtual machines in it. In every scenario, the

sender generates and sends to the receiver bursty traffic of

10k and 100k UDP packets, each of which contains 1000

bytes payload. For every set of the scenarios, a "checkpoint"

is set at every interface and both UDP send-er/receiver ap-

plications. The experiment results are shown in Table 1 and

Table 2.

Table 1. VM OVERHEAD EVALUATION (PACKET DELIVERY RATIO).

CheckPoint Sender A B C D E F G H Reciever

Scenario 1 (10K) 1 N/A N/A N/A 1 1 N/A N/A N/A 1

Scenario 2 (10K) 1 N/A N/A N/A 1 0.995 0.995 0.995 0.995 0.995

Scenario 3 (10K) 1 1 1 1 1 0.646 N/A N/A N/A 0.646

Scenario 4 (10K) 1 1 1 1 1 0.617 0.617 0.617 0.617 0.617

Scenario 1 (100K) 1 N/A N/A N/A 1 1 N/A N/A N/A 1

Scenario 2 (100K) 1 N/A N/A N/A 1 0.976 0.955 0.974 0.988 0.988

Scenario 3 (100K) 1 1 1 1 1 0.653 N/A N/A N/A 0.653

Scenario 4 (100K) 1 1 1 1 1 0.655 0.646 0.645 0.649 0.648

Table 2. VM OVERHEAD EVALUATION (LATENCY IN SECONDS).

CheckPoint Sender A B C D E F G H Reciever

Scenario 1 (10K) 4.596 N/A N/A N/A 4.596 4.628 N/A N/A N/A 4.628

Scenario 2 (10K) 4.683 N/A N/A N/A 4.679 4.724 4.724 4.724 4.724 4.720

Scenario 3 (10K) 4.678 4.623 4.623 4.623 4.621 4.797 N/A N/A N/A 4.811

Scenario 4 (10K) 4.434 4.431 4.431 4.429 4.428 4.503 4.503 4.503 4.503 4.602

Scenario 1 (100K) 51.78 N/A N/A N/A 51.784 51.832 N/A N/A N/A 51.831

Scenario 2 (100K) 54.899 N/A N/A N/A 54.896 55.055 55.055 55.055 55.055 60.052

Scenario 3 (100K) 49.489 49.489 49.486 49.485 49.485 51.289 N/A N/A N/A 51.264

Scenario 4 (100K) 54.711 54.709 54.707 54.705 54.704 54.753 54.753 54.753 54.753 54.752

14 Jui-Ting Weng et al.: Running consistent, parallel experiments in vehicular environment

Each column represents a different checkpoint, and each

row represents the combination of the scenario and the traf-

fic load. The (10K) and (100K) tags in each row represent

the number of packets generated. Table 1 shows the packet

delivery ratio, which is the number of packets received at a

checkpoint divided by the number of packets generated at

the sender. Table 2 is the interval between the first packet

and the last packet received at every checkpoint in seconds.

Theses numbers were collected by running the packet sniffer

tshark [26] at every interface.

Comparing the packet delivery ratio sequentially at all

interfaces in Table I, there is a steep decrease between

checkpoint D and E in scenarios 3 and 4, where the packets

originate from the Xen guest instead of the Xen host. On the

contrary, when packets originate from Xen host in sce-narios

1 and 2, packets entering the outgoing interface D are suc-

cessfully transmitted to checkpoint E with high probability.

The transmission between checkpoint D and E is carried out

by two 802.11 wireless cards. This shows that when bursty

packets are generated on the same operating system as the

physical interface, the Xen host has better scheduling to

handle packets, so fewer packets are dropped at the wireless

device.

Next, the reliability of the Xen system is considered.

In-side the sending machine, there is no packet loss at any

checkpoint, as shown in scenario 3 and 4. In addition, a test

between the Xen host and guest using iperf shows the

bandwidth between Xen host and guests are more than

8Gb/s, which is significantly larger than the wireless

band-width. Therefore, the Xen host and guest communica-

tion in the sending node is 100% reliable.

On the other hand, some packet loss is found inside the

receiving machine, in scenario 2 and 4 with 100K bursty

traffic. However, the total number of receiving packets at

each interface is not always decreasing. From row scenario 2

(100K) and scenario 4 (100K) , columns G and H, more

packets are received at the last interface than the virtual

bridge. This contradictory result implies that tshark is

probably not 100% accurate. The experiments show that

tshark has at least 4% error, as some packets that are not

sniffed at one interface appear later in another interface.

Although this complicates the result, packet counts sniffed at

every interface inside the receiving node are still close to

each other. This suggests that after packets are received at

the physical interface of the receiving node, they are

deli-vered to the application with a high probability.

Table 2 shows the interval between the first packet and the

last packet sniffed at every interface. This number re-mains

fairly constant among all interfaces for every scena-rio.

Because all interfaces besides the two wireless devices have

little packet loss, the processing time at each virtual interface

does not contribute much to the delay, according to queueing

theory. It also implies the next bottleneck be-sides wireless

devices processing in the experiments is the UDP packet

generator. In addition, scenario 1 on row 1 and row 5

represents the performance of the native Linux sys-tem,

which shows the network interface card achieved 17.8Mb/s

while transmitting 10k packets, and 15.4Mb/s while trans-

mitting 100k packets.

Finally, different loads of UDP Constant Bit Rate (CBR)

traffic is used to examine the threshold of the system in order

to find the "safe zone" to perform experiments. The CBR

traffic is generated by the UDP application with 1000-byte

packets with a fixed interval instead of bursty traffic. The

network configuration is the same as scenario 4: traffic

generated from one Xen guest and delivered to another Xen

guest on a different node. The results are shown in Figure 4.

The outgoing interface can handle at least 10Mb/s of traffic

without introducing massive end-to-end packet loss. We

conclude that the Xen system is reliable when the wireless

traffic load is under 10Mb/s.

Fig. 4. Overhead introduced by Xen virtualization: packet delivery ratio

while performing the VM to VM experiment with different loads of CBR

traffic.

4.2. Sharing Overhead

On our virtualized platform, multiple Xen guests share

physical resources. It is therefore important to understand

the maximum network load at which the sharing causes

performance drops or excessive delays. In our setup, the Xen

host connects multiple Xen guests to the physical net-work

interface through a Linux network bridge. The oper-ating

system provides a share of CPU time to the virtual machines,

and thus to the read and write locks on the net-work bridge.

The bridge queue policy is First In First Out (FIFO) coupled

with the fair share of the locks that avoids starvation and

provides fair sharing of the resources. This section exams

the capacity when multiple virtual machines are run at a

single node.

Two sets of experiments were performed: (1) many-

to-one, and (2) one - to-many. The experimental traffic is

generated from Xen guest(s) in one machine and deliver to

other Xen guest(s) at another machine. For the many-to-one

scenario, different numbers of Xen guests are run on a single

Xen sending machine. They simultaneously send UDP traf-

fic to a single Xen guest at the receiving machine. In the

one-to-many experiments, multiple applications run to-

gether at a single Xen guest, and each sends UDP traffic to

different receiving Xen guests, while all receiving Xen

 International Journal of Sensors and Sensor Networks 2012, 1(1) : 10-20 15

guests are located at a single Xen receiving machine. Every

Xen guest run the same CBR traffic in every experiments.

Each traffic is composed of 1000-byte payload UDP packets

with a fixed interval determined by the aggregated

throughput. Experiments finish when an aggregated 100k

packets are sent.

The first goal in this section is to understand how the

number of Xen guests affects the network capacity. Figure 5

shows the packet delivery ratio with different numbers of

Xen guests in both scenarios. The overall packet delivery

ratios among different numbers of Xen guests are almost

identical. This shows that the system can handle at least five

concurrent virtual machines without introducing sig-nificant

overhead. Moreover, in the one-to-many experi-ments, the

packet delivery ratio slightly increases as the number of

virtual machine increases. It is probably because running

multiple applications slightly increases the packet genera-

tion time. Therefore, the physical devices have longer time

to handle each packet and in turn achieve higher delivery

ratios.

(a) Many to one

(b) One to many

Fig. 5. Overhead introduced by Xen virtualization: packet delivery ratio as

a function of UDP CBR for multiple UDP flows generated at different

virtual machines.

Another important issue is the fairness among the virtual

systems when the network is fully loaded. Even though the

number of virtual machine does not affect the aggregated

throughput, the network resource may not be shared fairly.

Figure 6 demonstrates the case of five concurrent virtual

machines, where each line represents a different UDP flow.

The packet delivery ratio for each UDP flow is defined as the

packets received at the destination application layer divided

by the packets sent. When the traffic is under 10Mb/s, every

sender attains close to 100% delivery. As the aggregate

throughput increases, virtual machines start to contend for

physical resources; consequently, all virtual machines suffer

from similar percentage of packet loss. The maximum dif-

ference of packet delivery ratio among all UDP flows in

many-to- one experiments is 11%, where as the ratio is 6%

in the one-to-many experiments. This shows that Xen pre-

vents a single Xen guest from dominating the networking

device when contention happens.

(a) Many to one

(b) One to many

Fig. 6. Xen fairness evaluation: packet delivery ratio for different Xen guest

pair while running 5 VMs in parallel.

To sum up, multiple Xen guests can utilize the bandwidth

well if aggregated throughput is under 10Mb/s. When con-

gestion happens, bandwidth is shared by all Xen guests with

reasonable fairness.

5. Field Experiments

PepNet is used to perform comparisons between two well

known ad hoc routing protocols, AODV and OLSR. We

varied the use of AODV and OLSR (singularly or concur-

rently), interference nodes and the number of mobile nodes

to perform eight rounds of 20-minute experiments. Table 3

reports the configuration for each experiment. Section 5.1

presents the details of the setup for each experiment round,

and Section 5.2 presents the comparison result between two

16 Jui-Ting Weng et al.: Running consistent, parallel experiments in vehicular environment

protocols. AODV is a reactive protocol, which allows it to

perform better route selection than OLSR in a frequently

changing topology [27]. This has been verified by numerous

simulations and testbeds with limited mobility support.

PepNet achieves the same conclusion in real world traffic,

with fewer experimental resources.

5.1. Experimental Setup

The experiments were performed around the UCLA En-

gineering IV building with eight different network confi-

gurations described in the following subsections.

Table 3. Experiment Rounds Summary

Experiment Name AODV OLSR Interface
Mobile

Number

Round 1 X 1

Round 2 X 1

Round 3 X X 1

Round 4 X X 1

Round 5 X X 1

Round 6 X X X 1

Round 7 X X 2

Round 8 X X X 2

5.1.1. Xen Host Setup

Mactrace: Each Xen host ran a mactrace tool that broad-

casts a hello beacon every 200 ms, which contains position

and timestamp information. These hello beacons were used

to construct the network connectivity matrix over time for

best route investigations.

Tshark: Each Xen host ran tshark to log all packet sniffed

at the wireless interface.

Synchronization: All the systems are synchronized via

NTP. This allows temporal correlation among the trace logs

with the precision of ten macro-seconds.

5.1.2. Xen Guest Setup

Routing Protocols: Each node, ran two Xen guests in ad-

dition to the Xen host. One Xen guest ran an implementation

of the ad hoc on demand distance vector routing (AODV)

AODV-UU [28][29], and the other Xen guest used the Op-

timized Link State Routing (OLSR) [30][31]. Tables 4 and 5

summarize the parameters of AODV and OLSR. These

variables are based on the previous work in [16] and account

for the vehicular scenario used in the experiments.

Table 4. AODV parameters

Hello message interval 500ms

Allow hello loss 2

Delete period 1s

Active route timeout 2s

Table 5. OLSR parameters

Hello message interval 500ms

Hello message validity time 1s

Topology Control (TC) message interval 1s

Topology Control (TC) message validity 2s

Network Traffic: A simple application generated a con-

stant UDP stream of 50-byte data segments every 150ms.

Each packet contained a packet sequence number and the

timestamp when the packet was created. The traffic source

and destination pairs are described in the next paragraph.

5.1.3. Topology and Interference Setup

Figure 7 shows the bird's-eye view of the physical to-

pology setup. Four fixed nodes remained at the same place

for all eight experiments. The antennas of these nodes were

placed on top of a 1.5 meter stand to ensure good signal

propagation. The mobile nodes were placed on vehicles and

their antenna was placed on the top of the cars to avoid

interference due to the automobile body. The four fixed

nodes, represented by the {\it pin icon} in Figure \ref{fig_4},

were placed at the four corners of the building. The resulting

rectangle was approximately 60 meters wide (East-West)

and approximately 50 meters long (North-South). Each

fixed node was in line of sight with the nodes placed at

neighboring corners. Therefore, neighbor nodes were con-

nected and diagonal connections are blocked by the build-

ing.

Half of the experiments used two interference nodes in-

dicated by the wave icon in Figure 7. These interference

nodes generated layer-2 bursty broadcast traffic of random

length uniformly distributed from 0 to 100 packets of ran-

dom size uniformly distributed from 50 to 1000 bytes. After

each burst, they idled for a random period of time uniformly

distributed in the interval of [0,30] seconds.

Fig. 7. Bird’s-eye view of topology setting for all experiment rounds

5.1.4. Experiment Traffic Setup

The summary of the 8 rounds of experiments is reported

in table 3. AODV alone was used in rounds 1 and 3; OLSR

alone in was used in rounds 2 and 4; both AODV and OLSR

were used in parallel in rounds 5 through 8. Traffic gener-

ated from the Xen guest running AODV were delivered to

 International Journal of Sensors and Sensor Networks 2012, 1(1) : 10-20 17

the Xen guest which also ran AODV at the receiving ma-

chine, and similarly with to OLSR.

In the single mobile node scenarios, the test traffic was

generated from the mobile node and delivered to one of the

four fixed nodes. After sending packet for two minutes, the

UDP traffic paused for one minute, and then repeated the

process to another fixed node in a round-robin manner. In

the two mobile node scenario, both mobile nodes moved

clockwise with different speeds. When two mobile nodes

met, the faster mobile node overtook the slower one. The

faster mobile node sent UDP stream to the slower mobile

node for two minutes, paused for one minute, and then re-

peated the same process. Each round lasted for 20 minutes,

which contained seven 2-minute sub-sessions.

5.2. Experimental Result

This section covers three areas: (1) the mactrace tool

showed the dynamics of the VANET experiment environ-

ment, (2) sequential experiments with AODV and OLSR did

not provide consistent performance comparisons, and (3)

parallel experiments consistently provided comparable re-

sults.

5.2.1. VANET Dynamics

The network topology of the experiment is reflected by

the optimal hop count, which is defined as the shortest hop

count from one node to another. During the experiment,

mactrace periodically broadcasted beacon packets. Every

other node received the beacon packet and recorded the

existence of a one-way connectivity at that time. Using the

mactrace log, the network connectivity matrix was con-

structed, and the shortest hop counts between any two nodes

at any given time was obtained by running a shortest path

algorithm.

Figure 8 shows the optimal hop count from the moving

node to one fixed node in round 1 and round 2 for 10 minutes.

Because the four fixed nodes formed a complete cycle, the

theoretical optimal hop count is 2 hops. However, some

uncontrollable factors such as other cars blocking the signal

line of sight or random wireless noises interfered with the

optimal route and resulted in unpredictable behavior. Ac-

cording to Figure 8, the optimal hop count repeatedly al-

ternated between 1 and 2, and occasionally reached 3 hops in

both round 1 and round 2, the single-mobile-node scenarios.

The result shows network topology looks considerably

steady in these rounds.

Round 1

Round 2

Fig 8. Network connectivity: optimal hop count from mobile sender to one

fixed node over time for experiment round 1, 2

The two-mobile-node scenarios were more complicated,

and the optimal hop count from the faster mobile node to the

slower mobile node is shown in Figure 9. To quantify the

difference between two rounds, 64% of the time in round 7

the optimal hop count was 1, while only 45% of the time in

round 8 the optimal hop count was 1. Moreover, the topol-

ogy change in round 8 happened more frequently than round

7. The optimal hop count in round 7 changed 58 times, while

in round 8 changes it changed 84 times. If we consider a

successful hop count change to be the one that lasts at least

for 5 seconds, round 7 contained 6 successful hop count

changes, while round 8 contained 13 successful hop count

changes. This shows that even in a simple experiment en-

vironment -- two cars circling four fixed nodes around a

building --is still difficult to control the network topology.

Round 7

Round 8

Fig. 9. Network connectivity: optimal hop count from mobile sender to

another mobile receiver over time for experiment round 7, 8

5.2.2. Sequential Experiments

The experiment in rounds 1 through 4 study the perfor-

mance comparison between AODV and OLSR, with and

without the artificial interference signal. Experiment rounds

1 through 4 were run sequentially, and their results are

shown in Figure 10. The performance metrics used here are

the packet hop count distribution and the packet delivery

ratio. The packet hop count is the number of hops that a

successfully received packet takes to reach the destination.

The packet delivery ratio is the total number of packets

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

N
u

m
b

e
r

o
f

H
o

p
s

Time [s]

Mac Trace

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

N
u
m

b
e
r

o
f
H

o
p
s

Time [s]

Mac Trace

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

N
um

be
r

of
 H

op
s

Time [s]

Mac Trace

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600

N
um

be
r

of
 H

op
s

Time [s]

Mac Trace

18 Jui-Ting Weng et al.: Running consistent, parallel experiments in vehicular environment

received divided by the total number sent.

Figures 10(a) and 10(c) show the packet hop count dis-

tribution. In general, protocols with better route selection

have a smaller hop count because they react to topology

changes faster. Figure 10(a) shows that OLSR performed

slightly better in hop count selection than AODV in a

20-minute experiment. On the other hand, 10(c) draws the

opposite conclusion. The packet delivery ratio comparison

for the first four rounds is shown in Figures 10(b) and 10(d)

AODV had a better packet delivery ratio than OLSR, al-

though in the first two rounds AODV performed 10% better

and in the next two rounds AODV performed only 1% better.

Therefore, even with considerably controlled mobility (one

mobile node circling four fixed nodes), the environmental

changes still increased experiment dynamics, and running

single protocol experiments (no parallelization) for the

purpose of evaluating alternate protocol was misleading. A

traditional way to solve this problem is to ``even out" the

external influences by repeating experiments multiple times

with longer durations. However, performing real VANET

experiments is costly.

Fig. 10. Non-parallel experiments: round 1 though 4

5.2.3. Parallel Experiments

This section shows that the experimental results of the

four parallelized experiments provided better consistency

than the sequential experiments.

Figure 11 shows the results of the parallel experiments in

the-single-mobile node scenario, rounds 5 and 6. Figures

11(a) and 11(c) present the packet hop count distribution for

both AODV and OLSR in experiments rounds 5 and 6, and

Figures 11(c) and 11(d) show the packet delivery ratio. We

note that AODV consistently outperformed OLSR in the

single mobile node scenario because AODV exhibited better

hop count selection and higher packet delivery ratio in both

rounds. Moreover, this conclusion can be safely drawn only

because both protocols experienced the same environment

condition so the dynamic environment factors were elimi-

nated.

Fig. 11. Single mobile node parallel experiments: round 5 and 6

Next, consider the two-mobile-node scenarios that have

uncontrollable connectivity patterns, as shown in Figure

8(b). The result in Figure 12 shows parallelized experiments

still provided consistent results. Figure 12 shows the packet

hop count distribution and the packet delivery ratio for both

protocols in rounds 7 and 8. AODV still consistently out-

performed OLSR both in terms of the hop count and the

packet delivery ratio. This result shows parallel experiments

delivered accurate result in a single experiment run even

when the mobility pattern is uncontrolled.

Fig. 12. Two mobile node parallel experiments: rounds 7 and 8

Finally, a part of the parallelized experiments show that

performing sequential experiments may lead to false con-

clusions. According to Figure 12, the environment in round

 International Journal of Sensors and Sensor Networks 2012, 1(1) : 10-20 19

8 was noisier than round 7 because the packet delivery ratio

dropped by 15%. Suppose only protocol OLSR were eva-

luated in round 7, and only AODV were evaluated in round 8;

then, after two 20-minute of experiments, OLSR would have

outperformed AODV in both the packet delivery ratio and

the hop selection, which would be a false conclusion, shown

in Figure 13. This shows sequential experiments do not

guarantee a controlled experiment environment, and paral-

lelized experiments battle the uncontrollable experiment

factors efficiently.

Fig. 13. False Evaluation: an incorrect result when two protocols running

in two sequential experiments are compared (OLSR Round 7/ AODV Round

8).

6. Conclusion and Future Work

A new virtual machine based testbed, PepNet, addresses

the inconsistency issues in VANET performance evaluation.

By running experiments concurrently, protocols or applica-

tions encounter identical topology, channel conditions, and

external interferences, avoiding difficulties in reproducing

identical environments. Besides, there are two additional

benefits of running parallel experiments in virtual envi-

ronment. First, virtual machines provide a complete oper-

ating system so protocol implementations with different

system requirements can be run in parallel. Second, expe-

riments are performed with a single set of hardware, greatly

reducing hardware cost. These benefits make virtualization a

cost efficient way to conduct VANET experiments.

Another contribution of this paper is to understand the

virtualization overhead so that experiments can be designed

accordingly. Section IV shows that Xen can handle 10Mb/s

traffic reliably. In addition, the checkpoint experiments

show that the bottleneck is the wireless interface card lo-

cated at the sender node. Our experiments also found the

tshark error at the receiving virtual machine, which makes it

hard to quantify the receiving node error rate. Experimen-

tal results also show that when aggregate throughput does

not exceed the threshold, Xen supports up to 5 parallel vir-

tual machines without introducing significant overhead. It is

our next goal to seek a solution for the high packet loss rate

to improve the performance of virtual machines.

Finally, several field experiments demonstrated the im-

portance of parallel experiments. With only two mobile

nodes, the network topology is already quite complex and

hard to reproduce. Sequential experiments in a simple sce-

nario do not provide a consistent comparison result, while

parallel experiments provide consistency at all times. Our

next goal is to perform medium scale experiments involving

more than two vehicles in real urban environments and see

whether parallel experiments still maintain consistency.

We plan to install multiple wireless cards in the Xen host,

say WiMax, 3G and software defined radios, in addition to

WiFi. This approach should enable opportunistic network-

ing, with more sophisticated experiments for which paralle-

lization will be critical.

Acknowledgements

To Be decided

References

[1] A. Festag, H. Hartenstein, A. Sarma and R. Schmitz,
“FleetNet: Bringing carto-car communication into real
world”, in Proc. 11th ITS World Congress, October 2004.

[2] M. Jerbi, S.-M. Senouci, M. Al Haj, “Extensive experimental
characterization of communications in vehicular ad hoc
networks within different environments”, in Proc. IEEE VTC
2007. doi:10.1109/WCNC.2008.577.

[3] R. Mangharam, J.J. Meyers, R. Rajkumar, D.D. Stancil, J.S.
Parikh, H. Krishnan and C. Kellum, “A multi-hop mobile
networking test-bed for telematics”, in Proc. SAE World
Congress, 2005. citeseer doi: 10.1.1.65.9415.

[4] MyCarEvent Project “http://www.mycarevent.com/”.

[5] CVeT Testbed “http://www.vehicularlab.org/testbed.php”.

[6] C. Pinart, P. Sanz, I. Lequerica, D. Garc’?a, I. Barona, and D.
S’anchez-Aparisi, “DRIVE: a reconfigurable testbed for
advanced vehicular services and communications”, Tri-
dentCom ’08, Innsbruck, Austria.

[7] Valery Naumov, Rainer Baumann and Thomas Gross, “An
Evaluation of Inter-Vehicle Ad Hoc Networks Based on
Realistic Vehicular traces”, MobiHoc ’06, May 22-25, 2006.
doi:10.1145/1132905.1132918.

[8] E. Giordano, R. Frank, G. Pau, and M. Gerla, “Corner: a
realistic urban propagation model for VANET”, in The Se-
venth International Conference on Wireless On-demand
Network Systems and Services (WONS), 2010.
doi:10.1109/WONS.2010.5437133.

[9] K.C. Lee , S. Lee , R. Cheung , U. Lee and M. Gerla, “First
Experience with CarTorrent in a Real Vehicular Ad Hoc
Network Testbed”, in Proc. VANET MOVE, May 2007.
doi:10.1109/MOVE.2007.4300814.

[10] J. Bernsen and D. Manivannan, “Unicast routing protocols
for vehicular adhoc networks: A critical comparison and
classification”, Pervasive and Mobile Computing 5 (2009)
1-18. doi:10.1016/j.pmcj.2008.09.001.

[11] C. Lochert, B. Scheuermann and M. Mauve, “Probabilistic
Aggregation for Data Dissemination in VANETs”, VANET
2007:Proceedings of the 4th ACM International Workship on
Vehicular Ad Hoc Networks. doi:10.1145/1287748.1287750.

[12] A. Bachir and A. Benslimane, “A Multicast Protocol in Ad

20 Jui-Ting Weng et al.: Running consistent, parallel experiments in vehicular environment

hoc Networks Inter-Vehicle Geocast”, in Proc. 58th IEEE
Vehicular Technology Conference, Orlando, USA, October
2003. doi:10.1109/VETECS.2003.1208832 .

[13] Y.C. Tseng, S.Y. Ni, Y.S. Chen, and J.P. Sheu, “The broadcast
storm problem in a mobile ad hoc network”, Wirel. Netw., vol.
8, no. 2/3, pp. 153-167, Mar.-May 2002.
doi:10.1023/A:1013763825347.

[14] CMU wireless emulator
“http://www.cs.cmu.edu/~emulator/”.

[15] ORBIT: Open-Access Research Testbed for Next-Generation
Wireless Networks, “http://www.orbit-lab.org/”.

[16] Devashish Rastogi, Sachin Ganu, Yanyong Zhang, Wade
Trappe, and Charles Graff, “A comparative study of AODV
and OLSR on the ORBIT testbed”, Milcom 2007.
doi:10.1109/MILCOM.2007.4455056

[17] APE testbed “http://apetestbed.sourceforge.net/”.

[18] R. S. Gray and D. Kotz, “Outdoor experimental comparison
of four ad hoc routing algorithms”, MSWiM ’04.
doi:10.1145/1023663.1023703.

[19] MIT ROOFNET “http://pdos.csail.mit.edu/roofnet/”.

[20] Berlin Roof Net (BRN)
“http://sar.informatik.hu-berlin.de/research/projects/2005-Be
rlinRoofNet/berlin roof net.htm”.

[21] Microsoft Research: Mesh Networking
“http://research.microsoft.com/en-us/projects/mesh/”.

[22] MadWifi project “http://madwifi-project.org/”.

[23] Xen “http://www.xen.org/”.

[24] Gentoo “http://www.gentoo.org/”.

[25] GPSD “http://gpsd.berlios.de/”.

[26] Wireshark “http://www.wireshark.org/”.

[27] P. Apparao, S. Makineni, D. Newell, “Characterization of
network processing overheads in Xen”, VTDC ’06.
doi:10.1109/VTDC.2006.3.

[28] AODV-UU “http://core.it.uu.se/core/index.php/AODV-UU”.

[29] RFC 3561: Ad hoc On-Demand Distance Vector (AODV)
Routing.

[30] RFC 3626: Optimized Link State Routing Protocol (OLSR).

[31] OLSRD “http://www.olsr.org/”

