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Abstract: Nowadays mathematical models play a major role in epidemiology since they can help in predicting the spreading
and the evolution of diseases. Many of them are based on ODEs on the assumption that the populations being studied are
homogenous sets of fixed points (individuals) but actually populations are far from being homogenous and people are constantly
moving. In fact, thanks to science progresses, distances are no longer what they used to be in the past and a disease can travel and
reach out even the most remote places on the globe in a matter of hours. HIV and Covid-19 outbreaks are perfect illustrations
of how far and fast a disease can now spread. When it comes to studying the spatio-temporal spreading of a disease, instead of
ODEs dynamic models the Reaction-Diffusion ones are best suited. They are inspired by the second Fick’s law in physics and are
getting more and more used. In this article we make a study of the spatio-temporal spreading of the COVID-19. We first present
our SEIR dynamic model, we find the two equilibrium points and an expression for the basic reproduction number (R0), we use
the additive compound matrices and show that only one condition is necessary to show the local stability of the two equilibrium
points instead of two like it is traditionally done, and we study the conditions for the DFE (Disease Free Equilibrium point) and
the EE (Endemic Equilibrium point) to be globally asymptotically stable. Then we construct a diffusive model from our previous
SEIR model, we investigate on the existence of a traveling wave connecting the two equilibrium thanks to the monotone iterative
method and we give an expression for the minimal wave speed. Then in the last section we use the additive compound matrices
to show that the DFE remains stable when diffusion is added whereas there will be appearance of Turing instability for the EE
once diffusion is added. The conclusion of our article emphasizes the importance of barrier gestures and the fact that the more
people are getting tested the better governments will be able to handle and tackle the spreading of the disease.
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1. Introduction
The COVID-19 was declared a pandemic by the WHO on

the 30th Juanary 2020. The responsible agent is a coronavirus
(SARS-Cov2) that spreads between people thanks to close
contacts, usually via droplets produced by coughing, sneezing
or talking. The droplets usually fall onto surfaces or to
the ground rather than remaining in the air making it also
possible for people to be infected by touching a contaminated
surface or any contaminated object. According to the updated
information available [27], incubation period ranges from 2 to
14 days and the main symptoms are fever, loss of appetite,
shortness of breath, cough, fatigue, muscle aches and pain.

The majority of the infected individuals are asymptomatic and
tend not to be tested thou they do play a role in the spreading
of the disease. The recovery time which usually ranges from
2 to 6 weeks differs from person to person and it happens that
even after that period some people still complain to not be fully
recovered.

Depending on the main purpose, dynamic models usually
try to encapsulate as much as possible important features of
the disease in the simplest way [3-6, 15-19] to provide a
comprehensive view on the disease dynamic. That is why
the majority of the current models on COVID-19 are very
detailed in classes. For instance a quarantined class and/or
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an hospitalization class are often taken into account leading to
models with 5 to 8 classes [20-26]. Knowing how challenging
it is to find front traveling waves for R-D models of three
or more than three equations, we have chosen to build a
simpler model with only four classes (the susceptibles, the
asymptomatic infected individuals, the symptomatic infected
individuals and the removed). other approaches are regularly

used to investigate on the existence existence of a traveling
wave [5, 7] but here we use the monotone iterative method
by setting up a pair of ordered super-solutions. We consider
that no major action is taken to stop the spreading, therefore
we have no quarantine and people are still free to move. The
interactions between the four classes are given in the Figure 1

2 R.Walo,I.Ramadhani, F.D. Tshianyi M. K.

information available [27], incubation period ranges from 2 to 14 days and the main
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with 5 to 8 classes [20]-[26]. Knowing how challenging it is to find front traveling
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Figure 1. Dynamic graph of COVID-19 transmission
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and the assumptions we make are the following:
1. Every new-born is susceptible i.e there are only

horizontal transmission;
2. An asymptomatic infected individual is an infectious

person presenting no or very few symptoms;
3. A symptomatic infected individual is an infectious

person presenting symptoms of COVID-19;
4. Every contact with an infectious person does not always

lead to a transmission of SARS-Cov2;
5. After an infectious contact there is always an incubating

period but we do not take it into account here;
6. After a susceptible has been infected by either an

asymptomatic infected individual or a symptomatic
infected individual, he/she will go through an
asymptomatic state he can remain into until he/she is
totally healed or he/she will leave that state as soon as
sufficient symptoms begin to appear;

7. A symptomatic infected individual can either die of
COVID-19 or get healed;

8. We do not take into account reinfection by COVID-19.
9. The entire population has a per-capita death rate

independent of COVID-19.

2. A Reaction Model of COVID-19

Consider a population with size N . We can divide it into
sub-populations and denote their fractions by S,E, I, and R
which respectively represent the fraction of susceptible, the
fraction of asymptomatic infected individuals, the fraction of
symptomatic infected individuals and the fraction of removed.
Thus the sub-populations verify the identity: S+E+I+R =
1. Based on the assumptions made previously we can set a
reaction model of COVID-19 as follows:





S
′

= Λ− βIS − ηES − dS
E
′

= βIS + ηES − εE − θE − dE
I
′

= εE − µI − γI − dI
R
′

= γI + θE − dR.

(1)

The coefficients used into our model are explained in the
following table:

Table 1. Coefficients meanings.

Coefficient Meaning

Λ The recruitment

β The infective contact rate symptomatic infected/susceptible

η The infective contact rate asymptomatic infected/susceptible

µ The induced-disease death rate due to COVID-19

ε The transfer rate from asymptomatic infected to symptomatic infected

d The natural death rate out of µ

θ The natural recovery rate of asymptomatic infected individuals

γ The natural recovery rate of symptomatic infected individuals



24 Rebecca Walo Omana et al.: On a Reaction-Diffusion Model of COVID-19

The last equation in (1) does not intervene into the transmission of the disease, we can simplify our system by reducing it into
three equations as follows: 




S
′

= Λ− βIS − ηES − dS
E
′

= βIS + ηES − εE − θE − dE
I
′

= εE − µI − γI − dI
(2)

To ensure the well posedness of the system we consider the proportion of the population in:

G =
{

(S,E, I) ∈ R3
+ : S + E + I ≤ 1

}
. (3)

2.1. Equilibrium points andR0

The equilibrium points are

ū = (S0, 0, 0) = (
Λ

d
, 0, 0) (4)

for the disease free equilibrium (DFE) and

u∗ =

(
MN

εβ + ηM
,

Λ(εβ + ηM)− dMN

N(εβ + ηM)
,
ε(Λ(εβ + ηM)− dMN)

MN(εβ + ηM)

)
(5)

for the endemic equilibrium (E.E).
To find R0 we use the next generation operator [18, 21]. Our DFE is given by ū = (Λ

d , 0, 0) = (1, 0, 0) due to the fact that at
this equilibrium point the entire population is susceptible i.e the fraction of the healthy people is 1. So

Jū =



−d −ηΛ

d −β Λ
d

0 ηΛ
d − (ε+ θ + d) β Λ

d
0 ε −(d+ µ+ γ)


 (6)

we obtain the following sub-matrices

F =

(
Λη
d

Λβ
d

0 0

)
, V =

(
(ε+ θ + d) 0
−ε (µ+ γ + d)

)
. (7)

Then

V −1 =

(
1

(ε+θ+d) 0
ε

(ε+θ+d)(µ+γ+d)
1

(µ+γ+d)

)
and − FV −1 =

(
−
(

Λη
d(ε+θ+d) + Λβε

d(ε+θ+d)(µ+γ+d)

)
− Λβ
d(µ+γ+d)

0 0

)
. (8)

Hence the basic reproduction number is:

R0 = ρ(−F.V −1) =
Λ(η(µ+ γ + d) + βε)

d(ε+ θ + d)(µ+ γ + d)
=

Λ(ηM + βε)

dMN
. (9)

Theorem 2.1 (Existence of equilibria). If R0 ≤ 1, the model (2) always has a disease-free equilibrium ū = (Λ
d , 0, 0). If

R0 � 1, the model (2) has exactly one endemic equilibrium u∗ =
(

MN
εβ+ηM , Λ(εβ+ηM)−dMN

N(εβ+ηM) , ε(Λ(εβ+ηM)−dMN)
MN(εβ+ηM)

)
.

Proof. Let us suppose thatR0 ≤ 1 then we have the existence of the EE
u∗ = (S∗, E∗, I∗) =

(
MN

εβ+ηM , Λ(εβ+ηM)−dMN
N(εβ+ηM) , ε(Λ(εβ+ηM)−dMN)

MN(εβ+ηM)

)
.

IfR0 := Λ(ηM+βε)
dMN = 1 then Λ(ηM+βε) = dMN thereforeE∗ = Λ(εβ+ηM)−dMN

N(εβ+ηM) = 0 and I∗ = ε(Λ(εβ+ηM)−dMN)
MN(εβ+ηM) = 0.

Thus u∗ =
(

MN
εβ+ηM , 0, 0

)
. for the proportion of the population being entirely in the first component we have

MN

εβ + ηM
= 1⇐⇒ εβ + ηM

MN
= 1⇐⇒ Λ(εβ + ηM)

dMN
=

Λ

d
( which keeps the proportion since

Λ

d
= 1)

Thus S∗ = Λ
d and the unique equilibrium point in this

situation is the disease free one.
If R0 ≺ 1 then Λ(ηM + βε) ≺ dMN. Hence E∗ =

Λ(εβ+ηM)−dMN
N(εβ+ηM) ≺ 0 and I∗ = ε(Λ(εβ+ηM)−dMN)

MN(εβ+ηM) ≺ 0. Both

components must be positive to ensure the existence of an
endemic equilibrium, therefore there is none.

Let us now suppose that R0 � 1, then Λ(ηM +

βε) � dMN , E∗ = Λ(εβ+ηM)−dMN
N(εβ+ηM) � 0 and I∗ =
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ε(Λ(εβ+ηM)−dMN)
MN(εβ+ηM) � 0. Thus there exists an endemic

equilibrium u∗ as defined in (5).

2.2. Stability of the Equilibria

Theorem 2.2. If

R0 :=
Λ(βε+ η(µ+ γ + d))

d(ε+ θ + d)(µ+ γ + d)
≺ 1

then the DFE given in (4) is locally asymptotically stable inG.
If

R0 :=
Λ(βε+ η(µ+ γ + d))

d(ε+ θ + d)(µ+ γ + d)
� 1

then the E.E given in (5) is locally asymptotically stable in G.
Proof: It suffices to show that the eigenvalues of the two

Jacobian matrices at the two equilibria have real negative part.
Next we use a property of the additive compound matrices to
state:

Theorem 2.3. Let Jū and Ju∗ be the Jacobian matrices at the
DFE and the EE. If

− |Jū| � 0

then the DFE given in (4) is locally asymptotically stable inG.
If

− |Ju∗ | � 0

then the E.E given in (5) is locally asymptotically stable in G.
Proof: To show that ū is stable we must prove under which

conditions − |Jū| � 0 and µ(J
[2]
ū ) ≺ 0*. Where µ is a

Lozinskǔ mesure onMn×n.

− |Jū| � 0⇐⇒ d

∣∣∣∣
Λη
d −N

Λβ
d

ε −M

∣∣∣∣ � 0

⇐⇒ dMN − Λεβ − ηΛM � 0

⇐⇒ dMN � Λ(εβ + ηM)

⇐⇒ Λ(εβ + ηM)

dMN
≺ 1

⇐⇒ R0 ≺ 1.

The second compound matrix of Jū is given by:

J
[2]
ū =


Λη
d
− (N + d) Λβ

d
Λβ
d

ε −(d+M) Λη
d

0 0 Λη
d
− (M +N)

 . (10)

Let us use µ1 as our Lozinskǔ mesure with

µ1(A) = Supk

Re (akk) + ∑
i,i 6=k

|aik|

 , A ∈Mn(Kn). (11)

From the first column we have:

Λη

d
− (N + d) + ε ≺ 0 =

Λη

d
− 2d− θ − ε+ ε ≺ 0

⇐⇒ Λη

d
− 2d− θ ≺ 0

⇐⇒ η ≺ 2d+ θ

⇐⇒ d � η − θ
2

(12)

We proceed the same way for the second and the third
columns and find respectively:

d � β −M and d � β + 2η − (µ+ γ + ε+ θ)

2

Two conditions are necessary to the stability of the
equilibrium ū. The first one is the sign of the Jacobian Jū.
Indeed if (− |Jū|) � 0 then R0 ≺ 1 and this condition is
necessary for the local stability of ū. If µ

(
J

[2]
ū

)
≺ 0, then

we get a condition on the parameters and this has no much
meaning and impact for our model.

Theorem 2.4. When η ≤ β and R0 ≤ 1, then disease-free
equilibrium ū for (2) is globally asymptotically stable.

Proof
We use an approach given by Zhisheng Shuai and P. Van

Den Driessche to construct our Lyapounov function [22, 29] .
Let

F =

(
βIS + ηES

0

)
≥ 0, V =

(
NE

MI − εE

)
≤ 0, (13)

F, V and V −1 defined like in (7) and (8).

V −1F =

(
1
N 0
ε

MN
1
M

)(
ηS0 βS0

0 0

)

=




ηS0

N
βS0

N

εηS0

MN
εβS0

MN


 . (14)

If wT = (x y) denotes the left eigenvector of V −1F then
we have

(x y)




ηS0

N
βS0

N

εηS0

MN
εβS0

MN


 = (x y)R0 (15)

and wT = (1, 1).

If X =

(
E
I

)
then we have

wTV −1X = (1 1)




1
N 0

ε
MN

1
M



(
E
I

)

=
(M + ε)

MN
E +

I

M

*Algorithms on the calculation of µ(J [2]
ū ) are given in [8-10]
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and the Lyapounov function is given by:

L =
1

M

[
(M + ε)

N
E + I

]
=

1

(d+ µ+ γ)

[
(d+ µ+ γ + ε)

(ε+ θ + d)
E + I

]
. (16)

We have

L
′

=
∂L

∂E
E
′
+
∂L

∂I
I
′

=
1

M

[
(M + ε)

N
E
′
+ I

′
]
.

Therefore

L
′

= − (M + ε)

MN
(S0 − S)(ηE + βI) +

1

MN
[(M + ε)(ηS0E −NE + βS0I) + εNE −MNI] .

Since − (M+ε)
MN (S0 − S)(ηE + βI) ≺ 0 the expression

(H) =
1

MN
[(M + ε)(ηS0E −NE + βS0I) + εNE −MNI]

=
ηM + εβ

MN
S0E +

ηM + εβ

MN
S0I +

ε(η − β)

MN
S0E +

M(β − η)

MN
S0I − (E + I)

= (R0 − 1)(E + I) +
S0(η − β)

MN
(εE −MI) is negative.

From the hypothesis,R0 ≤ 1 and from (13) εE −MI ≥ 0, thus with η ≤ β we have (H) ≤ 0 and therefore L
′ ≤ 0.

Theorem 2.5. [Global stability of the EE]
The endemic equilibrium u∗ for (2) is globally asymptotically stable whenR0 � 1
Proof. Let

L1 = S − S∗ − S∗ ln
S

S∗
, L2 = E − E∗ − E∗ ln

E

E∗
and L3 = I − I∗ − I∗ ln

I

I∗
.

L
′
1 =

∂L1

∂S
S
′

=
(S − S∗)

S
(βS∗I∗ + ηS∗E∗ + dS∗ − βSI − ηSE − dS)

=
(S − S∗)

S
[−d(S − S∗) + β(S∗I∗ − SI) + η(S∗E∗ − SE)]

= −d (S − S∗)2

S
+ β

(S − S∗)
S

(S∗I∗ − SI) + η
(S − S∗)

S
(S∗E∗ − SE)

≤ βS∗I∗
(

1− SI

S∗I∗
− S∗

S
+

S∗I
S∗I∗

)
+ ηS∗E∗

(
1− SE

S∗E∗
− S∗

S
+

S∗E
S∗E∗

)

≤ βS∗I∗
(
I

I∗
− ln

I

I∗
− SI

S∗I∗
+ ln

SI

S∗I∗

)
+ ηS∗E∗

(
ln

SE

S∗E∗
− SE

S∗E∗
+

E

E∗
− ln

E

E∗

)

:= a13G13 + a12G12

L
′
2 =

∂L2

∂E
E
′

= −N (E − E∗)2

E
+ β

(E − E∗)
E

(SI − S∗I∗) + η
(E − E∗)

E
(SE − S∗E∗)

≤ βS∗I∗
(

SI

S∗I∗
− ln

SI

S∗I∗
− E

E∗
+ ln

E

E∗

)
+ ηS∗E∗

(
SE

S∗E∗
− ln

SE

S∗E∗
− S

S∗
+ ln

S

S∗

)

:= a21G21 + a12G12

and similarly

L
′
3 =

∂L3

∂I
I
′

=
(I − I∗)

I
(−εE∗ +MI∗ + εE −MI) ≤ εE∗

(
E

E∗
− ln

E

E∗
− I

I∗
+ ln

I

I∗

)
:= a32G32

a13 = βS∗I∗, a12 = ηE∗S∗, a21 = βS∗I∗, a12 = ηE∗S∗, a32 = εE∗.
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L
′
2 =

∂L2

∂E
E
′

= −N (E − E∗)2

E
+ β

(E − E∗)
E

(SI − S∗I∗) + η
(E − E∗)

E
(SE − S∗E∗)

≤ βS∗I∗
(

SI

S∗I∗
− ln

SI

S∗I∗
− E

E∗
+ ln

E

E∗

)
+ ηS∗E∗

(
SE

S∗E∗
− ln

SE

S∗E∗
− S

S∗
+ ln

S

S∗

)

:= a21G21 + a12G12

and similarly

L
′
3 =

∂L3

∂I
I
′

=
(I − I∗)

I
(−εE∗ +MI∗ + εE −MI)

≤ εE∗
(
E

E∗
− ln

E

E∗
− I

I∗
+ ln

I

I∗

)

:= a32G32

a13 = βS∗I∗, a12 = ηE∗S∗, a21 = βS∗I∗, a12 = ηE∗S∗, a32 = εE∗.
The associated weighted diagram given in Figure 2 has three vertices and two

                                                        

  

 

 

   

     

 

    

1 2    3 

Figure 2. Interractions between the classes

cycles. Along each cycle, G21 + G32 + G13 = 0 and G21 + G12 = 0. Then there
exist ci, 1 ≤ i ≤ 3, such that L =

∑3
i=1 ciLi is a Lyapounov function for (2).
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βS∗I∗
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εE∗
L3
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The associated weighted diagram given in Figure 2 has three
vertices and two cycles. Along each cycle,G21 +G32 +G13 =
0 and G21 + G12 = 0. Then there exist ci, 1 ≤ i ≤ 3, such
that L =

∑3
i=1 ciLi is a Lyapounov function for (2).

Let us find the relations between the ci’s. d+(1) = 1 =⇒
c2a21 = c1a13, since a21 = a13 then c2 = c1. d+(2) = 1 =⇒
c3a32 = c2a21 =⇒ c3 = c2

a21
a32

= c2
βS∗I∗

εE∗ . Our Lyapounov
function is given by:

L = L1 + L2 +
βS∗I∗

εE∗
L3 (17)

3. A Reaction-Diffusion Model on
COVID-19

Assume now that the individual in the population can move
(diffuse) with the same diffusion coefficient. If the susceptibles
and the asymptomatic infectious are free to move the same
way, we suppose that the symptomatic infectious still have
contacts with people able to diffuse. Then we can formulate
our R-D model like:




St = Λ +4S − βIS − ηES − dS
Et = 4E + βIS + ηES − (ε+ θ + d)E
It = 4I + εE − (µ+ γ + d)I

(18)

Using wave coordinates ξ = x+ ct in (18) yields:




0 = Λ + S
′′ − cS′ − (βI + ηE)S − dS

0 = E
′′ − cE′ + (βI + ηE)S −NE.

0 = I
′′ − cI ′ + εE −MI

(19)

Asymptotically the system (19) satisfies the following
boundary conditions: S

E
I

 (−∞) =

 Λ
d

0
0

 (20)

 S
E
I

 (+∞) =

 S∗

E∗

I∗

 =


MN

εβ+ηM

Λ(εβ+ηM)−dMN
N(εβ+ηM)

ε(Λ(εβ+ηM)−dMN)
MN(εβ+ηM)

 (21)

Linearizing (19) about (Λ
d , 0, 0) = (1, 0, 0)we obtain:





0 = Λ + S
′′ − cS′ − dS

0 = E
′′ − cE′ + (η −N)E.

0 = I
′′ − cI ′ −MI

(22)

The second equation in (22) provides the speed of the wave.
In fact its characteristic equation is:

r2 − cr + (η −N) = 0.

To ensure the existence of real solutions we must have
c ≥ 2

√
η −N .

Hence the minimal speed is

c∗ = 2
√
η −N (23)

and the roots to the characteristic equation are:

r1,2 =
c±

√
c2 − 4(η −N)

2
.

The solutions of the first equation are:

q1,2 =
c±
√
c2 + 4d

2
,

and those of the third:

p1,2 =
c±
√
c2 + 4M

2
.

Hence the profile of the traveling wave solution to (22) is
given by:




S(ξ)
E(ξ)
I(ξ)


 =




A11e
c−
√
c2+4d
2 ξ +A12e

c+
√
c2+4d
2 ξ

A21e
c−
√
c2−4(η−N)

2 ξ +A22e
c+
√
c2−4(η−N)

2 ξ

A31e
c−
√
c2+4M
2 ξ +A32e

c+
√
c2+4M
2 ξ


 (24)
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4. Existence of a Traveling Wave
To prove the existence of a front traveling wave solution to

(22) we shall use the monotone iterative method which relies
on the following principle:

Principle 4.1. [Monotone Iterative Method] Consider the
general second order ODE with Dirichlet boundary conditions
value given by :

{
u
′′
(t) = f(t, u(t), u

′
(t)), t ∈ I ≡ [a, b],

u(a) = A, u(b) = B,
(25)

with f : I × R2 −→ R a continuous function and A, B ∈ R.
If in C2(I) there exist U(t) a lower solution to (25) and U(t)
an upper solution to (25) such that U(t) ≤ U(t) on I . Then
the existence of a solution to the problem (25) lying between
U(t) and U(t) is proved.

Lemma 4.1. Let X(ξ) = (S(ξ), E(ξ), I(ξ)) = (0, 0, 0),
then X is a lower solution to (19).

Proof
It is obvious the last two equations of (19) vanish and for the

first one we have Λ ≥ 0.

Hence the boundary conditions give:



S(ξ)
E(ξ)
I(ξ)


 (−∞) =




0
0
0


 ≤




Λ
d
0
0


 (26)




S(ξ)
E(ξ)
I(ξ)


 (+∞) =




0
0
0


 ≤




S∗

E∗

I∗


 =




MN
εβ+ηM

Λ(εβ+ηM)−dMN
N(εβ+ηM)

ε(Λ(εβ+ηM)−dMN)
MN(εβ+ηM)




(27)

Thus (S(ξ), E(ξ), I(ξ)) = (0, 0, 0) is a lower-solution.
Lemma 4.2. Suppose that MN ≥ εβ and let X(ξ) =

(S(ξ), E(ξ), I(ξ)) be a function defined by:

S(ξ) = Λ
d S
∗ ∀ξ ∈ R;

E(ξ) =





E∗eq1ξ, ξ ≤ 0

E∗, ξ ≥ 0

I(ξ) =





N
β E
∗ea1ξ, ξ ≤ 0

I∗, ξ � 0

(28)

with q1 =
c+
√
c2−4η

2 the greater positive root of the equation
q2 − cq + η = 0 and a1 = c the non-zero positive root of the
equation a2− ca = 0. Then X(ξ) is an upper-solution to (19).

Proof
Assume that ξ ≤ 0.
For the first equation of (19) we have:

Λ +

(
Λ

d
S∗
)′′
− c

(
Λ

d
S∗
)′

− (β
N

β
E∗ea1ξ + ηE∗eq1ξ)

Λ

d
S∗ − dΛ

d
S∗

= Λ− (NE∗ea1ξ + ηE∗eq1ξ)
Λ

d
S∗ − dΛ

d
S∗

≤ Λ− (NE∗ea1ξ + ηE∗eq1ξ)S∗ − ΛS∗

≤ Λ− (NE∗ea1ξ + ηE∗eq1ξ)S∗ − Λ

⇔ −E∗(Nea1ξ + ηeq1ξ)S∗ ≺ 0

(29)

For the second equation of (19) we have:

q2
1E
∗eq1ξ − cq1E

∗eq1ξ

+ (β
N

β
E∗ea1ξ + ηE∗eq1ξ)

Λ

d
S∗ −NE∗eq1ξ

⇔ E∗eq1ξ(q2
1 − cq1 +

ηΛ

d
S∗) +NE∗ea1ξ −NE∗eq1ξ

≤ E∗eq1ξ
0︷ ︸︸ ︷

(q2
1 − cq1 + η) +NE∗ea1ξ −NE∗eq1ξ

= NE∗
(
ea1ξ − eq1ξ

)
≤ 0 car a1 ≺ q1 (30)

by their definitions.
For the third equation of (19) we have:

a2
1

N

β
E∗ea1ξ − ca1

N

β
E∗ea1ξ − MN

β
E∗ea1ξ + εE∗eq1ξ

=
N

β
E∗ea1ξ

0︷ ︸︸ ︷
(a2

1 − ca1) +εE∗eq1ξ − MN

β
E∗ea1ξ

= E∗
(
εeq1ξ − MN

β
ea1ξ

)

E∗
(
εeq1ξ − MN

β
ea1ξ

)
≤ 0⇐⇒ εeq1ξ − MN

β
ea1ξ ≤ 0

≤ ε− MN

β
≤ 0

⇐⇒ εβ

MN
≤ 1 (31)

Now if ξ � 0, then:
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For the first equation of (19) we have:

Λ +

(
Λ

d
S∗
)′′
− c

(
Λ

d
S∗
)′
− (βI∗ + ηE∗)

Λ

d
S∗ − dΛ

d
S∗

≤ Λ− (βI∗ + ηE∗)S∗ − Λ car
Λ

d
= 1 et S∗ ≤ 1

= −(βI∗ + ηE∗)S∗ ≺ 0 (32)

For the second equation of (19) we have:

(βI∗ + ηE∗)
Λ

d
S∗ −NE∗

≤ (βI∗ + ηE∗)S∗ −NE∗ = 0. (33)

For the third equation of (19) we have:

MI∗ − εE∗ = 0 (34)

(4.8) and (4.9) are obtained due to the fact that (S∗, E∗, I∗) is
an equilibrium to (2).

For the boundary conditions we have: S

E

I

 (−∞) =

 Λ
d
0
0

 ≥
 Λ

d
0
0

 (35)

 S

E

I

 (+∞) =

 Λ
d
S∗

E∗

I∗

 =


MN

εβ+ηM

Λ(εβ+ηM)−dMN
N(εβ+ηM)

ε(Λ(εβ+ηM)−dMN)
MN(εβ+ηM)

 (36)

Hence, for both values ξ � 0 and ξ ≤ 0, X(ξ) is an upper-
solution to (19).

Theorem 4.1. If R0 � 1 then there exists a traveling wave
solution to (19) with a minimal speed c∗ = 2

√
η −N . If

R0 ≺ 1 then there does not exist any traveling wave solution
to (19).

Proof
Assume

R0 � 1 then u∗ =

(
MN

εβ + ηM
,

Λ(εβ + ηM)− dMN

N(εβ + ηM)
,
ε(Λ(εβ + ηM)− dMN)

MN(εβ + ηM)

)
� (0, 0, 0).

Hence the function X(ξ) in (28) is well defined. By their definitions it obvious that:

(S(ξ), E(ξ), I(ξ)) ≤ (S(ξ), E(ξ), I(ξ)).

Then by principle on monotone iterative method we are ensured of the existence of a traveling wave (S(ξ), E(ξ), I(ξ)) solution
to (18) that verifies

(S(ξ), E(ξ), I(ξ)) ≤ (S(ξ), E(ξ), I(ξ)) ≤ (S(ξ), E(ξ), I(ξ)).

5. Turing Instability

When diffusion is added to a dynamic model it can radically
change the nature of the equilibrium points and generate

diffusion-driven (Turing) instabilities [12-14]. In this section
we also use the additive compound matrices to investigate
whether there will be appearance of Turing instability.

Theorem 5.1. Suppose 0 ≺ εβ
N−η ≺ M , the DFE will be

locally asymptotically stable for all diffusion matrix D � 0.

Proof
The principal minor matrices to Jū are

J1 =



η −N β

ε −M


 , J2 =



−d −β

0 −M


 and J3 =



−d −η

0 N − η




|J1| � 0⇔M(N − η)− εβ � 0

⇔M(N − η) � εβ

⇔ εβ

N − η ≺M (a)

|J2| = dM � 0

|J3| � 0⇔ d(N − η) � 0

⇔ N − η � 0

⇔ N � η (b)
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From (a) and (b) we know that Jū satisfy the minor conditions if 0 ≺ εβ
N−η ≺M i.e under that condition the DFE will remain

locally asymptotically stable even if diffusion is introduced in the Reaction model (2).
Theorem 5.2. There will always be a Turing instability at the EE defined in (5) for all diffusion matrix D � 0.
Proof
The principal minor matrices of Ju∗ are

K1 =




−Λ(εβ+ηM)
MN − ηMN

εβ+ηM

Λ(εβ+ηM)−dMN
MN

Nεβ
εβ+ηM


 ,K2 =



−Λ(εβ+ηM)

MN − βMN
εβ+ηM

0 −M


 and K3 =



− Nεβ
εβ+ηM

βMN
εβ+ηM

ε −M




|K1| � 0⇔ ηMN(Λ(εβ + ηM)− dMN)

MN(εβ + ηM)
− εβΛN(εβ + ηM)

MN(εβ + ηM)
� 0

⇔ Λ(εβ + ηM)(ηMN − εβΛN)− dη(MN)2

MN(εβ + ηM)
� 0

⇔ ΛN(εβ + ηM)(ηM − Λεβ) � dη(MN)2

⇔ R0 �
ηM

ηM − Λεβ

|K2| =
MΛ(εβ + ηM)

MN
=

Λ(εβ + ηM)

N
� 0

|K3| =
εβMN

εβ + ηM
− εβMN

εβ + ηM
= 0.

|K3| = 0 implies that the minor conditions will never be satisfied on Ju∗ . Then if diffusion is introduced into the Reaction
model (2) we will have a Turing instability for u∗.

6. Conclusion
The model we built and studied can provide capital

information on the dynamic of the pandemic: The expression
given in (23) enable us to calculate the minimum speed
rate for the appearance of a wave spreading the disease,
the stability analysis of the equilibrium points have shown
different situations that can occur.

If the DFE is stable then the dynamic model remains stable
under the condition R0 ≺ 1 even if a diffusion term is
introduced and there will not be any appearance of a traveling
wave solution but some conditions must be fulfilled:

• The contact rate given in β must be reduced. Quarantine
and barrier gestures remain the best means so far;

• In the absence of an effective vaccine, it is important to
reinforce immunity within populations by maintaining
symptomatic individuals alive long enough for them to
acquire immunity;

• From both the transfer rate ε and the contact rate η we
understand that more people should be tested especially
the asymptomatic infectious kipping in mind that they

seem to be the most dangerous in the spreading of the
pandemic since they show no symptoms of the disease.

When R0 � 1 we have the existence of an endemic
equilibrium point the E.E and when diffusion is introduced
there is appearance of a Turing instability. We have
fluctuations in the number of infectious individuals even if
R0 � 1 i.e the EE will somehow lose its asymptotic behavior.

7. Simulations

We suppose an asymptomatic infected is likely to be in
contact with more people than a symptomatic one because he
shows no signs for people to be suspicious. The two infection
rates are obtained by β = s1.p and η = s2.p where p is the
percentage of contamination for an infected individual in one
day, s1 is the number of contacts that a symptomatic infected
person can meet in one day and s2 is the number of contacts
that an asymptomatic infected person can meet in one day. The
initial condition is given by X0 = (N−100

N , 50
N ,

30
N ,

20
N ) and

from the literature (see [20]-[26]) we can give the following
table containing the estimated values of the parameters.
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Table 2. Coefficients Values

Coefficient Estimated Values

Λ 0.0028

N 12.106 (The estimated population size of Kinshasa)

p 0.03

µ 0.03

ε 0.3

d 0.002

θ 0.9

γ 0.8

Figure 3. When β = 0.3 (s1 = 10) and η = 0.45 (s2 = 15),R0 = 0.6579 and the trajectories are going to the DFE in fact S=1, E=I=R=0.

Figure 4. If s1 = 40 and s2 = 55 (β = 1.2 and η = 1.65),R0 = 2.4546. We can see 3 different waves in the susceptible population and in the first weeks after the beginning of
the infection the number of susceptibles dwindles quickly.
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Figure 5. R0 = 2.4546, we have 3 different waves of infections where the number of exposed increases for a certain length of time and reach a pic before a decrease and so on.

Figure 6. R0 = 2.4546,we also have 3 different waves of infections and the number of symptomatic infected is always smaller then the number of asyptomatic infected.

Figure 7. R0 = 2.4546, we also have 3 different waves where the number of recovered increases and decreases.
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Figure 8. Here we can clearly see the interactions between the four classes whenR0 = 2.4546.

Figure 9. If s1 = 10 and s2 = 55 (β = 0.3 and η = 1.65),R0 = 1.0403. We can see that even if the number of contacts for symptomatic infected has been strongly reduced,
we still have lots of infections due to the asymptomatic infected contact number which is still high. We can also see it slows down the infection waves.
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