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Abstract: The partially linear model (PLM) is one of semiparametric regression models; since it has both parametric (more 

than one) and nonparametric (only one) components in the same model, so this model is more flexible than the linear 

regression models containing only parametric components. In the literature, there are several estimators are proposed for this 

model; where the main difference between these estimators is the estimation method used to estimate the nonparametric 

component, since the parametric component is estimated by least squares method mostly. The Speckman estimator is one of 

the commonly used for estimating the parameters of the PLM, this estimator based on kernel smoothing approach to estimate 

nonparametric component in the model. According to the papers in nonparametric regression, in general, the spline smoothing 

approach is more efficient than kernel smoothing approach. Therefore, we suggested, in this paper, using the basis spline (B-

spline) smoothing approach to estimate nonparametric component in the model instead of the kernel smoothing approach. To 

study the performance of the new estimator and compare it with other estimators, we conducted a Monte Carlo simulation 

study. The results of our simulation study confirmed that the proposed estimator was the best, because it has the lowest mean 

squared error. 

Keywords: Kernel Smoothing, Monte Carlo Simulation, Penalized B-spline Estimation, Semiparametric Regression,  

Spline Smoothing 

 

1. Introduction 

Linear regression modelling is a good form for linking 

variables because in general the parameters have some kind 

of meaning or interpretation. Nevertheless, it is known that 

the main drawback of the linear regression models is lacking 

flexibility. In practice, this fact causes that some interesting 

relationships cannot be modelled by means of this class of 

models. A way to avoid that drawback is to add to the linear 

regression model a nonparametric component. The resulting 

model known as partially linear model (PLM) was introduced 

by Engle et al. [1] to study the effect of weather on electricity 

demand. The PLM is defined by: 

�� = ��� + ��	�
 + ��; 		� = 1,2,… , �,           (1) 

where ��  denotes the dependent variable, �� = ����, … , ���
 

and 	�  are the independent variables, ��∙
  is the 

nonparametric part in the model, � = ���, … , ��
�  is the 

vector of regression parameters of the parametric part in the 

model, and the random errors ���, … , ��
 are independent and 

identically distributed, and ����|�� , 	�
 = 0; 	�����|�� , 	�
 =��. Note that the intercept term has been omitted from the 

parametric component without loss of any generality, since 

the first point on a nonparametric regression line plays the 

role of an intercept. This model has gained great popularity 

since it was first introduced by Engle et al.  [1] and has been 

widely applied in economics, social, biological sciences, and 

so on.  

The PLM can be reduced to the classical liner regression 

model if the nonparametric component is equal zero. The 

goal is to estimate the unknown parameter vector �  and 

nonparametric function �	from the data	{�� , �� , 	�}. 
For estimating the nonparametric component in the PLM, 

the spline smoothing approach is used in many studies, such 

as [1-6]. And the kernel approach is used by, for example, [7-

9]. Also, there are other estimators of this model are 

discussed, such as [10-16]. 

Recently, Abonazel et al. [6] modified the Speckman 

estimator by using the spline smoothing approach, and they 
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showed that their estimator is more efficient than traditional 

Speckman estimator that based on the kernel smoothing 

approach.  

In this paper, we will suggest using the basis spline (B-

spline) to estimate a nonparametric component in the model. 

And we will compare the new estimator with the traditional 

Speckman’s [8] and Abonazel’s [6] estimators. 

The rest of the paper is organized as follows. In the next 

two sections, we introduce the traditional Speckman’s [8] and 

Abonazel’s [6] estimators respectively. Our proposed 

estimator is presented in section 4. While in section 5, the 

Monte Carlo simulation study is conducted to compare the 

performance of the three estimators. The concluding remarks 

are included in section 6. 

2. Speckman Estimator 

The PLM in equation (1) can be rewritten as 

! = "� + ��	
 + �,                                (2) 

where	! = ���, … , ��
�, 	 = �	�, … , 	�
�, � = ���, … , ��
�, 
and 	" = #�� …	��$; 	�% = ���% , … , ��%
�	 for 	% = 1,… , �. 
Taking the conditional expectation of both sides of equation 

(2) given		: 

'(�	
 = ')�	
� + ��	
,                            (3) 

where '(�	
 = ��!|	
  and 	')�	
 = ��"|	
.  Subtracting 

equation (3) from equation (2) yields 

!* = "*� + �,                                        (4) 

where !* = ! − '(�	
  and 	"* = " −	')�	
.  In practice, the 

conditional means are unknown and should be estimated. 

Speckman estimator uses the kernel smoothing approach to 

estimate the nonparametric component in PLM. Therefore, to 

get the classical version of Speckman estimator should be 

used the Nadaraya-Watson smoother matrix:  

, = -.�/0�×�; 	.�/ = 2 3456478 9 ∑ 2 34564;8 9�<=�> ,            (5) 

where 2�∙
 denote a kernel function and ℎ  is a bandwidth 

value. Based on the smoother matrix in equation (5), the 

equation (4) can be rewritten: 

!*@ = "*@� + �,          

where !*@ = ! − AB(@�	
;  with AB(@��
 = ,!,  and "*@ = " −	AB)@�	
; with 	AB)@�	
 = ,". 
Now, the vector of parametric component can be estimated 

by 

�C@	 = �"*@�"*@
6�"*@�!*@,                          (6) 

while the nonparametric component can be estimated by �C@	 = ,D!*@ − "*@�C@E. 

3. Spline Smoothing Estimator 

Abonazel et al. [6] modified the traditional Speckman 

estimator by using the spline smoothing approach to estimate 

the nonparametric component in PLM. According to their 

approach, the fitted values of � are given by minimizing the 

penalized sum of squares (PSS): 

PSS = ∑ 	#D�� − ���C		E − ��	�
$���=� + HI [KL 	����	
]�N	,   (7) 

where �C		is the estimated parametric component that based on 

the smoother spline matrix �	,O
,  depending on smoothing 

parameter �H
 and the knots points. And the nonparametric 

component can be estimated by 

�CO = 3�CO�ξ�
, … , �CO�ξQ
9� = ,OD! − 	"βB 		E, 
where �CO is a natural cubic spline with knots at ξ�, . . . , ξQ for a 

fixed H	 > 0,  and ,O  is a well-known positive-definite 

smoother matrix which depends on H and the knot points. To 

solve equation (7), an iterative algorithm is required.  

It note that the second term 3I [KL 	����	
]�N	9 is the penalty 

(or regularization) term, where ����∙
  refers to second 

derivatives, and T  and U  are the minimum and maximum 

values of 	  respectively. The first term in equation (7) 

measures the closeness to the data. While the second term in 

same equation penalized the curvature in the function, but it 

is difficult to solve mathematically, so Green and Silverman 

[17] solved it with the assumption that the function �  is a 

natural cubic spline. This might seem an over-parameterized 

model, however, the penalty term ensures that the 

coefficients are shrunk towards linearity, limiting the number 

of degrees of freedom used.  

Let �T, U
  be an interval and let �ξ�, … , ξQ
  be V  points 

such that T < ξ� < ⋯ < ξQ < U. A continuous function � on �T, U
 is a cubic spline with knots { ξ�, … , ξY } if 

a) � is a cubic polynomial over the intervals {(ξ�, ξ�
, …}. 

b) �  has continuous first and second derivatives at the 

knots. 

Based on the above the natural cubic spline can be defined 

as a polynomial spline 	�:	[a, b] → ℝ  of degree three 

if	����a
 = ����b
 = 0. Natural cubic spline are cubic spline 

with the constraint that they are linear in their tails beyond 

the boundary knots �a, ξ�
 and	�ξY, b
.  

In general, the placement of the knots and the 

determination of the penalty are very important for a spline 

smoothing where the number of knots is equal the number of 

observations. While in penalized spline be the number of 

knots is less than the number of observations, see [18, 19] for 

more details. 

4. Proposed Estimator 

Now we suggest using the B-spline approach instead of the 

kernel approach to fit the nonparametric component in this 

model. A B-spline is a spline function that has minimal 

support with respect to a given degree, smoothness, and 

domain partition. De Boor [20] shows that every spline 

function of a given degree, smoothness, and domain partition 

can be uniquely represented as a linear combination of B-

splines of that same degree and smoothness, and over that 
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same partition. 

Beginning, let _` = T and _Qa� = U where the knots from _�  to 	_Q  is called inner knots while T  and U  are called 

boundary knots. Define new knots b� < ⋯ < bc  such that b� ≤ b� ≤ ⋯ ≤ bc ≤ _`, beac = _e 	 for 	e = 1,… , V,  and _Qa� ≤ bQaca� ≤ ⋯ ≤ bQa�c. The choice of extra knots is 

arbitrary; usually one takes b� = b� = ⋯ = bc = _`  and _Qa� = bQaca� = ⋯ = bQa�c (see Wasserman [19]). Given 

a set of	V knots, the B-spline basis function recursively can 

be defined by 

fè �	, b
 = g1 	be < 		 ≤ bea�,0 h	ℎijk�.i.                  (8) 

De Boor [20] introduced an algorithm to compute B-spline 

of any degree from B-spline of lower degree. Because a B-

spline basis function in equation (8) is just a constant on one 

interval between two knots, it is simple to compute B-spline 

of any degree. His algorithm also works for any placement of 

knots (i.e. equidistant knots or not equidistant knots). The 

general B-spline of degree l ≤ M with V knots is  

fen�	, b
 = 	 46oeoepq	6	oe fen6��	
 + oepq6	4
oepqpr6	oepr fea�n6��	
,     (9) 

where e = 1,… , V + l + 1  and fen�	, b
  denotes e48  B-

spline of degree l. It is understood that if the denominator in 

equation (9) is equal zero, then the function is defined to be 

zero, Note that additional 2l	 + 	2  knots are necessary for 

constructing the full B-spline basis of degree	l. 

Eilers and Marx [21] introduced the combination of B-

splines and difference penalties which they called penalized 

B-spline (P-spline). The P-spline estimation is given by 

minimizes the following function: 

PPSS = ‖! − ft‖� + H‖uvt‖�, 

where f is a � × �V + l + 1
 matrix contains B-splines that 

given by (9), t = �t�, … , tQana�
�  is a parameter vector of 

the spline function, and uv has dimension ��	 − 	N
 × 	�. In 

practice, d = 2 or 3 is commonly used, see [22-24]. For 

example, if N = 1 or N = 2, the u�  and u�  matrices can be 

designed as follows: 

u� = w−1 1 …⋮ ⋱ ⋱0 … −1			
001z ;	u2 = w1 −2 		1⋮ ⋱ ⋱0 … 1 					…			⋱−2					

001	z. 

Minimizing PPSS leads to 

t̂ = #f	�	f + H�	uv� 	uv
$6�f	�! = |!,             (10) 

where | = #f	�	f + H�	uv� 	uv
$6�f	� is the hat matrix. Using 

equation (10), we can estimate the conditional expectation '(�	
 and ')�	
: 

AB(}~�	
 = f	|	!, AB)}~�	
 = f	|	".              (11) 

The modified variables "*}~ and !*}~ are: 

"*}~ = " − AB)}~�	
, !*}~ = ! − AB(}~�	
.          (12) 

Now we can estimate the parametric and nonparametric 

component: 

�C}~	 = �"*}~� "*}~
6�"*}~� !*}~,                   (13) 

�C}��	
 = AB(}~�	
 − AB)}~�	
�C}~.                (14) 

We can summarize our proposed estimator in the following 

algorithm: 

Step 1: Construct of B-splines as in (9). 

Step 2: Estimate the parameter vector of the spline func-

tion t by (10). 

Step 3: Estimate '(�	
 and ')�	
 according to (11). 

Step 4: Estimate "*}~ and !*}~ 	according to (12). 

Step 5: Estimate the parametric and nonparametric comp-

onents using (13) and (14) respectively. 

5. Monto Carlo Simulation Study 

In this section, we will investigate the performance of the 

three estimators: the spline smoothing estimator, kernel 

estimator (the used kernel function is biweight), and 

proposed (B-spline) estimator, by conduct a Monte Carlo 

simulation study. R software is used to perform our 

simulation study. For information about how to make Monte 

Carlo simulation studies using R, see [25, 26]. 

In our simulation study, Monte Carlo experiments were 

carried out based on equation (1). The simulated model is 

generated as follows: 

1. The number of parametric coefficients is	� =2, 4, and 

8; where	�% = 1	∀% = 1,… , �. 

2. Three functions have been used for the nonparametric 

component in the generated model, as in Abonazel et al. 

[6]: �� = 1.5	.��	��	
, �� = 1.5	.��	��	�
,  and �� =3	.��	��	�
. 

3. The explanatory variables �x% 	∀% = 1,… , �
 are 

generated from the standard uniform distribution. While 

the variable 	 is generated from uniform from -1 to 1. 

4. The errors are generated from normal distribution with 

mean zero and standard deviation ��
 equals 0.5 and 1. 

5. The different sample sizes have been used as: � = 100, 

150, 300, and 400. 

6. All Monte Carlo experiments involved 1000 

replications and all the results of all separate 

experiments are obtained by precisely the same series of 

random numbers. 

The goodness of fit of �C  and �C can be quantified by 

computing the average of mean squared error values (MSEs) 

for �C and �C  each iteration run	� = 1, … , 1000. The MSEs of �C and �C	are calculated as: 

�,��D�CE = �
� ∑ [��=� �C�	�
 − ��	�
]�, 

�,�����
 = 1
� ∑ D��% − �%E2�%=1 , 

where �C�	�
 and	�C% 	are the estimated values of ��	�
 and	�% , 
respectively.  

The results of simulation are recorded in tables 1-9. These 
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tables present the average of MSE (AMSE) for �C and	�C	using 

error terms with different standard deviations, different 

sample sizes, different shapes of the nonparametric 

component, and different number of explanatory variables. 

From tables 1-9, we can summarize some effects for the 

kernel, spline, and B-spline estimators in the following 

points: 

a) As � increases, the AMSEs decrease. 

b) As � increases, the AMSEs increase. 

c) As � increases, the AMSEs increase. 

In general, we can conclude that the AMSEs of B-spline 

estimator are smaller than the AMSEs of kernel and spline 

estimators in all simulation situations. But it notes that, for 

the parametric component, the AMSEs of the kernel, spline, 

and B-spline estimators are relatively close.  

Graphically, we illustrate the degree of goodness of fit of 

the kernel, spline, and B-spline estimators for the three 

nonparametric functions via different simulated PLMs. These 

models are generated based on different �	and	�, while � = 

0.5. The fitted curves of the estimators for the three 

nonparametric functions are shown in figures 1-3, 

respectively. From figure 1, we find that the fitted curve of 

B-spline estimator is closer to the true curve than kernel and 

spline estimators. The same results can be concluded from 

other figures. This means that B-spline estimator performs 

better regardless of the form of nonparametric function. 

 

Figure 1. Fitted values for the estimators of �� when � = 100	and � = 4. 

 

Figure 2. Fitted values for the estimators of �� when � = 200	and	� = 4. 

 

Figure 3. Fitted values for the estimators of �� when � = 300	and	� = 8. 

Table 1. AMSEs of the estimators when � = 2	and using ��. 

�  
Parametric component Nonparametric component 

Kernel Spline B-Spline Kernel Spline B-Spline 

� = 0.5 

100 0.0340 0.0310 0.0307 0.1152 0.0345 0.0318 

150 0.0236 0.0213 0.0212 0.0906 0.0229 0.0210 

300 0.0110 0.0105 0.0105 0.0603 0.0117 0.0108 

400 0.0076 0.0074 0.0073 0.0502 0.0086 0.0076 

� = 1 

100 0.1340 0.1348 0.1332 0.1842 0.1348 0.1281 

150 0.0863 0.0849 0.0844 0.1333 0.0846 0.0814 

300 0.0407 0.0406 0.0405 0.0820 0.0421 0.0390 

400 0.0315 0.0312 0.0309 0.0683 0.0327 0.0300 
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Table 2. AMSEs of the estimators when � = 4 and using ��. 

�  
Parametric component Nonparametric component 

Kernel Spline B-Spline Kernel Spline B-Spline 

� = 0.5 

100 0.03615 0.03329 0.03273 0.13272 0.05133 0.04830 

150 0.02343 0.02139 0.02135 0.10241 0.03334 0.03140 

300 0.01100 0.01052 0.01045 0.06612 0.01762 0.01613 

400 0.00807 0.00771 0.00766 0.05532 0.01308 0.01212 

� = 1 

100 0.13485 0.13189 0.13121 0.26194 0.20947 0.19795 

150 0.19795 0.08450 0.08467 0.17358 0.12266 0.11863 

300 0.04300 0.04278 0.04286 0.10344 0.06254 0.05985 

400 0.03061 0.03046 0.03040 0.08347 0.04723 0.04505 

Table 3. AMSEs of the estimators when � = 8 and using ��. 

�  
Parametric component Nonparametric component 

Kernel Spline B-Spline Kernel Spline B-Spline 

� = 0.5 

100 0.03878 0.03459 0.03459 0.03442 0.17919 0.09066 

150 0.02403 0.02185 0.02175 0.12622 0.05517 0.05212 

300 0.01139 0.01078 0.01073 0.07751 0.02846 0.02646 

400 0.00801 0.00772 0.00771 0.06252 0.02073 0.01932 

� = 1 

100 0.13989 0.13736 0.13774 0.40771 0.35397 0.34801 

150 0.08849 0.08748 0.08768 0.28368 0.23585 0.22915 

300 0.04270 0.04245 0.04237 0.15443 0.11435 0.11180 

400 0.03182 0.03156 0.03148 0.11953 0.08230 0.08025 

Table 4. AMSEs of the estimators when � = 2 and using ��. 

�  
Parametric component Nonparametric component 

Kernel Spline B-Spline Kernel Spline B-Spline 

� = 0.5 

100 0.03044 0.03030 0.03067 0.03067 0.02920 0.02920 

150 0.02108 0.02081 0.02107 0.02897 0.01927 0.02064 

300 0.01042 0.01040 0.01049 0.01729 0.01729 0.01057 

400 0.00730 0.00730 0.00730 0.01339 0.00705 0.00743 

� = 1 

100 0.12976 0.13125 0.13303 0.11063 0.12020 0.12770 

150 0.08412 0.08412 0.08412 0.07328 0.074282 0.08113 

300 0.04062 0.04024 0.04048 0.03941 0.03570 0.03877 

400 0.03096 0.03101 0.03088 0.03165 0.03165 0.02980 

Table 5. AMSEs of the estimators when � = 4 and using ��. 

�  
Parametric component Nonparametric component 

Kernel Spline B-Spline Kernel Spline B-Spline 

� = 0.5 

100 0.03256 0.03383 0.03299 0.06079 0.06079 0.04499 

150 0.02064 0.02103 0.02078 0.04494 0.03674 0.03218 

300 0.01042 0.01050 0.01042 0.02454 0.01878 0.01575 

400 0.00779 0.00784 0.00780 0.01934 0.01469 0.01220 

� = 1 

100 0.13144 0.13327 0.13420 0.18275 0.19818 0.19119 

150 0.08682 0.08721 0.08743 0.12871 0.13173 0.13099 

300 0.04198 0.04219 0.04230 0.06620 0.06775 0.06443 

400 0.03103 0.03124 0.03107 0.05020 0.05114 0.04766 
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Table 6. AMSEs of the estimators when � = 8 and using ��. 

�  
Parametric component Nonparametric component 

Kernel Spline B-Spline Kernel Spline B-Spline 

� = 0.5 

100 0.04326 0.03587 0.03447 0.19081 0.10514 0.08371 

150 0.02721 0.02232 0.02181 0.14280 0.06277 0.05271 

300 0.01245 0.01085 0.01076 0.09716 0.03225 0.02662 

400 0.00854 0.00775 0.00772 0.08229 0.02391 0.01949 

� = 1 

100 0.14403 0.14010 0.13787 0.41425 0.38937 0.34886 

150 0.09125 0.08875 0.08774 0.29883 0.25662 0.22931 

300 0.04392 0.04274 0.04239 0.17429 0.12316 0.11194 

400 0.03257 0.03173 0.03150 0.13960 0.08910 0.08055 

Table 7. AMSEs of the estimators when � = 2 and using �� 

�  
Parametric component Nonparametric component 

Kernel Spline B-Spline Kernel Spline B-Spline 

� = 0.5 

100 0.0358 0.0308 0.0307 0.1214 0.0334 0.0316 

150 0.0232 0.0211 0.0211 0.0961 0.0223 0.0208 

300 0.0114 0.0104 0.0105 0.0656 0.0116 0.0108 

400       

� = 1 

100 0.0079 0.0074 0.0073 0.0551 0.0084 0.0077 

150 0.0850 0.0842 0.0844 0.1415 0.0840 0.0813 

300 0.0415 0.0405 0.0405 0.0876 0.0409 0.0390 

400 0.0312 0.0311 0.0309 0.0734 0.0317 0.0300 

Table 8. AMSEs of the estimators when � = 4 and using �� 

�  
Parametric component Nonparametric component 

Kernel Spline B-Spline Kernel Spline B-Spline 

� = 0.5 

100 0.06769 0.03614 0.03809 0.41000 0.07400 0.09201 

150 0.04231 0.02227 0.02474 0.35542 0.04780 0.07353 

300 0.01885 0.01087 0.01209 0.29061 0.02615 0.05764 

400 0.01409 0.00789 0.00914 0.26622 0.01952 0.05209 

� = 1 

100 0.17044 0.13868 0.13683 0.53868 0.26659 0.24120 

150 0.10396 0.08759 0.08776 0.43256 0.16530 0.16299 

300 0.05035 0.04383 0.044289 0.32406 0.08537 0.10064 

400 0.03646 0.03099 0.03179 0.29560 0.06565 0.08537 

Table 9. AMSEs of the estimators when � = 8 and using �� 

�  
Parametric component Nonparametric component 

Kernel Spline B-Spline Kernel Spline B-Spline 

� = 0.5 

100 0.07252 0.03723 0.04007 0.49354 0.11981 0.13605 

150 0.04432 0.02309 0.02552 0.40289 0.07489 0.09920 

300 0.02002 0.01106 0.01259 0.30973 0.03777 0.07000 

400 0.01346 0.00786 0.00895 0.00893 0.02816 0.06105 

� = 1 

100 0.17287 0.14603 0.14343 0.72437 0.43057 0.39545 

150 0.10833 0.09146 0.09124 0.55722 0.28829 0.27511 

300 0.05078 0.04359 0.04425 0.38420 0.38420 0.15408 

400 0.03769 0.03214 0.03292 0.33964 0.10125 0.12194 
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6. Conclusion 

In this paper, we proposed new estimator for the PLM 

based on B-spline approach. Moreover, the performance of 

our estimator and Speckman’s [8] and Abonazel’s [6] 

estimators are investigated by a Monte Carlo simulation 

study. The simulation study is conducted to evaluate and 

compare the performance of these estimators (that based on 

kernel smoothing, spline smoothing, and B-spline smoothing) 

under different situations (such as: different shapes of the 

nonparametric component, different number of parametric 

variables, different sample sizes, and different standard 

deviations of error term). The simulation results confirm that 

our proposed estimator is more efficient than other 

estimators. 
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