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Abstract: In this paper, analysis of a system consists of two dependent components with degradation facility and load 

sharing is introduced. The system is considered to be consisted of two components connected in parallel and works 

dependently where the failure of any component affects the failure of the other one. In addition, it is assumed that there is a 

common failure between the two components. All failure and repair rates are assumed to be constant follow bivariate 

exponential distribution. Markov models are used to construct the mathematical model of the system. Analysis of the 

availability function and steady-state availability of the model is discussed. Reliability and mean time to failure for the system 

is introduced. A numerical example is given for illustration. 
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1. Introduction 

Availability is the probability that the system is capable of 

conducting its required function when it is called upon given 

that it is not failed or undergoing a repair action. Reliability 

is the probability of a device performing its purpose 

adequately for the period of time intended under the 

operating conditions encountered (see Barlow and Prochan 

[1]). Failures can be defined in terms of degradation reaching 

a certain level (see for example Meeker and Escobar [2]). 

Failure rate is the conditional probability that a device will 

fail per unit of time. The conditional probability is the 

probability that a device will fail during a certain interval 

given that it survived at the start of the interval (see Lawless 

[3]). A common cause failure is defined as a dependent 

failure in which two or more component fault states exist 

simultaneously, or within a short time interval, and are a 

direct result of a shared cause. Common cause failures are 

especially important for redundant components, and they 

may be classified in two main types: multiple failures that 

occur at the same time due to a common cause, and multiple 

failures that occur due to a common cause, but not 

necessarily at the same time (see Misra [4]). 

In most cases, independence is assumed across the 

components within the system which means that the failure 

of any component of the system does not affect the failure of 

another one in the system. However, if your system consists 

of multiple components sharing a load then the assumption of 

independence no longer holds true. If one component fails 

then the component(s) that are still operating will have to 

assume the failed unit's load. Therefore, the reliabilities of 

the surviving unit(s) will change. Calculating the system 

reliability is no longer an easy proposition. 

Parallel redundancy is a common method to increase 

system reliability and mean time to failure. Studies of 

reliability of systems assume independence among 

component lifetimes. In practice, components in a reliability 

structure are dependent as they may share the same load or 

may be failed with common-cause failures. Bivariate and 

multivariate lifetime distributions play important roles in 

modeling these dependencies. Many bivariate and 

multivariate exponential distributions have been proposed by 

Balakrishnan and Lai [5]. The bivariate exponential 

distribution of Marshall and Olkin [6] is suited for modeling 

common-cause failures. Freund’s model [7] can be applied to 

the situation that the failed component increases the stress on 

the surviving component and consequently increases the 

other component’s tendency of failure. 
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Marshall and Olkin [6] introduced a bivariate exponential 

distribution by considering a reliability model in which two 

components fail separately or simultaneously upon receiving 

a shock that is governed by a homogeneous Poisson process. 

They derived the bivariate exponential distribution in several 

ways: the bivariate lack of memory property, shock models, a 

random sum model, and a minima model. 

Freund [7] proposed a bivariate extension of the 

exponential distribution by allowing the failure rate of the 

surviving component to be affected after the failure of 

another component. Freund’s bivariate distribution is 

absolutely continuous and possesses the bivariate lack of 

memory property (see Bailey [8]). Freund’s model is one of 

the first to study bivariate distributions from reliability 

considerations, and it can be used to model load-sharing 

systems. 

Huang and Xu [9] presented a general closed-form 

expression for the lifetime reliability of load-sharing k-out-

of-n: G hybrid redundant systems. Temraz [10] introduced 

availability and reliability analysis for system with bivariate 

weibull lifetime distribution. 

System failure is modeled in terms of the failures of the 

components of the system. Both the system and its 

components are often allowed to take only two possible 

states: a working state and a failed state. However, in many 

situations the units of the system can have finite number of 

states. In this paper, we consider that each component of the 

system has three states: up, degraded, and down. The 

transition from up state to degraded state represents a partial 

failure and the transition from degraded state to down (failed) 

state represents a complete failure. 

El-Damcese and Temraz [11] presented a mathematical 

model for performing availability and reliability analysis of a 

parallel repairable system consisting of n identical 

components with degradation facility and common-cause 

failures. 

Markov models are commonly used to perform reliability 

analysis of engineering systems and fault-tolerant systems. 

They are also used to handle reliability and availability 

analysis of repairable systems. First, we gave notations and 

several properties of stochastic processes. Next, we explore 

Markov chains focusing on criteria of recurrent/transient 

state, and long-run probabilities. We then discuss basic 

properties of the homogeneous Poison process, which is one 

of the most important stochastic processes. The discussion is 

then going to the continuous-time Markov chain, including 

the birth, the death, and the birth-death processes. It is not an 

easy task to solve the state equations. A number of solution 

techniques exist, such as analytical solution (see Rausand and 

Høyland [12]), Laplace-Stieltjes transforms (see Pukite [13]), 

numerical integration, and computer-assisted evaluation (see 

Block and Basu [14]). 

In this paper, we present analysis for a system consists of 

two dependent units connected in parallel subject to load 

sharing and degradation facility. Markov models are used to 

construct a diagram and a mathematical model for a system. 

Availability analysis and steady state availability probability 

for a system are discussed. Also, reliability and mean time to 

failure for a system is presented. A numerical example is 

introduced in order to show the results. 

2. System Description 

The system is considered to be consisted of two 

components connected in parallel and works dependently 

where the failure of any component affects the failure of the 

other one. In addition, it is assumed that there is a common 

failure between the two components. Each component of the 

system has two stages of failures. The first stage is the 

transition from up state to degraded state which represents a 

partial failure of the unit. The second stage is the transition 

from degraded state to failed state which represents a 

complete failure. Only complete failures are assumed to be 

repairable and the repaired unit is good as new. All failure 

and repair rates are assumed to be constant follow bivariate 

exponential distribution. 

According to system description, the system will has nine 

states divided as follows: 

The working states are: (0,0), (D,0), (0,D), (D,D), (F,0), 

(0,F), (D,F), (F,D), and the failed state is: (F,F). 

2.1. Notations 

The notations for the state probabilities are given as 

follows. 

���0,0� Probability that the system is up at time t 

����, 0� 
Probability that the first unit degraded and the 

second unit is up at time t 

���0, �� 
Probability that the first unit is up and the 

second unit degraded at time t 

����, �� Probability that both units degraded at time t 

����, 0� 
Probability that the first unit failed and the 

second unit is up at time t 

���0, �� 
Probability that the first unit is up and the 

second one failed at time t 

����, �� 
Probability that the first unit degraded and the 

second one failed at time t 

����, �� 
Probability that the first unit failed and the 

second one degraded at time t 

����, �� Probability that the system failed at time t 

The notations for all possible transition rates between the 

states are defined as follows. 

	
�
 

Transition rate from up state to degraded state for 

the first unit 

	
�

�  
Transition rate from up state to degraded state for 

the first unit after degradation of the second unit 

	
�

��  
Transition rate from up state to degraded state for 

the first unit after failure of the second unit 

	


 

Transition rate from degraded state to failed state 

for the first unit 

	



�  
Transition rate from degraded state to failed state 

for the first unit after degradation of the second 

unit 
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��  
Transition rate from degraded state to failed state 

for the first unit after failure of the second unit 

	��
 

Transition rate from up state to degraded state for 

the second unit 

	��

�  
Transition rate from up state to degraded state for 

the second unit after degradation of the first unit 

	��

��  
Transition rate from up state to degraded state for 

the second unit after failure of the first unit 

	�

 

Transition rate from degraded state to failed state 

for the second unit 

	�


�  
Transition rate from degraded state to failed state 

for the second unit after degradation of the first 

unit 

	�


��  
Transition rate from degraded state to failed state 

for the second unit after failure of the first unit 

	
��
 

Common transition rate from up state to degraded 

state for both units 

	
�

 

Common transition rate from degraded state to 

failed state for both units 

�� Repair rate for the first unit after failure 

��
�  

Repair rate for the first unit after it has failed and 

the second unit has degraded 

��
�� 

Repair rate for the first unit after it has failed and 

the second unit has failed 

�� Repair rate for the second unit after failure 

��
�  

Repair rate for the second unit after it has failed 

and the first unit has degraded 

��
�� 

Repair rate for the second unit after it has failed 

and the first unit has failed 

��� 
Common repair rate for both units after common 

failure 

2.2. System Availability 

Continuous-time Markov chain is used to construct 

mathematical model for the system as follows. All possible 

states and transitions rates between them are shown in Figure 1. 

 
Figure 1. Diagram for system of two dependent parallel units with degradation. 
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	����",���� = −�	�
�� + 	
�
 + ��� + ��������, �� +  	

� + 	
�
!����, �� + + 	���� + 	
��!����, 0�	            (8) 

	����","��� = −����� + ���� + 3��������, �� +  	

�� + 	
�
!����, �� + + 	�
�� + 	
�
!����, �� + 	
�
����,��       (9) 

The initial conditions for the system are given by 

#$%#&'	()$*%#)$+ = ,���0,0� = 1	
0	)%ℎ/01#+/ 

Equations from (1) to (9) form a system of first order differential equations which can be solved to obtain the state 

probabilities and the availability function can be calculated from the following sum of the probabilities of the working states. 

2�%� = ���0,0� + ����, 0� + ���0, �� + ����, �� + ����, 0� + +���0, �� + ����, �� + ����, ��	                          (10) 

2.3. Steady State Availability 

In Markov models, it is possible to go from one state to another one over a large long period of time. It can easily be shown 

that the limit ��#, 3� = lim�→8 	���#, 3� always exists. One can get the steady state solutions by simply setting all the derivatives 	����9,:���  equal zero, and hence the system of differential equations will be reduce to an equivalent system of algebraic equations 

as follows. 

−�	
� + 	�� + 	
�����0,0� + �����, 0� + ����0, �� + ������, �� = 0	                             (11) 

−�	

 + 	��� + 	
������, 0� + ���� + �������, �� + 	
���0,0� = 0	                                  (12) 

−�	
�� + 	�
 + 	
�����0, �� + ���� + �������, �� + 	����0,0� = 0	                                  (13) 

−�	

� + 	�
� + 3	
�
����, �� +  	��� + 	
�
!���, 0� + + 	
�� + 	
�
!��0, �� + 	
����0,0� = 0            (14) 

−�	���� + 	
�� + ������, 0� + ����� + �������, �� + 	

���, 0� = 0                                  (15) 

−�	
��� + 	
�� + �����0, �� + ����� + �������, �� + 	�
��0, �� = 0	                                 (16) 

−�	

�� + 	
�
 + ��� + �������, �� +  	�
� + 	
�
!���, �� + + 	
��� + 	
��!��0, �� = 0                   (17) 

−�	�
�� + 	
�
 + ��� + �������, �� +  	

� + 	
�
!���, �� + + 	���� + 	
��!���, 0� = 0                   (18) 

−����� + ���� + 3�������, �� +  	

�� + 	
�
!���, �� + + 	�
�� + 	
�
!���, �� + 	
�
���, �� = 0            (19) 

��0,0� + ���, 0� + ��0, �� + ���, �� + ���, 0� + ��0, �� + +���, �� + ���, �� + ���, �� = 1            (20) 

The previous set of equations can be solved to obtain all possible probabilities. The steady state availability probability for 

the system can be obtained from the following sum. 

2 = ��0,0� + ���, 0� + ��0,�� + ���, �� + ���, 0� + +��0, �� + ���, �� + ���, ��	                       (21) 

2.4. System Reliability Without Repair 

Reliability is defined as the probability that a part will last at least a specified time under specified experimental conditions 

(see Walpole et al. [15]). In order to obtain the reliability for the system, we set all repair rates equal to zero and then take 

Laplace transformation for the modified model and hence the following set of equations is obtained. 

�+ + 	
� + 	�� + 	
����;�0,0� = 1                                                            (22) 

�+ + 	

 + 	��� + 	
����;��, 0� − 	
��;�0,0� = 0                                                (23) 

�+ + 	
�� + 	�
 + 	
����;�0, �� − 	���;�0,0� = 0                                                (24) 

�+ + 	

� + 	�
� + 3	
�
��;��, �� −  	��� + 	
�
!�;��, 0� −  	
�� + 	
�
!�;�0, �� − 	
���;�0,0� = 0       (25) 

�+ + 	���� + 	
����;��, 0� − 	

�;��, 0� = 0                                                    (26) 
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�+ � 	
�
�� � 	
����;�0, �� � 	�
�;�0, �� � 0                                                    (27) 

�+ � 	


�� � 	
�
��;��, �� �  	�


� � 	
�
!�;��, �� �  	
�
�� � 	
��!�;�0, �� � 0	                       (28) 

�+ + 	�
�� + 	
�
��;��, �� �  	


� � 	
�
!�;��, �� �  	��

�� � 	
��!�;��, 0� � 0                        (29) 

Reliability function of the system can be obtained by taking inverse Laplace transformation for all state probabilities and 

substituting in the following equation 

<�%� � =>�?�;�0,0� � �;��, 0� � �;�0, �� � �;��, �� � �;��, 0� � �;�0, �� � ��;��, �� � �;��, ��@               (30) 

2.5. Mean Time to Failure 

Mean time to failure (MTTF) is a measure of reliability for non-repairable systems. It is the mean time expected until the 

piece of equipment fails and needs to be replaced. MTTF is a statistical value and is calculated as the mean over a long period 

of time and a large number of units. Mean time to the system failure can be obtained from the following formula. 

ABB� � lim;→���;�0,0� � �;��, 0� � �;�0, �� � �;��, �� � �;��, 0� � �;�0, �� � �;��, �� � �;��, ���              (31) 

3. Numerical Example 

We set failure and repair rates equal numerical values in the following table 

Table 1. Values for failure and repair rates. 

	
�
� 0.001 	��

� 0.004 	
��
� 0.006 ��

� � 0.07 

	
�
� � 0.002 	��

� � 0.0045 	
�

� 0.0065 ��

�� � 0.08 

	
�
�� � 0.0025 	��

�� � 0.0048 �� � 0.02 ��� � 0.075 

	


� 0.0015 	�


� 0.0042 ��
� � 0.03  

	


� � 0.003 	�


� � 0.005 ��
�� � 0.04  

	


�� � 0.0035 	�


�� � 0.0052 �� � 0.06  

 

Substituting these values in the system of equations (1)-(9) 

and using Maple package to solve the system of differential 

equations, the availability function is obtained and the results 

are shown in Figure 2. 

 
Figure 2. The availability function versus time. 

Solving the system of equations (11)-(20) for the given 

data, steady state availability probability is computed from 

equation (21) and the result is 

A = 0.9949779728 

In order to find the reliability function, the set of equations 

(22)-(29) is solved and taking the inverse Laplace 

transformation for the results. Substituting in equation (30), 

reliability function is obtained and the result is shown in 

Figure 3. 

 
Figure 3. The reliability function versus time. 



 International Journal of Systems Science and Applied Mathematics 2018; 3(1): 10-15 15 

 

The results for the mean time to system failure are 

obtained by using equation (31). The results are illustrated in 

Figures 4 and 5. 

 
Figure 4. The mean time to system failure versus 	
�

 and 	
��
. 

 
Figure 5. The mean time to system failure versus 	�


 and 	
�

. 

4. Conclusion 

In many situations in practical systems, there is 

dependence between the performances of the units 

constituting the system. Bivariate exponential distribution is 

suitable to model the life times of the dependent units. 

Degradation of system units is a generalization of the binary 

states of the system units. Markov model is a tool to analyze 

the availability and reliability of a system. It is not easy to 

solve system of differential equations to find the state 

probabilities of the model and in this case, numerical 

solutions can be obtained instead of analytical solutions. 
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