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Abstract: In this paper, the unsteady MHD free convective flow through porous medium sandwiched between electrically 

conducting viscous-incompressible fluids in a horizontal channel with heat and mass transfer, with the assumptions that the 

upper and lower channel are non-porous (clear regions) and the middle channel as porous respectively have been studied. The 

governing equations of the flow were transformed to ordinary differential equation by a regular perturbation method and the 

expression for the velocity, temperature, and concentration for the flow were obtained. It is observed that the fluid velocity 

decreases with an increase in Prandtl number, Radiation parameter, Hartmann number and Schmidt number. Some of these 

governing parameters had little effect on the velocity profile while others had significant effect on this velocity profile. The 

same was seen on the temperature profile and concentration profile. Finally the governing parameters had effects on the flow 

and this study does aid in the practical usage of such flow or when confronted with such a flow. 
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1. Introduction 

The flow of viscous fluids through porous meduim is very 

much prevalent in nature: therefore such studies have been 

attracting the considerable attention of engineers and scientist 

all over the world. Convection in porous media finds 

applications in oil extraction, thermal energy storage and 

flow through filtering devices. 

The hydro-magnetic convection with heat and mass 

transfer in porous medium has been studied due to its 

importance in the design of under-ground water energy 

storage system,Soil-sciences in design of MHD generators 

and accelaretors in geophysics, nuclear power reactors etc. 

Magneto-hydrodynamics is currently undergoing a greate 

period of enlargement and differentialtion of sbject matter. 

The magneto-dynamic has wide applications in the field of 

nuclear engineering heat transfer,mechanical engineering, 

chemical engineering, aerodynamic, solar collector, heat 

exchangers, liquid metals, elecrolyte and ionized gases. 

Looking at the various wide applications of such flows 

numerous scholar have paid their attaintionin it. Joseph et al 

[5] studied the unsteady MHD free convective two 

immiscible fluids flow in a horizontal channel with heat and 

mass transfer. They assumed that the upper channel and 

lower channel are porous and non – porous respectively. The 

governing equations were transformed to ordinary 

differential equations by a regular pertubation method. 

Sulochana and Sandeep [14] considered flow and heat 

behavior of MHD dusty nanofluid past a porous 

stretching/shrinking cylinder at different temperatures. Hall 

current effects on convective heat and mass transfer flow of 

viscous fluids in a vertical wavy channel was considered by 
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Veerasuneela et al [11]. Parabhakararao [4] studied unsteady 

free convection (MHD) flow of an incompressible 

electrically conducting viscos fluid through porous medium 

between two vertical plates. Choudhury and Kumar Das [10] 

studied visco-elastic MHD free convective flow through 

porous media in the present of radiation and chemical 

reaction with heat and mass transfer. Effect of variable heat 

source/sink on chemically reacting 3D slip flow caused by a 

slandering stretching sheet was studied by Babu and Sandeep 

[13]. Dada et al [8] investigated the unsteady radiative and 

MHD free convective two immiscible fluid flows through a 

horizontal channel. The upper channel is assumed to be 

porous while the lower is non-porous. The partial differential 

equations governing the fluid flow are transformed to 

ordinary differential form by a regular perturbation method 

and the analytical solutions for each fluid flow are obtained 

and these solutions matched at the interface. The results are 

presented for various values of the fluid parameters such as, 

Grashof number, radiative parameter, and frequency 

parameter, Prandtl number, viscosity and conductivity ratio. 

It is found among others results that as the thermal radiation 

from the wall temperature decreases, the temperature profiles 

and thermal boundary layers increases. 

According to Mateen, [6], problems relating to the 

petroleum industry, plasma physics, Magneto-fluid dynamic 

involve multi-fluid flow situation. However he found among 

other results that as the Schmidt number increase, the 

concentration decreases which causes the concentration 

buoyancy effects to decrease yielding a reduction in the fluid 

velocity. Transient magnetohydrodynamic flow of two 

immiscible fluids through a horizontal channel was carried 

out by Mateen [7]. Sugunama et al [12] presented run up 

flow of Rivilin – Ericksen fluid through a porous medium in 

a channel. 

Kumar et al [3] presented unsteady MHD and heat transfer 

of two viscous immiscible fluids through a porous medium in 

a horizontal channel. The unsteady flow and heat transfer of 

porous media sandwiched between viscous fluids was studied 

by Umavathi et al [2] 

The aim of this paper is to extend the paper investigated by 

Kumar et al [1] titled “unsteady MHD free convective flow 

through porous medium sandwiched between viscous fluids.” 

In our paper we considered the presence of foreign bodies in 

the fluid flow and added the concentration equation in order 

to have mass transfer. 

2. Formulation of Problem 

Consider the free-convective flow of a viscous 

incompressible electrically conducting fluid through a porous 

medium squeezed in between viscous fluids bounded by two 

infinite horizontal parallel porous plates under the action of 

uniform magnetic field applied normal to the direction of 

flow. The walls of the plates are extending in x’ and z’ 

directions and the y’ direction is taken as normal to the 

plates. 

 
Fig. 1. Geometrical Configuration. 

The rate of injection of fluid through lower plate is equal 

to rate of suction of fluid through upper plate. Buoyancy 

force is due to combined presence of fluid density gradient 

and body force is proportional to density. The lower plate is 

lying in the lane y’ = -h and kept at temperature Tw2 whereas 

the upper plate held at temperature Tw1 has been placed in the 

plane y’ = 2h with Tw2 >>Tw1. The temperature of the lower 

plate exceeds that of upper plate and the density decreases in 

the direction  of gravitational force i.e. if the temperature 

difference exceeds from the critical value conditions are 

unstable and the buoyancy force are able to overcome the 

retarding influence of viscous forces, as a result the free 

convective take place. The viscous fluid flowing through 

region -h≤y’≤0 (region III clear region) and -h≤y’≤2h (region 

I clear region) having densities ρ1 and ρ3 dynamic viscosities 

µ1 and µ3 specific heat at constant pressure Cp1 and Cp3 

thermal conductivity ��  and ��  region 0≤y’≤h (region II 

porous region) having density ρ2 dynamic viscosity µ2 and 

specific heat at constant pressure Cp2 and thermal 

conductivity K2. The flow is such that the effect of induced 

magnetic field is neglected. The magnetic Reynolds number 

is assumed very small, further the magnetic field is not strong 

enough to cause joule heating (electrical dissipation). The 

flow in the channel is assumed to be fully developed 

unsteady and laminar and the fluid properties are constant. As 

the bounding surface is infinite in length along x-axis 

therefore, all the variables are function of � , and t’ only i.e. 

∂P’/∂x’=0 

Hence the governing equation (dynamic fluid and max-

well equation) of flow inside the channel for three different 

region on taking. 

REGION-I: Clear Region 
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REGION-II: Porous Region 

�	����� = 0                                                                                  (5) 

�� ��������	 +	��� �������� = 	�� ��������� −	������ − 	���� �� −	0�1�  �� +	��!"#�$%�� − %&�� ' +	��!"(�� $)�� − )&�� '             (6) 

��)* ��+����� +	��� �+������ = �� ��+������ −	�,-��                                                            (7) 

�.����� +	��� �.����� = /� ��.������ − �(�$)�� − )&
� '                                                          (8) 

REGION-III: Clear Region 

�	2,��� = 0                                                                                 (9) 

�� ���2����	 +	��� ��2����� = 	�� ���2����� −	������ − 	���� �� −	0�1�  �� +	��!"#2$%�� − %&2� ' +	��!"(2� $)�� − )&2� '          (10) 

��)* ��+2���� +	��� �+2����� = �� ��+2����� −	�,-��                                                     (11) 

�.����� +	��� �.����� = /� ��.2����� − �(�$)�� − )&2� '                                                     (12) 

Assuming that the boundary and interface conditions on velocity are no slip, given that at the boundary and interface, the 

fluid particles are at rest, prompting the x’- component of the velocity to varnish at the wall. 

Therefore, the boundary and interface conditions on the velocity for both fluids are: 

 ��32ℎ6 = 0,  ��	3ℎ6 =  �	� 3ℎ6,  �	� 306 =  ��306,  ��3−ℎ6 = 0, �� 78��7� = �� 78��7� , 9:	�� = ℎ, 
�� �;���� = �� �;2��� , 9:	�� = 0                                                               (13) 

The boundary and interface conditions on the temperature field for both fluids are: %��32ℎ6 = %&
	� , %��3ℎ6 = %��3ℎ6,			%�	� 306 = %�	� 306,			%��3−ℎ6 = %<�� ,			= 
�� �+
��� = �� �+���� , 9:	>� = ℎ, �� �+����� = �� �+2���� 	9:	�� = 0	                                               (14) 

The boundary and interface conditions on the concentration field for both fluids are: )��32ℎ6 = )&
� ,			)��3ℎ6 = )��3ℎ6,			)��306 = )��306,			)��3−ℎ6 = )&�� , /� �.
��� = /� �.���� 		9:	�� = ℎ
/� �.����� = /� �.2���� 	9:	�� = 0 ?@A

@B
                                                   (15) 

The continuity equations (1), (5) and (9) implies that ������ and ��� are independent of ��, they can be at most a function of 

time alone. Hence we can write �� =	��31 + DEFGH�6	                                                                    (16) 

Assuming that ��� = ��� =��� = ��. 
ε is a very small positive quantity such that DE≪1. Here, it is assumed that the transpiration velocity �� varies periodically 

with time about a non-zero constant mean velocity, ��. 
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By using the following dimensionless quantities: 
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; .�� = K�U� ^� = \_2�\_
� , n� =	 �o� = X2X
 
Equations (2), (3), (4), (6), (7), (8), (10), (11) and (12) becomes. 

REGION-I 

��
�� + $1 + DFGH�' ��
�� =	 ���
��� + O −d� � + lSQ� + lc)�                                               (17) 

�p
�� + 31 + DFGH�6 �p
�� = ��q ��p
��� −	rp
�q 	                                                     (18) 

�.
�� + 31 + DFGH�6 �.
�� = �s( ��.
��� −	a()�                                                    (19) 

REGION-II 

����� + 31 + DFGH�6 ����� =	V�n� ������� + n�O − n�d� � − V�n�a� � + lS[�Q� + lc^�)�                      (20) 

�p��� + 31 + DFGH�6 �p��� = \
t
�q ��p���� −	rt
p��q                                                       (21) 

�.��� + 31 + DFGH�6 �.��� = u
s( ��.���� − a.�)�                                                       (22) 

REGION-III 

��2�� + 31 + DFGH�6 ��2�� =	V�n� ���2��� + n�O − n�d� � − V�n�a� � + lS[�Q� + lc^2)�               (23) 

�p2�� + 31 + DFGH�6 �p2�� = \�t��q ��p2��� −	rt�p2�q 	        (24) 

�.2�� + 31 + DFGH�6 �.2�� = u�s( ��.2��� − a.�)�       (25) 

The boundary and interface ,	conditions in dimensionless 

form are given as follows  �326 = 0,			 �316 =  �316 �306 =  �306,			 �3−16 = 0��
�� = V� �;��� 	9:	>� = 1����� = v�v
 ��2�� 	9:	� = 0 ?@A
@B

   (26) 

Q�326 = 0,			Q�316 = Q�316Q�306 = Q�306,Q�3−16 = 1,			 �p
�� = "� �p��� ,			9:	� = 1�p��� = \�\
 �p2�� 	9:	� = 0 ?@A
@B

    (27) 

)�326 = 0,			)�316 = )�316)�306 = )�306)�3−16 = 1,			 �.
�� = V� �.��� ,				9:	� = 1,�.��� = v�v
 �.2�� 	9:	� = 0 ?@A
@B

     (28) 

3. Method of Solution/Solution of the 

Problem 

In order to solve the governing equations (17) to (25) 

under the boundary and interface conditions (26) to (28), we 

expand  �3�, :6, Q�3�, :6, )�3�, :6,  �3�, :6, Q�3�, :6, )�3�, :6, )�3�, :6  

as a power series in the perturbative parameter D. Here, we 

assumed small amplitude of oscillation (DE ≪ 16, thus,  �3�, :6 = 	 ��3�6 + DFGH� ��3�6 Q�3�, :6 = 	Q��3�6 + DFGH�Q��3�6 )�3�, :6 = 	)��3�6 + DFGH�)��3�6  �3�, :6 = 	 ��3�6 + DFGH� ��3�6 Q�3�, :6 = 	Q��3�6 + DFGH�Q��3�6 )�3�, :6 = 	)��3�6 + DFGH�)��3�6  �3�, :6 = 	 ��3�6 + DFGH� ��3�6 Q�3�, :6 = 	Q��3�6 + DFGH�Q��3�6 
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)�(�, :) = 	 )��3�6 + DFGH�)��3�6 
By substituting the above set of equations into equations 

(17) to (28), equating the coefficients of the like powers of D 

and neglecting the terms containing wx , we obtain the 

following set of ordinary differential equations in periodic 

and non-periodic terms, 

REGION-I 

Non-Periodic Terms: 

���
N��� −	��
N�� −d� �� = −O − lSQ�� − lc)��                                                         (29) 

��p
N��� − 	OS �p
N�� − gQ�� = 0	                                                            (30) 

��.
N��� − bc �.
N�� − b.a.)�� = 0	                                                                (31) 

Periodic terms: 

���

��� −	��

�� − 3d� + yz6 �� = ��
N�� 	− lSQ�� − lc)��	                                                    (32) 

��p

��� − 	OS �p

�� − 3g	+	yzOS	6Q�� = 	OS �p
N��                                                          (33) 

��.

��� − bc �.

�� − 3b.a. + yzbc6 = bc �.
N�� 	                                                         (34) 

REGION-II 

Non-Periodic terms: 

����N��� −	 �v
t
 ���N�� − �t
{�|v
t
1�v
t
 � �� =	− �v
 − }q~
v
t
 Q�� − }(�
v
t
 )��		                                                     (35) 

��p�N��� −	 �q\
t
 �p�N�� − r\
 Q�� = 0                                                                (36) 

��.�N��� − s(u
 �.�N�� − 1�s�u
 )�� = 0	                                                                (37) 

Periodic Terms: 

����
��� −	 �v
t
 ���
�� − �t
{�|v
t
1�|GHv
t
 � �� =	 �v
t
 ���N�� − }q~
v
t
 Q�� − }(^1v
t
 )��	                         (38) 

��p�
��� −	 �q\
t
 �p�
�� − �rt
|GH�q\
t
 � Q�� = �q\
t
 �p�N�� 	                                                         (39) 

��.�
��� − s(u
 �.�
�� − �1�s�|GHs�u
 � )�� = s(u
 �.�N��                                                           (40) 

REGION-III 

Non-Periodic terms: 

���2N��� −	 �v�t� ��2N�� − {�v�  �� = 	− �v� − }q~
v�t� Q�� − }(��v�t� )��	                                                    (41) 

��p2N��� −	 �q\�t� �p2N�� − r\� Q�� = 0	                                                          (42) 

��.2N��� − s(u� �.2N�� − 1�s�u� )�� = 0	                                                          (43) 

Periodic Terms: 

���2
��� −	 �v�t� ��2
�� − �t�{�|GHv�t� � �� =	 �v�t� ��2N�� − }q~
v
t
 Q�� − }(��v�t� )��                                                     (44) 

��p2
��� −	 �q\�t� �p2
�� − �rt�|GH�q\�t� � Q�� = �q\�t� �p2N�� 	                                                         (45) 

��.2
��� − s(u� �.2
�� − �1�s�|GHs�u� � )�� = s(u� �.2N��                                                           (46) 
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The equations (22) to (33) are ordinary linear coupled 

differential equations with constant coefficients. The 

corresponding boundary and interface conditions then 

become: 

Non-Periodic terms: 

 ��(2) = 0,  ��(1) =  ��(1),
 ��(0) =  ��(0),			 ��3−16 = 0��
N�� = V� �;�N�� ,			9:	> = 1,			 ���N�� = v�v
 ��2N�� ,			9:	> = 0�      (47) 

Q��326 = 0,			 ��316 =  ��316Q��306 = Q��306,			Q��3−16 = 0�p
N�� = "� �p�N�� ,			9:	> = 1�p�N�� = \�\
 �p2N�� 	9:	� = 0 ?@A
@B

      (48) 

)��326 = 0,			 ��316 =  ��316,)��306 =  ��306,			 ��3−16 = 1�.
N�� = Y� �.�N�� ,			9:	� = 1�.�N�� = u�u
 �.2N�� 	9:	� = 0 ?@A
@B

       (49) 

Periodic Terms: 

 ��326 = 0,			 ��316 =  ��316 ��306 =  ��306,			 ��3−16 = 0��

�� = V� ���
�� , 9:	� = 1���
�� = v�v
 ��2
�� 	9:	� = 0 ?@A
@B

        (50) 

Q��326 = 0,			Q��316 = Q��316Q��306 = Q��306,			Q��3−16 = 0�p

�� = "� �p�
�� , 9:	� = 1�p

�� = \�\
 �p�
�� 	9:	� = 0 ?@A
@B

        (51) 

)��326 = 0,			)��316 = )��316)��306 = )��306,			)��3−16 = 1�.

�� = Y� �.�
�� , 9:	� = 1�.

�� = u�u
 �.�
�� 	9:	� = 0 ?@A
@B

        (52) 

The analytical solutions of the differential equations (29) 

to (46) are readily obtainable under the boundary conditions 

(47) to (52). They are: 

 ��3�6 = C�e��� + C�e��� +	K� + K�e�
� + K�e��� + Khe�2� + K�e���                                (53)  ��3�6 = C��e�
�� + C��e�
�� +	K�� + K��e�
2� + K��e�
�� + K��e�
�� + K�he�
��                     (54)  ��3�6 = C��e���� + C��e�2N� +	K�� + Kh�e���� + Kh�e~��� + Kh�e���� + Kh�e����                    (55) Q��3�6 = C�e�
� + C�e���                                                                   (56) Q��3�6 = C��e�
2� + C�he�
��                                                         (57) Q��3�6 = C��e���� + C��e����                                                      (58) )��3�6 = C�e�2� + Che���                                                           (59) )��3�6 = C��e�
�� + C��e�
�� )��3�6 = C��e���� + C��e����                          (60)  ��3�6 = C��e�

� + C��e�
�� + K��e�
� + K��e��� + K��e�2� + K��e���+	K�he��� + K��e��� + K��e��� + K��e��� +K��e��� + K��e�
N�                                                             (61)  ��3�6 = C��e��2� + C�he���� + K��e�
2� + K��e�
�� + K��e�
�� + K��e�
��+	K��e�
�� + K�he�
�� + K��e�
�� +K��e��N� + K��e��
� + K��e����                                                   (62)  ��3�6 = C��e�2�� + C��e�2�� + Kh�e���� + Kh�e���� + K��e���� + K��e����+	K��e���� + K��e�2N� + K�he�2
� +K��e�2�� + K��e�22� + K��e�2��                                                      (63) Q��3�6 = C�e��� + C�e���	+	K�e�
� + K�e���                                                (64) 

Q��3�6 = C��e�
�� + C��e��N�	+	K��e�
2� + K��e�
��                                               (65) 

Q��3�6 = C��e�2
� + C��e�2��	+	Khhe���� + Kh�e����                                                (66) )��3�6 = C�e��� + C��e�
N�	+	K�e�2� + K�e���                                                 (67) 

)��3�6 = C��e��
� + C��e����	+	K��e�
�� + K��e�
��                                               (68) 

)��3�6 = C��e�22� + C�he�2��	+	Kh�e���� + Kh�e����	                                              (69) 

Where 
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V� = F + iωPr, V� = b(a( + iωSc, V� = M� + iω, Vh = ��
�
�


, V� = �
�


, V� =  ¡
¢


, V� = s_1_
u


, V� = �
£
�


, V� = {�|	v
1�£
 , V�� =�-\
t
, V�� = t
�|¤¥�¦£
�
 , ��� = 1_s_|GHs_v
 , ��� = t
{�|GH|1�v
v
t
 , ��h = �-\�t� , ��� = r\� , ��� = s_v� , ��� = s_1_v� , ��� = �v�t� , ��� ={�v� , ��� = t�r|GH�-\�t� , ��� = 1_s_|GHs_v� , ��� = {�t�|GHv�t� , 
m� = ��|¨���|h�� , m� = ��|¨3��	6�|h�� , m� = �-P¨3�-6�Ph�� , mh = s_P¨3s_6�|hs_1_� , m� = s_|¨3s_6�|hs_1_� , 

m� = �P¨�|h©�� , m� = �|¨�|h©�� , m� = ��P¨���|hª
� , m� =  ¡|¨ ¡�|hª�� , 

m�� =  ¡P¨ ¡�|hª�� , m�� = �|¨�|hª2� , m�� = �P¨�|hª2� , m�� = ª�|«ª��|hª�� , 
m�h = ª�P«ª��|hª�� ,	m�� = ª�P«ª��|hª�� , m�� = ª�|«ª��|hª�� , m�� = ª�|«ª��|hª�� , m�� = ª�P«ª��|hª�� , 

m�� = ª
N|«ª
N� |hª

� , m�� = ª
NP«ª
N� |hª

� , m�� = ª
�|«ª
�� |hª
2� , m�� = ª
�P«ª
�� |hª
2� , 

,	m�� = ª�|«ª��|hª
�� , m�h = ª�P«ª��|hª
�� , 
m�� = V�� + ¨V��� + 4V��2 ,m�� = V�� − ¨V��� + 4V��2 , 

m�� = ª
�P«ª
�� |hª
�� , 

m�� = ª
�|«ª
�� |hª
�� , m�� = ª
�|«ª
�� |hª�N� , m�� = ª
�P«ª
�� |hª�N� ,m�� = ª
�|«ª
�� |hª�
� , m�� = ª
�P«ª
�� |hª�
� , 

m�� = ª
�|«ª
�� |hª��� , m�h = ª
�P«ª
�� |hª��� , m�� = ª
�|«ª
�� |hª�2� , m�� = ª
�P«ª
�� |hª�2� , 
r� = 	e�3�
P��6, r� = e���  r� = 	e3���P~��6, rh =	m�eP�� ,	r� = m� −	m�e3�
P��6, r� = β�3m�he3�
�P�
26 −m��6,  r� = 	eP�� , r� = 1 − 	e3�2P��6, r� = 	e3�
�P�
�6 − 1, r�� =	mheP�� , r�� = m� −	mhe3�2P��6, r�� = γ�3m��e3�
�P�
�6 −m��6,  r�� = 1 − 	e3��P��6, r�h = 	e3�
�P�
�6 − 1, r�� = m� −	m�e3��P��6,  r�� = α�3m��e3�
�P�
�6 −m��6, r�� = 1 − 	e3��P��6, r�� = 	e3��NP�
�6 − 1,  r�� = m� −	m�e3��P��6, r�� = β�3m��e3��NP�
�6 −m��6, r�� = 1 − 	e3��P�
N6,  r�� = 	e3���P��
6 − 1, r�� = m� −	m��e3��P�
N6, r�h = γ�3m��e3���P��
6 −m��6,  r�� = 1 − 	e3�

P�
�6, r�� = 	e3���P��26 − 1, r�� = m�� −	m��e3�

P�
�6,  

r�� = α�3m�he3���P��26 −m��6, C� = �
��P�2���2��P���� , C� = )�S�, Ch = )�S��, C�� = �2�P¯
��2�q2� ,  
C�� = S� + )��S�, C�� = S�� + )��S�h,C�� = q�P.
2P.
�q� , C�� = q�2P.
�P.
�q�� , C�h = �
�P¯
2�
2�
� , C�� = .
q
�Pq
�q
� , C�� = .2q2�Pq2�q2� ,  

C� = �
�-�
Pq
���Nq
��
�°-
�q�N , C� = q2�q��Pq2�q�
q2�q�NPq2�q�
,  C� = ±�q��P±����������P��2��� , C�� = ²
P.
�P.
�q�2  
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C� = −A�	eP��� −	C�e�3��P��6, C�� = −Ah	e�2N −	C��e3�2NP���6C� = ±
�q��P±
2��N������P�����N ,  C� = A�	eP�� −	C�e3��P��6,					C� = ±�P±���������2P��
���, C�� = .
�|.�NP²�q��  

C�� = −A��	eP��
N −	C�e�3��P�
N6,			 C�� = ¯���2P±���� , 
C�h = −A��e�2� −	C��e3�2�P�226,				C�� = ±
2P¯������� ,  
C�� = −A��eP��
� −	C��e�3�

P�
�6,			C�� = ±�P¯���
��� ,  

C�� = −A��e��� −	C��e3���P��
6,  
K� =	 �©� , K� =	− ´�¯
�
�P�
P©� , K� =	− ´�¯����P��P©�,  Kh =	− ´¡¯2�2�P�2P©� , K� =	− ´¡¯����P��P©� , K� =	 ��¯
�
�
�P���
Pª
 , K� =	 ��¯������P����Pª
,  K� =	  ¡¯2�2�2�P ¡�2Pª� , K� =	  ¡¯������P ¡��Pª�,  K�� =	µ��
P´�µ��
�P�
Pª2 ,	K�� =	µ2��P´�µ����P��Pª2 , K�� =	µ��2P´¡µ��2�P�2Pª2  

K�� =	µ���P´¡µ����P��Pª2   

K�h =	 ¯������P��Pª2 , K�� =	 ¯������P��Pª2,  K�� =	− }q¯����P��Pª2 , K�� =	− }q¯����P��Pª2,  K�� =	− }(¯����P��Pª2 , K�� =	− }(¯
N�
N� P�
NPª2,  K�� =	 �	�v
 , K�� =	− }-¶
	�.
2�
2� P	��
2Pª�,K�� =	− ª�´�¶
¯
��
�� Pª��
�Pª�, K�� =	− ª�´¡·
¯
��
�� Pª��
�Pª� , K�h =	− ª�´¡·
¯
��
�� Pª��
�Pª�, K�� =	 ª
N¯
2�
2�
2� Pª
N�
2Pª

 , K�� =	 ª
N¯
��
��
�� Pª
N�
�Pª

,  K�� =	 ª
�¯
��
��
�� Pª
��
�Pª
2 , K�� =	 ª
�¯
��
��
�� Pª
��
�Pª
2,  K�� =	ª�3µ�
�
2P´�µ��¸
6�
2� Pª��
2Pª
� , K�� =	ª�3	1��~
�P}-¶
1��6�
�� Pª��
�Pª
� , K�� =	ª�3µ�2�
�P´¡µ��·
6�
�� Pª��
�Pª
�  

K�� =	ª�3µ���
�P´¡µ��·
6�
�� Pª��
�Pª
� ,  
K�� =	 ª�¯
��
��
�� Pª��
�Pª
�,  K�h =	 ª�¯
��
��
�� Pª��
�Pª
� , K�� =	− ª�´�¸
¯
��
�� Pª��
�Pª
�,  K�� =	− ª�´�¸
¯�N��N� Pª���NPª
�,  

K�� =	− V�Gcη�C��m��� − V�m�� − V�h , K�� =	− V�Gcη�C��m��� − V�m�� − V�h, ��� = *»�Nv�, Kh� =	− ª
�´�¸�¯������ Pª
����Pª�N,  
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Kh� = 	− ª
�´�¸�¯������ Pª
����Pª�N,  Kh� =	− ª
�´¡·�¯������ Pª
����Pª�N,  Kh� =	− ª
�´¡·�¯������ Pª
����Pª�N,  Khh =	 ª
�~��¯������ Pª
����Pª�
 , Kh� =	 ª
����¯������ Pª
����Pª�
,  Kh� =	 ª
�~��¯������ Pª
�~��Pª�� , Kh� =	 ª
����¯������ Pª
����Pª��, Kh� =	ª
�3µ�N���P´�µ��¸�6���� Pª
����Pª�2 , Kh� =	ª
�3	1�
~��P}-¶�1��6���� Pª
��
�Pª�2 , 
K�� =	V��3Kh�m�� − GcKh�η�6m��� − V��m�� − V�� , K�� =	V�3K�hm�� − GcK��η�6m��� − V�m�� − V�h  

K�� =	 ª
����¯������ Pª
����Pª�2 , K�� =	 ª
��2N¯2N�2N� Pª
��2NPª�2,  
K�h =	− V��Grφ�C��m��� − V��m�� − V��, K�� =	− ª
�¶�¯2�}-�2�� Pª
��2�Pª�2 , K�� =	− ª
�}½·�¯22�22� Pª
��22Pª�2, K�� =	− ·�ª
�}_¯2��2�� Pª
�~2�Pª�2 A� = K� + K�e��
 + K�e��� + Khe��2 + K�e��� ,  A� = K� + K�e�
 	+ K�e�� + Khe�2 + K�e��   A� = K�� + K�� + K�� + K�� + K�h − 3K�� + Kh� + Kh� + Kh� + Kh�6,  Ah = K�� + Kh�FP~�� + Kh�FP~�� + Kh�FP~�� + Kh�FP~��   A� = a�F~
[� + K�[�e�� + Kh[�e�2 + a�[hF~� − V�3a��[��F~
2 + a��[�hF~
� + a��[��F~
� + a�h[��F~
�  A� = V�3K��[�� + K��[�h + a��[�� + a�h[��6 − V�3ah�[�� + ah�[�� + ah�[�� + ah�[��, E� = a�F�~
 + K�F�~�   A� = K�F~
 + K�F~�6 − 3K��F~
2 + K��F~
�6, A� = a�� + a�� − 3Khh + Kh�6  A�� = KhheP��� + Kh�eP��� − 1, A�� = K�� + K�� − 3K� + K�6, E�� = a�e��2 + K�e���  A�� = γ�3K��m�� + K��m��6 − 3K�m� + K�mh6, E�h = K�e�2 	+ K�e�� − 3K��e�
� + K��e~
�6  A�� = K�� + K�� − 3Kh� + Kh�6  E��= Kh�FP~�� + Kh�FP~�� , A�� = γ�3K��m�� + K��m��6 − Y�3Kh�m�� + Kh�m��6	Q� = A� + A�eP�� − A�e�
�  A�� = a�F~2[� + K�[he�� − Y�3K��[��e�
� + a��[��F~
�6  Q� = Ahr�h + A�r�hm�eP�� − α�A�r�hm��e�
� , Q� = A� − A�eP�� − A�e��N Qh = A�r�� − A�r��m�eP�� − β�A�r��m��e��N ,	 Q� = A�� − A�eP�
N − A��e��� Q� = A��r�� − A�r��m��eP�
N − γ�A��r��m��e���  Q� = A�� + A��eP�
� − A�he��� , Q� = A��r�� + A��r��m��eP�
� − α�A�hr��m�he��� 

4. The Coefficient of Skin Friction, 

Nusselt Number and Sherwood 

Number Are Given as 

Coefficient of skin friction 

C¿3U6 = Á7 ��7� Â�Ã� 	+ 	DFGH� Á7 ��7� Â�Ã� 

C¿3L6 = [7 ��7� ]�ÃP� + DFGH�[7 ��7� ]�ÃP� 

Nusselt number 
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Nu(U) = 	 Á7Q��7� Â�Ã� + 	DFGH� Á7Q��7� Â�Ã� 

Nu3L6 = 	 Á7Q��7� Â�ÃP� + 	DFGH� Á7Q��7� Â�ÃP� 

Sherwood number 

Sh3U6 = 	 Á7)��7� Â�Ã� + 	DFGH� Á7)��7� Â�Ã� 

Sh3L6 = 	 Á7)��7� Â�ÃP� + 	DFGH� Á7)��7� Â�ÃP� 

 

5. Discussion of Results 

An attempt has been made to study the velocity, 

temperature and concentration fields in an unsteady MHD 

free convective flow through a porous medium sandwiched 

between viscous fluids with heat and mass transfer in a 

horizontal channel. In order to get the physical insight into 

the problem, the velocity, temperature and concentration 

have been discussed by assigning the various numerical 

values to M (magnetic parameter), Kc (chemical parameter), 

Pr (prandtl number), Sc (Schmidt number) etc. 

Figure 2 presents the effect of prandtl number Pr on the 

velocity profile. It is observe that as the momentum diffusivity 

(kinematic viscosity) gradually dominate the thermal diffusivity, 

the velocity of the flow decreases with slight alteration in the 

porous region-II, while the variation in the velocity has not 

much significant in the clear region-I and III. 

 

Figure 2. Velocity distribution versus y for different values of prandlt number Pr when K=1, P=1,  

and A=1. 

Figure 3 depicts the effect of Radiation parameter F on velocity profile. The radiation parameter has no significant effect on 

the velocity field as it can be seen, although an increase in the Radiation parameter has slight decrease on the velocity in 

region-II with slight increase in region-III. 

2 2 2 2 1 11 . 10, , 5, 0.025
6 rm m t Gπβ η α η ω ω ε= = = = = = = = = =
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Figure 3. Velocity distribution versus y for different values of thermal radiation parameter when K=1, P=1,

 and A=1. 

Figure 4 illustrates the effect of Schmidt number Sc on velocity filed. It is observed that gradual domination of viscous 

diffusion rate over the molecular (mass) diffusion rate contribute to a decrease in the velocity field in region-I and II, and rapid 

increase of velocity in region-III. 

 

Figure 4. Velocity distribution versus y for different values of Schmidt Sc number when K=1, P=1, 

 and A=1. 

2 2 2 2 1 11 . 10, , 5, 0.025
6 rm m t Gπβ η α η ω ω ε= = = = = = = = = =

2 2 2 2 1 11 . 10, , 5, 0.025
6 rm m t Gπβ η α η ω ω ε= = = = = = = = = =
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Figure 5. Velocity distribution versus y for different values chemical parameter Kc when K=1 P=1, 

 and A=1. 

Figure 6 highlights the effect of Hartmann number on the velocity profile. It is shown that as the electromagnetic force increasingly 

dominates over the viscous force, the velocity decreases randomly throughout the channels as the Hartmann number increases, this 

decrease is as the result of the presence of magnetic field applied transverse to the flow which would suppress turbulence thereby 

coursing decrease in the velocity. 

 
Figure 6. Velocity distribution versus y for difference values of Magnetic parameter M when Pr=1. K=1, P=1.

 and A=1. 

2 2 2 2 1 11 . 10, , 5, 0.025
6 rm m t Gπβ η α η ω ω ε= = = = = = = = = =

2 2 2 2 1 11 . 10, , 5, 0.025
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Figure 7 depicts the effect of Schmidt number on the magnitude of the fluid concentration. It is noticed from the figure that 

fluid concentration increases with an increase of Schmidt number, and attain its maximums at the interface of region III, also 

the magnitude of promotion is large with curve shape at the interface of region I. 

 
Figure 7. Concentration distribution versus y for different values of Schmidt number Sc when K=1 P=1, 

 and A=1. 

Figure 8 depicts the effect of chemical parameter Kc on concentration distribution. It is observe that concentration of 

the fluid increase with increase in the chemical parameter, it is also examine that the concentration increase rapidly at 

each increase of the chemical parameter. 

 

Figure 8. Concentration distribution versus y for different values of Chemical parameter Kc when K=1 P=1, 

 and A=1. 

 

2 2 2 2 1 11 . 10, , 5, 0.025
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Figure 9 and 10 highlight the effect of thermal 

conductivity ratio "�  and "�  on the velocity profile. It is 

noticed in figure 9 that an increment in the thermal 

conductivity ratio "� props up the fluid velocity in region 

I, while opposite behavior is observed in both region II 

and III. While in figure 10 was apprise that increment in 

the thermal conductivity ratio "� support the fluid velocity 

with uniform increase in region III and rapid decrease in 

region I also attain it maximum value at the interface of 

the region II and III. Therefor thermal conductivity has the 

tendency to accelerate the fluid flow. 

 

Figure 9. Velocity distribution versus y for different values of thermal conductivity  when K=1 P=1, 

 and A=1. 

 

Figure 10. Velocity distribution versus y for different values of thermal conductivity  when a = 1, O = 1 ,

 and A=1. 

Figure 11 and 12 depict the effect of thermal conductivity 

ratio "� and "� on the magnitude of the fluid temperature. It 

is observed that in figure 11 that the fluid temperature 

increase in region I as the thermal conductivity ratio generate 

heat while the opponent behavior was noticed closed to the 

interface of region II and III. While in figure 12 shows that 

increase in thermal conductivity "� prop’s up the magnitude 

of the fluid temperature throughout the regions. 
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Figure 11. Temperature distribution versus y for different values of thermal conductivity  when K=1, P=1,

and A=1. 

 

Figure 12. Temperature distribution versus y for different values of thermal conductivity  when K=1, P=1, 

 and A=1. 

Figure 13 present the effect of radiation parameter on the magnitude of temperature profile. It is observed that an increase in 

the radiation parameter lead to uniform decrease throughout the channel. 

 

Figure 13. Temperature distribution versus y for different values of Radiation parameter F when K=1, P=1,

 and A=1. 
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Figure 14 depict the effect of Prandtl number Pr on the magnitude of the fluid temperature. It is noticed that as the Prandtl 

number is increasing the temperature too is increasing in all the regions. 

 

Figure 14. Temperature distribution versus y for different values of Prandlt number Pr when K=1 P=1,

 and A=1. 

Table 1: Shows that the coefficient of skin-friction at the 

upper plate and lower plate in case of unsteady flow is less 

than that of steady flow. Further in case of unsteady flow, the 

coefficient of skin-friction at the upper plate increase with an 

increase of the chemical parameter, magnetic parameter and 

thermal conductivity ratio"� . While it decrease due to the 

increase of the Prandtl number, viscosity ratio V�  thermal 

conductivity ratio"� Grashof number Gr. The coefficient of 

the skin-friction at the lower plate decreases with increase of 

viscosity ratio magnetic parameter and modified Grashof 

number Gc. While it increases with the increase of Schmidt 

number Sc, Prandtl number Pr, thermal conductivity ratio"� 

and chemical parameter. 

Table 1. Show the values of coefficient of skin-friction at the upper plate and lower plate for various values of physical parameters where K=F=A= Y� 

=Y� = 1, ω=10 and ωt=30. 

E Pr Gr Gc Kc M Sc ÊË  Êx  ÌË  Ìx  Cf (u) Cf (l) 

0 1 5 5 1 1 0.78 1 1 1 1 -24.96 54.23 

0.025 1 5 5 1 1 0.78 1 1 1 1 -1.81 1.27 

0.025 3 5 5 1 1 0.78 1 1 1 1 -3.06 3.42 

0.025 1 10 5 1 1 0.78 1 1 1 1 -3.59 1.99 

0.025 1 5 10 1 1 0.78 1 1 1 1 -1.83 2.17 

0.025 1 5 5 3 1 0.78 1 1 1 1 -1.49 2.62 

0.025 1 5 5 1 3 0.78 1 1 1 1 1.91 1.12 

0.025 1 5 5 1 1 0.87 1 1 1 1 -1.83 2.69 

0.025 1 5 5 1 1 0.78 3 1 1 1 8.10 53.18 

0.025 1 5 5 1 1 0.78 1 3 1 1 -3.60 1.97 

0.025 1 5 5 1 1 0.78 1 1 3 1 -8.10 -1.14 

0.025 1 5 5 1 1 0.78 1 1 1 3 -1.81 1.32 

 

Table 2: depict that the Nusselt number at the upper 

plate and the lower plate in case of unsteady flow is 

greater than that of the mean flow. Nusselt number at the 

upper plate increases due to increase in Schimdt number 

Sc, chemical parameter Kc, and Prandtl number Pr. While 

the Nusselt number decrease with an increase in thermal 

conductivity ratio "� . Whereas at the lower plate, the 

Nusselt number decreases with increase in Schmidt 

number Sc and thermal conductivity ratio "� . While it 

increases with increase in prandtl number and thermal 

conductivity ratio "�. 

Table 2. Show the values of Nusselt number at the upper plate and lower plate for various values of physical parameters where K=F=A=Y� =Y�=1, ω=10 and 

ωt=30. 

E Pr Gr Gc Kc M Sc ÊË  Êx  ÌË  Ìx  Nu (u) Nu (l) 

0 1 5 5 1 1 0.78 1 1 1 1 0.07 -1.30 

0.025 1 5 5 1 1 0.78 1 1 1 1 -0.08 -2.19 

0.025 3 5 5 1 1 0.78 1 1 1 1 -0.03 -1.19 

0.025 1 10 5 1 1 0.78 1 1 1 1 -0.08 -2.19 

0.025 1 5 10 1 1 0.78 1 1 1 1 -0.08 -2.19 
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E Pr Gr Gc Kc M Sc ÊË  Êx  ÌË  Ìx  Nu (u) Nu (l) 

0.025 1 5 5 3 1 0.78 1 1 1 1 -0.06 -2.19 

0.025 1 5 5 1 3 0.78 1 1 1 1 -0.08 -2.19 

0.025 1 5 5 1 1 0.87 1 1 1 1 -0.02 -4.63 

0.025 1 5 5 1 1 0.78 3 1 1 1 -0.09 -2.22 

0.025 1 5 5 1 1 0.78 1 3 1 1 -0.15 -1.15 

0.025 1 5 5 1 1 0.78 1 1 3 1 -0.08 -2.19 

0.025 1 5 5 1 1 0.78 1 1 1 3 -0.08 -2.19 

 

Table 3: Shows that the Sherwood number at the upper and 

lower plate in case of unsteady flow is higher than that of the 

mean flow. Furthermore in case of unsteady flow, the 

Sherwood number at the upper plate decreases with an 

increase in chemical parameter and Schmidt number. While it 

increases with increase in Prandtl Pr number and Grashof 

number Gr. 

Table 3. Show the values of Sherwood number at the upper plate and lower plate for various values of physical parameters where K=F=A=Y�=Y�=1, ω=10 

and ωt=30. 

E Pr Gr Gc Kc M Sc ÊË  Êx  ÌË  Ìx  Sh (u) Sh (l) 

0 1 5 5 1 1 0.78 1 1 1 1 -3.82 3.05 

0.025 1 5 5 1 1 0.78 1 1 1 1 -3.75 3.01 

0.025 3 5 5 1 1 0.78 1 1 1 1 -3.75 4.02 

0.025 1 10 5 1 1 0.78 1 1 1 1 -3.75 3.75 

0.025 1 5 10 1 1 0.78 1 1 1 1 -3.75 3.02 

0.025 1 5 5 3 1 0.78 1 1 1 1 -32.9 3.11 

0.025 1 5 5 1 3 0.78 1 1 1 1 -3.75 3.34 

0.025 1 5 5 1 1 0.87 1 1 1 1 -4.61 3.02 

0.025 1 5 5 1 1 0.78 3 1 1 1 -3.75 3.02 

0.025 1 5 5 1 1 0.78 1 3 1 1 -3.75 3.02 

0.025 1 5 5 1 1 0.78 1 1 3 1 -3.75 3.02 

0.025 1 5 5 1 1 0.78 1 1 1 3 -3.75 3.02 

 

6. Conclusion 

The unsteady MHD free convective three phase flow 

through porous medium sandwiched between viscous fluids 

with heat and mass transfer has been studied. After separating 

the harmonic and non -harmonic terms, the governing 

equations of flows in non-dimensional form are converted 

into ordinary linear differential equations with constant 

coefficients, which are solved under perturbation method 

with boundary and interface conditions. 

It can be concluded that; 

� The fluid velocity decreases with an increase in Prandtl 

number, Radiation parameter, Hartmann number and 

Schmidt number. 

� Some of these governing parameters had little effect on 

the velocity profile while others had significant effect 

on this velocity profile. 

� The same was seen on the temperature profile and 

concentration profile. 

� Finally the governing parameters had effects on the 

flow and this study does aid in the practical usage of 

such flow or when confronted with such a flow. 

List of Symbols 

U, V Velocity components 

T Time 

P Pressure 

B0 Coefficient of electromagnetic field 

F Thermal Radiation parameter 

θ Dimensionless temperature 

K Permeability of porous medium 

ϑ Kinematic viscosity 

µ Fluid viscosity 

A Real positive constant 

g Acceleration due to gravity 

Cp Specific heat at constant pressure 

Tw1 Fluid temperature at upper wall 

Tw2 Fluid temperature at lower wall 

Cw1 Fluid concentration at upper wall 

Cw2 Fluid concentration at lower wall 

Gr Grashoff number 

Re Reynolds number 

M
2
 Hartmann number 

Pr Prandtl number 

Sc Schmidt number 

α Ratio of viscosity 

β Ratio of thermal conductivity 

γ Ratio of thermal diffusivity 

ω Frequency parameter 

ε Coefficient of periodic parameter 

ωt Periodic frequency parameter 

Subscripts 1, 2, 3: Region I, II and III 
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