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Abstract: In engineering and science, linear systems of algebraic equations occur often as exact or approximate 

formulations of various problems. These types of equations are well represented in matrix form. A major challenge for 

researchers is the choice of algorithm to use for an appropriate solution. In this study, we choose to experiment with three 

algorithms for the solution to a system of linear algebraic equation. After subjecting the matrix form of the system of linear 

algebraic equations to the rank test, Gaussian Elimination method, Inverse Matrix Method and Row-Reduced Echelon were 

used to evaluate twenty-four (24) sets of solutions. Numerical methods are plagued by truncation and round-off errors thus, we 

choose to compute and compare result here by invoking the MATLAB command format long (15 decimal place) with format 

short (5 decimal place). After evaluating the required solutions, we substituted all computed results back into the system of 

linear algebraic equations to check if they are satisfied. Comparison of results was done on the basis of algorithm used and 

between the results obtained using either format long or format short values. Despite the presence of errors due to truncation 

and round-off, format short computed solutions gave acceptable result in some cases. Results obtained in this study proved the 

efficacy of the proposed technique. 

Keywords: Linear System of Algebraic Equations, Numerical Methods, MATLAB
®

 

 

1. Introduction 

The most important treatise in the history of Chinese 

mathematics is the Chiu Chang Chiu Chang Suan Shu in 

Chinese characters or “The Nine Chapters of the 

Mathematical Art.” This treatise, which is a collection of 246 

problems and their solutions, was assembled in its final form 

by Liu Hui in A.D. 263. Its contents, however, go back to at 

least the beginning of the Han dynasty in the second century 

B.C. The eighth of its nine chapters, entitled “The Way of 

Calculating by Arrays,” contains 18 word problems that lead 

to linear systems in three to six unknowns. The general 

solution procedure described is almost identical to the 

Gaussian Elimination technique developed in Europe in the 

nineteenth century by Carl Friedrich Gauss [1]. 

Harvard Professor Wassily Leontief was carefully feeding 

the last of his punched cards into the University’s Mark II 

computer. The cards contained information about the U.S. 

economy and represented a summary of more than 250,000 

pieces of information produced by the U.S. Bureau of Labor 

Statistics after two years of intensive work. Leontief had 

divided the U.S. economy into 500 “sectors,” such as the coal 

industry, the automotive industry, communications, and so 

on. 

For each sector, he had written a linear equation that 

described how the sector distributed its output to the other 

sectors of the economy. One of the largest computers of its 

day, the Mark II, could not handle the resulting system of 500 

equations in 500 unknowns, Leontief had distilled the 

problem into a system of 42 equations in 42 unknowns.  

Leontief’s Nobel Prize awarded in 1973 opened the door 

to a new era in numerical mathematical modeling. His efforts 

at Harvard in 1949 marked one of the first significant uses of 

computers to analyze what was then a largescale 
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mathematical model. Since that time, researchers in many 

other fields have employed computers to analyze 

mathematical models. Because of the massive amounts of 

data involved, the models are usually linear; that is, they are 

described by systems of linear equations.  

Today, linear algebra has more potential value for 

researchers in many scientific and business fields than any 

other mathematics subject. Some areas of its are [2]: 

� Oil exploration. When a ship searches for offshore oil 

deposits, its computers solve thousands of separate 

systems of linear equations every day. The seismic 

data for the equations are obtained from underwater 

shock waves created by explosions from air guns. The 

waves bounce off subsurface rocks and are measured 

by geophones attached to 

� mile-long cables behind the ship 

� Linear programming. Many important management 

decisions today are made on the basis of linear 

programming models that use hundreds of variables. 

The airline industry, for instance, employs linear 

programs that schedule flight crews, monitor the 

locations of aircraft, or plan the varied schedules of 

support services such as maintenance and terminal 

operations. 

� Electrical networks. Engineers use simulation software 

to design electrical circuits and microchips involving 

millions of transistors. Such software relies on linear 

algebra techniques and systems of linear equations. 

The importance of linear algebra for applications has risen 

in direct proportion to the increase in computing power, with 

each new generation of hardware and software triggering a 

demand for even greater capabilities. Computer science is 

thus intricately linked with linear algebra through the 

explosive growth of parallel processing and large-scale 

computations. Scientists and engineers now work on 

problems far more complex than even dreamed possible a 

few decades ago. 

The concept of linear algebra in matrix form have 

widespread usage in many areas of science and engineering 

especially over the last three decades. With the aid of 

computers, matrices have been employed effectively in many 

applications ranging from signal processing, controls, finite 

elements analysis, communications, computer vision, 

electromagnetics, social and health sciences etc. This fueled 

the development of several matrices-based analytical 

packages such as MATLAB
®
 to help engineers and scientists 

simulate or solve large systems numerically using 

fundamental linear algebra concept. 

2. Numerical Solution 

One of the most reliable aspects of numerical analysis 

programs for the electronic digital computer is that they 

always produce numbers. As a result of the considerable 

reliability of the machines, it is common to regard the results 

of their calculations with a certain air of infallibility. 

However, the results can be no better than the method of 

analysis and implementation program utilized by the 

computer. This is the origin of the aphorism "garbage in − 

garbage out". Because of the large number of calculations 

carried out by these machines, small errors at any given stage 

can rapidly propagate into large ones that destroy the validity 

of the result. 

Computers store real numbers in floating-point form. In 

general, the floating-point form of a number is ±M x10
k
, 

where k is an integer and the mantissa M is a (decimal) real 

number that satisfies 0.1 ≤ M < 1. The maximum number of 

decimal places that can be stored in the mantissa depends on 

the computer. If the maximum number of decimal places that 

can be stored is d, we say that there are d significant digits. 

Any digits that are not stored are either omitted (in which 

case we say that the number has been truncated) or used to 

round the number to d significant digits.  

Digital computers utilize a certain number of digits in their 

calculations and this base number of digits is known as the 

precision of the machine. Often it is possible to double or 

triple the number of digits and hence the phrase "double" or 

"triple" precision is commonly used to describe a calculation 

carried out using this expanded number of digits. It is 

common practice to use more digits than are justified by the 

problem simply to be sure that one has "got it right". 

Consider the common 6-digit machine. It will be unable to 

distinguish between 1 million dollars and 1 million and nine 

dollars. Subtraction of those two numbers would yield zero. 

This would be significant to any accountant at a bank. 

Repeated operations of this sort can lead to a completely 

meaningless result in the first digit. 

Whenever truncation or rounding occurs, a round-off error 

is introduced, which can have a dramatic effect on the 

calculations [3]. Therefore, we must be careful about the 

propagation of round-off error into the final computational 

result. We must keep in mind that both round-off and 

truncation errors will be present at some level in any 

calculation and be wary lest they destroy the accuracy of the 

solution. The acceptable level of accuracy is determined by 

the analyst and he must be careful not to aim too high and 

carry out grossly inefficient calculations, or too low and 

obtain meaningless results [4].  

In this study, first we argue that it is only by experimenting 

with different algorithms and comparing results that a 

satisfactory solution can be reached. Second, we make lucid 

the effect of round-off error in such computations. These we 

shall explore by numerically solving a system of linear 

algebraic equation describing current flow in a simple circuit. 

3. Linear System of Algebraic Equation 

Linear algebra has evolved as a branch of mathematics 

with a wide range of applications in natural sciences, 

engineering, computer sciences, management and social 

sciences, and more. Many problems in the sciences lead to 

solving more than one linear equation. The general situation 

can be described by a linear system. A system of linear 

equations or simply a linear system is any finite collection of 
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linear equations. A linear system of m equations in n 

variables 

has the form described in (1). 

A linear system can have infinitely many solutions 

(dependent system), exactly one solution (independent 

system) or no solutions at all. When a linear system has a 

solution we say that the system is consistent. Otherwise, the 

system is said to be inconsistent. 

Suppose F is a field. We consider the problem of finding n 

scalars (elements of F) x1,…,xn which satisfy the conditions 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

                                      

n n

n n

m m mn n n

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =
+ + + =

+ + + =

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

                (1) 

where b1,…,bn and aij, such that 1 ,   1 ,i m j n≤ ≤ ≤ ≤ are 

given elements of F. then we call (1) a system of m linear 

equations in n unknowns. Any n-tuple (x1,…,xn) of elements 

of F which satisfies each of (1) is called a solution of the 

system. If b1 = b2 =…= bm = 0, we say that the system is 

homogeneous, or that each of the equation is homogeneous. 

In concise form, (1) can be written as 

1

      1, ,
n

ij j i

j

a x b i m
=

= =∑ …                   (2) 

where aij, denotes the coefficient of the jth unknown xj in the 

ith equation, and the numbers aij, and bi, (hence xj) all are 

real. Often the number r of equations is equal to the number 

n of unknowns, but exceptions are common in optimization 

and modeling. In matric form, (1) can be represented as 

11 12 1 1 1

21 22 2 2 2

1 2

    

n

n

m m mn n m

a a a x b

a a a x b
A x b

a a a x b

     
     
     ≡ ≡ ≡
     
     
     

⋯

⋯

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮

⋯

          (3) 

Note, A denotes the matrix with coefficients aij,, x the 

unknown column vector and b the right hand column vector. 

Another way of representing an array is to enclose the 

expression for its elements in curly brackets: A = { aij }, x = 

{xj}, b = {bi}. Defining the matrix-vector product 

1

n

ij j

j

Ax a x
=

 
≡  
 
∑                                   (4) 

In accordance with (2), one can summaries (1) concisely as 

[5], 

Ax b=                                         (5) 

Methods for solving (1) can then be described in terms of 

operations on the arrays A and b, (1) has solution if and only 

if b is a linear combination of nonzero column vectors of A; 

then we say that b is in the column space of A. In such cases, 

if the rank r, of A equal’s n there is a unique solution, 

whereas if r < n there is an infinity of solutions characterized 

by (n - r) free parameters. 

4. Methods of Solution 

Sets of linear algebraic equations can be expressed as a 

single equation, using matrix notation as given in (3). This 

standard and compact form is useful for expressing solutions 

and for developing software applications with an arbitrary 

number of variables. Matrix notation enables us to represent 

multiple equations as a single matrix equation.  

There exist several algorithms for the solution of linear 

algebraic system of equations. Only three will be discussed 

here based on the fact that they will be used to solve the 

selected problem.  

4.1. Matrix Inversion 

The situation is simplest if the matrix A is square (r = n); 

then a unique solution vector x exists if and only if the rank 

of A equals its order n. Such a matrix A has a unique inverse, 

A
-l
, defined by 

1 1A A AA I− −= =                              (6) 

and is said to be nonsingular or regular. Here I is the unit 

matrix expressed in (7) of the same order as A.  

{ }
1 0 0

1,...,1 0 0

0 0 1

I diag

 
 = ≡
 
  

⋱                      (7) 

A necessary and sufficient condition for matrix A to be 

nonsingular is that the determinant of A be nonzero. Under 

this condition, A
− 1

 is computed using the following equation 

[6]: 

( )
( )

1

det

adj A
A

A

− =                               (8) 

where adj(A) stands for the adjoint matrix of A which is 

defined to be the n x n matrix of cofactors given by: 

( )
11 12 1

21 22 2

1 2

,

n

n

n n nn

C C C

C C C
adj A

C C C

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

                  (9) 

where 

( ) ( )1 det
i j

ij ij
C M

+= −                       (10) 

and Mij is the minor corresponding to aij and is defined as the 

(n− 1) x (n− 1) matrix obtained by eliminating the i
th

 row 

and j
th

 column of A. 

The inverse of a matrix A is defined only if A is square and 

nonsingular. A matrix is singular if its determinant |A| is 
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zero. In general, the determinant of an n x n matrix A is 

defined as: 

( ) ( )
1

det 1  for any 1,2,...,

i jn

ij ij

j

A a M i n

+

=

= − =∑      (11) 

where Mij is the minor corresponding to aij and is the 

determinant of the matrix obtained by deleting the row and 

column containing aij. Let Aij = (− 1)
i + j

Mij, where Aij is 

defined as the cofactor of aij. Then: 

( ) ( )
1 1

det 1  =

i jn n

ij ij ij ij

j j

A a M a A

+

= =

= −∑ ∑              (12) 

When the inverse of a matrix is computed, then the 

solution to the linear system of algebraic equation is 

evaluated as, 

1x A b−=                                           (13) 

Thus in MATLAB, the syntax inv(A)* b will produce the 

solution required as described by (13). This syntax 

implements an inverse matrix algorithm for the system of 

linear algebraic equations. In MATLAB a result will be 

obtained provided the rank r, of A equals n. 

4.2. Gaussian Elimination 

Consider a set of linear equations as given in (5), where x 

and b represent n x 1 vectors, and A is an n x n matrix. 

Another approach to solve the system of linear equations Ax 

= b is by utilizing the Gaussian elimination technique. In this 

method, we combine matrix A and column vector b into an 

augmented n x (n + 1) matrix as follows: 

[ ]
11 12 1 1

21 22 2 2

1 2

|

n

n

n n nn n

a a a b

a a a b
A b

a a a b

 
 
 =
 
 
 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

                   (14) 

A sequence of elementary row operations is applied to this 

augmented matrix to transform the matrix into an upper 

triangular matrix of the form: 

11 12 1 1

22 2 2
0

0 0

n

n

nn n

a a a b

a a b

a b

 
 ′ ′ ′
 
 
 ′ ′ 

⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

                   (15) 

Now, we can solve the last equation for the unknown (xn) 

and substitute it back into the previous equation to obtain a 

solution for xn − 1. This process is continued using back-

substitution until all of the unknowns have been found. The 

general solution is given by: 

1

1
 ,  1,  ..., 1

n

i i ik k

k iii

x b a x i n n
a = +

 ′ ′= − = − ′  
∑             (16) 

For computation of a particular solution vector, this 

method requires 1/3 (n
3
- n) + n

2
 operations of multiplication 

or division [7]. 

MATLAB provides the left division method for solving (5) 

based on Gauss Elimination. To use the left division method 

to solve for x, you type x = A\b. If |A| = 0 or if the number of 

equations does not equal the number of unknowns, then you 

need to use the other methods to be presented later. 

4.3. The Row-Reduced Echelon Method 

A matrix is said to be in row echelon form if it satisfies all 

of the following: 

� The first nonzero entry in each nonzero row is 1. 

� If the kth row does not consist entirely of zeros, then 

the number of leading zero entries in the (k + 1)
th

 row 

should be greater than the number of leading zero 

entries in the k
th

 row. 

� If there are any rows whose entries are all zero, they 

should be below the rows with nonzero entries. 

One can also describe an m x n row–reduced echelon 

matrix R as follows [8]. Either every entry in R is 0, or there 

exists a positive integer r, 1 ≤ r ≤ m, and r positive integers 

k1,…, kr with 1 ≤ ki ≤ n and 

� Rij = 0 for i > r, and Rij = 0 for j < ki 

� Riki = δij, 1 ≤ I ≤ r, 1 ≤ j ≤ r 

� k1 < … < kr 

In MATLAB, the rref function provides a procedure for 

reducing an equation set to this form, which is called the 

row-reduced echelon form. Its syntax is rref([A b]). Its output 

is the augmented matrix [C d] that corresponds to the 

equation set Cx = d. This set is in row-reduced echelon form 

5. Solving a Typical Problem 

A typical problem of linear system of algebraic equation is 

gotten from [9] and is as follows: 

Equation (19) describes the circuit shown in Fig. 1. 

1 1 1 4 4

4 4 2 2 5 5

5 5 3 3 2

1 2 4

2 3 5

0

0

0

      

      

v R i R i

R i R i R i

R i R i v

i i i

i i i

− + + =
− + + =
− + + =

= +
= +

                      (17) 

 

Fig. 1. Electrical circuit. 
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(a) The given values of the resistances and the voltage v1 

are R1 =5, R2 = 100, R3=200, R4=150, R5=250 kΩ, and 

v1 =100 V. (Note that 1 kΩ =1000 Ω.) Suppose that 

each resistance is rated to carry a current of no more 

than 1 mA (=0.001A). Determine the allowable range 

of positive values for the voltage v2. 

(b) Suppose we want to investigate how the resistance R3 

limits the allowable range for v2. Obtain a plot of the 

allowable limit on v2 as a function of R3 for 150 ≤ R3 ≤ 

250 kΩ. 

To obtain the solution to (17), it has to be re-written to 

account for the all other relating variables of current. Also, 

the numerical values of resistance must be captured and 

terms re-arranged, this gives;  

1 2 3 4 5
5,000 0 0 150,000 0 100i i i i i+ + + + =        (18) 

1 2 3 4 5
0 100,000 0 150,000 250,000 0i i i i i+ + − + =      (19) 

1 2 3 4 5 2
0 0 200,000 0 250,000i i i i i v+ − + + =          (20) 

1 2 3 4 5
0 0 0i i i i i− + − + =                           (21) 

1 2 3 4 5
0 0 0i i i i i+ − + − =                           (22) 

In matrix form [10-12], (18) -(22) is presented as given in 

(23). Note that here we assume v2 = 1V 

1

2

3

4

5

5,000 0 0 150,000 0 100

0 100,000 0 150,000 250,000 0

0 0 200,000 0 250,000 1

1 1 0 1 0 0

0 1 1 0 1 0

i

i

i

i

i

    
    
    
    =−
    − −     
    − −    

                                             (23) 

From (23), the following matrices emerge 

5,000 0 0 150,000 0

0 100,000 0 150,000 250,000

0 0 200,000 0 250,000

1 1 0 1 0

0 1 1 0 1

A

 
 
 
 = −
 − − 
 − − 

 (24) 

[ ]1 2 3 4 5

T
x i i i i i=                       (25) 

[ ]100 0 1 0 0
T

B =                      (26) 

The matrix A in (24) is square and det(A) ≠ 0. This implies 

that the Matrix Inversion method can be applied to it to 

obtain the needed solution. This method executed by the 

syntax inv(A)* b will warn us if a unique solution does not 

exist, but it does not tell us whether there is no solution or an 

infinite number of solutions. For this reason, it is prudent to 

subject the A and b matrixes in (24) and (26) to the rank of a 

matrix test. 

This test suggests that if A is square and of dimension n x 

n, then rank ([A b]) = rank(A), and a unique solution exists 

for any b if rank(A) = n. For the problem under consideration 

A is a 5 x 5 matrix and rank(A) = rank ([A b]) = 5, hence, a 

unique solution exists. Gaussian Elimination method and 

Matrix Inverse Method can be employed for the solution 

required. But the question comes with a condition that says v2 

can take a range of positive values. Any range of positive 

values can have infinite numbers. One will therefore be 

tempted to consider the problem as one with infinitely many 

solutions that is limited by a current of 0.001A. The 

implication of an infinitely many solutions for a set of linear 

algebraic equation will allude to the use of the Row-Reduced 

Echelon method, despite the fact that r = n. 

This dilemma as to the choice of the most appropriate 

numerical algorithm for one to use can be surmounted by 

employing all three algorithms. Then by substituting the 

obtained solutions into the set of linear algebraic equations to 

check for its satisfaction. 

First we choose to obtain solution to (24) and (26) in 5 

decimal place and then in 15 decimal places by invoking the 

command format short and format long respectively in 

MATLAB.  

All computations were done using R2016a version of 

MATLAB, on a 64-bit Windows 7 Laptop with Intel(R) 

Core(TM) i5-2430M @ 2.40GHz and RAM 6.00GB. 

Applying Matrix Inverse and Gaussian Elimination 

Methods using the syntaxes x1=A\b and x2= inv(A)*b 

respectively gave the current values in (27) and (28).  

1,2

0.000188531711555172

-0.000471850564726323

, -0.000264361424847959

0.000660382276281494

-0.207489139878367

ji

 
 
 
 =
 
 
  

              (27) 

1,2

0.0001885

-0.0004719

, -0.0002644

0.0006604

-0.2075

ji

 
 
 
 =
 
 
  

                        (28) 

where j =1…5 and j1,2 represents the currents obtained by 

methods 1, Matrix Inversion and method 2, Gaussian 

Elimination. 

The Row-Reduced Echelon Method was used to solve the 

set of linear algebraic equations as represented in (24) and 
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(26), using the MATLAB syntax x3 = rref([A, b]). An 

augmented matrix [C d] was obtained as; 

[ ]

1 0 0 0 0 0.000188536953243

0 1 0 0 0 -0.000471920717319

0 0 1 0 0 -0.000264340470526

0 0 0 1 0 0.000660501981506

0 0 0 0 1 -0.000207468879668

C d

 
 
 
 =
 
 
  

   (29) 

The matrix in (30) corresponds to the matrix equation Cx = 

d, or  

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

0 0 0 0 0.000188536953243

0 0 0 0 -0.000471920717319

0 0 0 0 -0.000264340470526

0 0 0 0 0.000660501981506

0 0 0 0 -0.000207468879668

i i i i i

i i i i i

i i i i i

i i i i i

i i i i i

+ + + + =
+ + + + =
+ + + + =
+ + + + =
+ + + + =

       (30) 

Hence, from (30) we can isolate the circuit current as 

presented in (31) if format long was invoked during 

execution in MATLAB. For a corresponding solution with 

format short, we get the current in (32). 

3

0.000188536953243

-0.000471920717319

,  -0.000264340470526

0.000660501981506

-0.000207468879668

ji

 
 
 
 =
 
 
  

                      (31) 

3

0.0002

-0.0005

, , -0.0003

0.0007

-0.0002

ji

 
 
 
 =
 
 
  

                                (32) 

Where j3 is the current obtained by method 3, Row-

Reduced Echelon Method. 

Substituting values of the obtained currents in (27) and 

(31) to check how they satisfy the values of v1 and v2 in (18) 

and (20) respectively gave the result in Table 1. Hence, the 

computation in Table 2-8. 

Table 1. format long computed cases. 

 
Case I Case II Case III 

v1 = 100V v2 =1 V v1 = 100V v2 =100V v1 = 100V v2 =300V 

Matrix Inversion 99.99 0.99 99.99 100.00 99.99 300.00 

Gaussian Elimination 99.99 0.99 99.9 100.00 99.99 300.00 

Row-Reduced Echelon  100.0 1.00 99.99 100.00 99.99 299.86 

Table 2. format short computed cases. 

 
Case IV Case V Case VI 

v1 = 100V v2 =1 V v1 = 100V v2 =100V v1 = 100V v2 =300V 

Matrix Inversion 100.00 1.01 100.00 100.00 102.00 305.00 

Gaussian Elimination 100.00 1.01 100.00 100.00 102.00 305.00 

Row-Reduced Echelon  106.00 10.00 104.50 95.00 102.00 305.00 

Table 3. Single digit values for v2 with format short. 

 
Case VII Case VIII Case IX 

v1 = 100V v2 = 3 V v1 = 100V v2 = 5V v1 = 100V v2 = 7V 

Matrix Inversion 100.01 3.01 99.99 4.99 99.99 7.02 

Gaussian Elimination 100.01 3.01 99.99 4.99 99.99 7.02 

Row-Reduced Echelon  106 10 106 10 106 10 

Table 4. Double digit values for v2 with format short. 

 
Case X Case XI Case XII 

v1 = 100V v2 =10 V v1 = 100V v2 = 30V v1 = 100V v2 = 70V 

Matrix Inversion 100.01 9.99 99.99 29.99 100.00 69.98 

Gaussian Elimination 100.01 9.99 99.99 29.99 100.00 69.98 

Row-Reduced Echelon  106 10 105.50 30 105 75 

Table 5. Triple digit values for v2 with format short. 

 
Case XIII Case XIV Case XV 

v1 = 100V v2 =100 V v1 = 100V v2 = 200V v1 = 100V v2 = 270V 

Matrix Inversion 100.00 100 103.5 200 102.5 285 

Gaussian Elimination 100.00 100 103.5 200 102.5 285 

Row-Reduced Echelon  104.50 95 103.5 200 102.5 285 
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Table 6. Triple digit values for v2 with format short. 

 
Case XVI Case XVII Case XVIII 

v1 = 100V v2 =220 V v1 = 100V v2 = 260V v1 = 100V v2 = 285V 

Matrix Inversion 103 220 102.5 265 102 285 

Gaussian Elimination 103 220 102.5 265 102 285 

Row-Reduced Echelon  103 220 102.5 265 102 285 

Table 7. Triple digit values for v2 with format short. 

 
Case XIX Case XX Case XXI 

v1 = 100V v2 =225 V v1 = 100V v2 = 265V v1 = 100V v2 = 275V 

Matrix Inversion 103  220 102.5 265 102.5 285 

Gaussian Elimination 103 220 102.5 265 102.5 285 

Row-Reduced Echelon  103 220 102.5 265 102.5 285 

Table 8. Triple digit values for v2 with format long. 

 
Case XXII Case XXIII Case XXIV 

v1 = 100V v2 =220 V v1 = 100V v2 = 260V v1 = 100V v2 = 275V 

Matrix Inversion 99.99 220 100 260 100 275 

Gaussian Elimination 99.99 220 100 260 100 275 

Row-Reduced Echelon  99.99 220 100 259.91 99.97 275.1 

To determine the relationship between v2 and R3 we will use (20). Substituting the current values obtained by Gaussian 

Elimination Method for v2 = 300 in (20) we got (33) and (34) using format long and format short respectively. 

( ) ( )3 2
250,000 0.000099044309296  -0.001376194613380R v− =                                        (33) 

( ) ( )3 2
250,000 0.0001  -0.0014R v− =             (34) 

For 150 ≤ R3 ≤ 250 kΩ, a plot of (33) and (34) gives the 

trend in Fig. 2 

 

Fig. 2. Allowable limit of v2 over a range of R3. 

6. Discussion 

Varying the circuit voltage v2 while ensuring that the 

circuit current does not exceed 0.001A, revealed possible 

solutions for positive values of v2 from 1-300V. We 

randomly selected 24 cases-leading to actually solving 24 set 

of linear algebraic system equations.  

Condition for a satisfactory result for v1 and v2 for every 

solution is based on the fact that voltage difference or error 

meet the conditions in (35) 

1 2

1 2

, 0.5V Acceptable

, 0.5V Unacceptable

v v

v v

<
≥

                   (35) 

In Table 1, the computation was such that the computed 

currents will be in 15 decimal places. Computed values of 

current substituted back into (18) and (20) gave voltages v1 

and v2 with errors of 0.01V with Matrix Inversion and 

Gaussian Elimination Methods. While the largest error of 

0.04V was observed in Case III with the Row-Reduced 

Echelon Method. Thus, any of the algorithm could be used in 

this situation for the selected voltages as a solution method 

because the errors are negligible. 

Repeating the same computation such that all computed 

currents are truncated and rounded up to 5 decimal places, 

gave the result in Table 2. Gaussian Elimination and Matrix 

Inversion methods gave acceptable results in Case IV and 

Case V. In Case VI, errors of 2V with v1 and 5V with v2 were 

evident with all the three algorithms, this is unacceptable. In 

all 3 cases, Row-Reduced Echelon Method gave 

unacceptable errors of 6V, 4.5V and 2V for v1 and 10V, 5V 

and 5V for v2, respectively. Row-Reduced Echelon method in 

Case IV produced the largest error. 

Based on the observed magnitude of error with Row-

Reduced Echelon method in Case IV, we selected randomly 

single digit value for v2 to form the results in Table 3. 

Computing with format short, it was observed that the 

unacceptable errors of 6V with v1 and 10V with v2 was 

sustained all through when Row-Reduced Echelon Method 

was use. On the other hand, Gaussian Elimination and Matrix 

Inverse methods gave the same results with an average error 

of 0.01V, which is acceptable. 

Increasing the values of v2 to a randomly selected double 

digit gave the result in Table 4. Here also, Gaussian 

Elimination and Matrix Inversion gave the same result, 

which are acceptable. Error plagued the Row-Reduced 

Echelon method again due to truncation and round-off. This 

is evident with all the Cases. The largest magnitude of error 

v
2
(V

)
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is evident in Case X, where v1 has an error of 6V while v2 has 

an error of 9V (90%). 

When v1 and v2 have the same value, as seen in Case XIII 

of Table 5, both Matric Inversion and Gaussian Elimination 

Methods gave the same results and are acceptable. Row-

Reduced Echelon Method produced errors of 4.V with v1 and 

5V with v2, this is unacceptable. In cases XIV and XV, all 

three algorithms gave errors of 3.5V and 2.5V for v1 

respectively. Disturbingly, about 15V was recorded as error 

in Case XV for v2. This is attributed to the value of currents i3 

and i5 in Case XIV, the same values of current were also 

given by the computer due to truncation and round-off when 

the v2 increased from 200V to 270V. 

In Table 6 and 7, all algorithms gave the same results. 

Voltage v1 values in Case XVI and XIX have 3V in excess. In 

Case XIX v2 was short of 5V. In Case XVII and Case XX 

excess voltages of 2.5V were observed with v1. Notice that v2 

in Case XVII has an error of 5V while in Case XX no error is 

recorded with v2. Notice that in Case XXI, all three 

algorithms gave the same result with errors of 2.5 V for v1 

and 10V for v2.  

The voltages (v1 and v2) in Table 6 and Table 7 have the 

same values in all Cases. This should not be because v2 is 

changing. This is due to the values of i1,i3,i4 and i5 computed 

from Case XVI to Case XXI remains the same due to 

truncation and round-off. 

To re-affirm the observation in Table 1, the results in Table 

8 were presented. With format long (15-digit decimal place), 

all algorithms gave the same result with acceptable 

satisfaction of the system of equations.  

It was also observed that when computed current values 

were substituted into (19), (21) and (22), very small negative 

values were obtained. It is implied that these values are just 

zero because in Fig. 1, only v1 and v2 exists.  

The limiting v2 voltage for the circuit is 300V. Substituting 

current values obtained using format long and format short 

for this value of v2 gave (33) and (34) respectively. The effect 

of round-off and truncation was then depicted graphically in 

Fig. 2. It is clearly seen that the allowable range of v2 is 

increasing with increase in resistance R3. The challenge here 

is that with (34), this increase is expected to be sustained 

with at least 5V in excess or in error from the point R3 

=200KΩ, v2 =300V.  

Assessing the performance of the three algorithms, we can 

say that Row-Reduced Echelon Method had the worst 

performance. The need to investigate solutions to a system of 

algebraic equations by substituting back computed variables 

into the original equation cannot be over-emphasized. Results 

from this study have proved that if such substitution test is 

not done results obtained could be misleading. 

7. Conclusion 

In this study, numerical methods of Matrix Inversion, 

Gaussian Elimination and Row-Reduced Echelon methods 

were used to solve twenty-four (24) systems of linear 

algebraic equations. Solutions obtained for these system of 

linear algebraic equations were obtained in two forms; 15 

decimal places (format long) and 5 decimal places (format 

short) in MATLAB. After obtaining the required solutions, 

we substituted them back into the equations to see if they 

were satisfied.  

Six out of the twenty-four Cases (Case I-III, and Case 

XXII-XXIV) were computed using format long and all gave 

acceptable results with the three algorithms used. For the 

remaining eighteen (18) cases using format short, nine (9) 

gave acceptable results with Gaussian Elimination method 

and Matrix Inversion method (Case IV, V, VII, VIII, IX, X, 

XI, XII and XIII), while those of Row-reduced Echelon 

method were unacceptable. The remaining nine (9) cases 

gave unacceptable result with all three algorithms used (Case 

VI, XIV, XV, XVI, XVII, XVIII, XIX, XX, and XXI). The 

algorithm, Row-Reduced Echelon method gave unacceptable 

results with eighteen (18) Cases, hence not appropriate for 

the solution of this system of linear algebraic equation. 

Gaussian Elimination method and Matrix Inversion 

method can be successfully used with either format long or 

format short values to obtain acceptable results with Case IV, 

V, VII, VIII, IX, X, XI, XII and XIII. 
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