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Abstract: If a random variable follows a particular distribution then the distribution of the reciprocal of that random variable 

is called inverted distribution. In this paper we studied some issues related with inverted gamma distribution which is the 

reciprocal of the gamma distribution. We provide forms for the characteristic function, rth raw moment, skewness, kurtosis, 

Shannon entropy, relative entropy and Rényi entropy function. This paper deals also with the determination of R = P[Y < X] 

when X and Y are two independent inverted gamma distributions (IGD) with different scale parameters and different shape 

parameters. Different methods to estimate inverted gamma distribution parameters are studied, Maximum Likelihood 

estimator, Moments estimator, Percentile estimator, least square estimator and weighted least square estimator. An empirical 

study is conducted to compare among these methods. 

Keywords: Inverted Gamma Distribution, Characteristic Function, Stress-Strength, Shannon Entropy, Relative Entropy, 

Rényi Entropy, MLE, Percentile Estimator 

 

1. Introduction 

The inverted gamma distribution is a two-parameter family 

of continuous probability distributions on the positive real 

line, which is the distribution of the reciprocal of a variable 

distributed according to the gamma distribution. Perhaps the 

chief use of the inverted gamma distribution is in Bayesian 

statistics, where the distribution arises as the marginal 

posterior distribution for the unknown variance of a normal 

distribution if an uninformative prior is used; and as an 

analytically tractable conjugate prior if an informative prior 

is required. 

However, it is common among Bayesians to consider an 

alternative parameterization of the normal distribution in 

terms of the precision, defined as the reciprocal of the 

variance, which allows the gamma distribution to be used 

directly as a conjugate prior. Other Bayesians prefer to 

parameterize the inverted gamma distribution differently, as a 

scaled inverse chi-squared distribution.  

Giron and Castillo [4] in 2001 defined the generalized 

Behrens-Fisher distribution is as the convolution of two 

Student � distributions and is related to the inverted-gamma 

distribution by means of a representation theorem as a scale 

mixture of normals where the mixing distribution is a 

convolution of two inverted-gamma distributions. One 

important result in this paper establishes that for odd degrees 

of freedom the Behrens-Fisher distribution is distributed as a 

finite mixture of Student � distributions. This result follows 

from the main theorem concerning the form of the 

convolution of inverted-gamma distributions with demi-

integer shape parameter. 

Witkovsky in 2001 [9] presented a formula for evaluation 

of the distribution of independent inverted Gamma random 

variables by one dimensional numerical integration. This 

method is applied to computation of the generalized p-values 

used for exact significance testing and interval estimation of 

the parameter of interest in the Behrens-Fisher problem and 

for variance components in balanced mixed linear model. 

Li et al. in 2008 [6] studied the geometric structure of the 

inverse Gamma manifold from the viewpoint of information 

geometry and give the Kullback divergence, the J-divergence 

and the geodesic equations. Also, some applications of the 

inverse Gamma distribution are provided. 

Ali et al. in 2008 [3] defined skew-symmetric distributions 

based on the double inverted. 

Gamma, double inverted Weibull and double inverted 

compound gamma distributions, all of which have symmetric 

density about zero. Expressions are derived for the 
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probability density function (pdf), cumulative distribution 

function (cdf) and the moments of these distributions. They 

referred that some of these quantities could not be evaluated 

in closed forms and they used special functions to express 

them. 

Woo in 2012 [10] derived distributions of ratio for two 

independent gamma variables and two independent inverted 

gamma variables and then we observe the skewness of two 

ratio densities. We then consider inference on reliability in 

two independent gamma random variables and two 

independent inverted gamma random variables each having 

known shape parameters. 

Abdulah and Elsalloukh in 2012 [1] introduced a new class 

of asymmetric probability densities, the Epsilon Skew 

Inverted Gamma (ESIG) distribution. They applied it to 

analyze skewed and bimodality data. In 2014 [2] the same 

authors presented basic properties of this distribution, such as 

the pdf, cdf, and moments are presented. addition, 

computational forms of parameters estimation of MLE and 

MME are used. Finally, they illustrated the theory of ESIG 

distribution by modeling some real data. 

Llera and Beckmann in 2016 [7] introduced five different 

algorithms based on method of moments, maximum 

likelihood and full Bayesian estimation for learning the 

parameters of the Inverse Gamma distribution. They also 

provided an expression for the KL divergence for Inverse 

Gamma distributions which allows us to quantify the 

estimation accuracy of each of the algorithms. All the 

presented algorithms in this paper are novel. The most 

relevant novelties include the first conjugate prior for the 

Inverse Gamma shape parameter which allows analytical 

Bayesian inference, and two very fast algorithms, a 

maximum likelihood and a Bayesian one, both based on 

likelihood approximation. In order to compute expectations 

under the proposed distributions, they used the Laplace 

approximation. The introduction of these novel Bayesian 

estimators opens the possibility of including Inverse Gamma 

distributions into more complex Bayesian structures, e.g. 

variational Bayesian mixture models. The algorithms 

introduced in this paper are computationally compared using 

synthetic data and interesting relationships between the 

maximum likelihood and the Bayesian approaches are 

derived. 

The probability density function (PDF) and the cumulative 

distribution function (CDF) for the inverted gamma random 

variable are respectively,  

f�x�	= 
��Г�
� 	x��
�
�	e�����						, x > 0                  (1) 

F�x�	= 
Г�
	,���Г�
�                                   (2) 

Where β >0 is the scale parameter and α	>0 is the shape 

parameter. ( ) 1, u t

v
u v t e dt

∞ − −Γ = ∫ , is the upper incomplete 

gamma function and ( ) ( ),0u uΓ = Γ  is complete gamma 

function. 

In this paper we will refer to Inverted Gamma distribution 

by �~����, ��, which is mean that the random variable � 

follow Inverted Gamma distribution with parameters � and �. 

The reliability function R�x�	  and hazard rate 
function λ�x�	 of �~����, �� are respectively, 

R�x�	= 1 − F�x�= 1 − Г�
	,���	Г�
� =	Г�
��Г�
	,���Г�
�  

since, Г�s, λ� + 	γ�s, λ�	=Г�s�, then  

R�x�	= 
)�
	,���Г�
�                                    (3) 

λ�x� = +�,�-�,	�					=	��	,.��/0�	1.2��3	)�
	,��� 			                 (4) 

where γ�4, 5�	is the lower incomplete gamma function 

The rth raw moment of �~����, �� can be obtained as, 

E(x6) =7 x6	f�x�	dx	9�9 =7 x6 ��Г�
� 	x��
�
�	e���	dx9,:;  

=	 ��Г�
� 	7 x��
�6�
�	e���	dx9;  

= 
��Г�
�	 �Г�
�6���.<	 � 

=	�<	Г�
�6�Г�
� 				                                (5) 

Then, the mean and variance of IG�α, β� random variable 

X are respectively, 

E(x)=	 �
�
 		 , for	α > 1			                     (6) 

V�x�	= �B�
�
�B�
�C� for	α > 2                    (7) 

The mode of X is obtained as follows,  

EF = �
�
                                      (8) 

The skewness γ
	 and The excess kurtosis 	γC	 are 

respectively  

γ
	= 
GH�GB�HB	= 

I√
�C
�K   	for	α > 3                  (9) 

γC=	GMGBB − 3		=	 N�O
�

��
�K��
�I� for	α > 4           (10) 

The characteristic function of �~����, �� is, 

ψ,�t�	= E�eTU,� = E∑ �TU,�<6!96:; 	= ∑ �TU�<6! 	E�x6�96:;  

=	 ��Г�
� 	∑ 	�TU�<	6!9	6:; . Г�
�6���.<	  
															= 


Г�
� 	∑ �TU��<6! Г�α − r�96:;                (11) 
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2. Shannon, YZ[\] and Relative 

Entropies 

An entropy of a random variable �  is a measure of 

variation of the uncertainty. The Shannon entropy of ����, �� random variable X  can be found as follows, H	=	E�−	Ln�f�x�� = −7 f�x� 	Ln`f�x�a dx9�9  

So, −	Ln`f�x�a=	Ln`Г�α�a − α	Ln�β� + �α + 1�	Ln�x� + ��,�, then 

E�−Ln`f�x�a	=	Ln`Г�α�a − α	Ln�β� +		�
�
���Г�
� 7 Ln�x�	x��
�
�	e���c�	dx9,:; +
��/0Г�
� 7 x��
�
�
�	e�����	dx							9,:;  

since, 7 x��
�
�	e�����	dx	9,:; =	Г�
���	 , then, 

H = Ln`Г�α�a	– 	α	Ln�β�
−	�α + 1�β
Г�α� e Ln 21x3	21x3
�
 	e�2�,3	dx +

9
,:; α	 

Let	 �
,� 	= y			, then, 

H=	Ln`Г�α�a	– 	α	Ln�β� −	�
�
���Г�
� 7 Ln�y�	y
�
	e��h	dy9,:; + Г�
�
�Г�
�  

since	 7 Ln�y�	y
�
	e��h	dy9,:; 	= β�
{Ѓ�α� − Ln`β`Г�α�ak 
=	β�
	Г�α�{ψ�α� − Ln�β�l 

And Г�α + 1�	=	αГ(α), then 

H = Ln`Г�α�a − α	Ln�β� − �α + 1�β
Г�α� 		β�
	Г�α�{ψ�α� − Lnβ	l + α 

= Ln`Г�α�a − α	Ln�β� − �α + 1�{ψ�α� − Ln�β�l + α 

= Ln`Г�α�a − α	Ln�β� + �α + 1�`ln�β� − ψ�α�a + α 				= α + ln�β Г�α�� − �α + 1�ψ�α�                           (12) 

Rѐnyi entropy for a random variable �~����, �� can be 

derived as,  

θo	=	 

�o Ln7 	fo�x�	dx	9�9  

Now, since fo�x�	= �p�Гp�
� 	x�o�
�
�	e��p�� �
, then, 

θo=


�o 	ln 7 	�p�Гp�
� 		x�o�
�
�	e�p�� 		dx	9,:;  

=


�o 	Ln 2 	�p�Гp�
� 7 x�o
�o	e�p�� 		dx	9,:; 3 

=


�o 	Ln 2 	�p�Гp�
� 7 x��o
�o�
�
�	e�p�� 		dx	9,:; 3 

=	 

�o Ln � 	�p�Гp�
� . Г�o
�o�
��o���p�/p.0�	� 

=


�o 	��ωα� Ln�β� − ωLn`Г�α�a + Ln�Г`�ωα + ω − 1�a −	�ωα + ω − 1� Ln�ωβ�	�                           (13) 

The relative entropy (or the Kullback–Leibler divergence) 

is a measure of the difference between two probability 

distributions G  and *
G . It is not symmetric in G  and *

G . 

In applications, G  typically represents the "true" distribution 

of data, observations, or a precisely calculated theoretical 

distribution, while *
G  typically represents a theory, model, 

description, or approximation of G . Specifically, the 

Kullback–Leibler divergence of *
G  from G , denoted 

DKL( G ǁ *
G ), is a measure of the information gained when 

one revises ones beliefs from the prior probability 

distribution *
G  to the posterior probability distribution G . 

More exactly, it is the amount of information that is lost 

when *
G  is used to approximate G ,defined operationally as 

the expected extra number of bits required to code samples 

from G  using a code optimized for *
G  rather than the code 

optimized for G .  

So, relative entropy for a random variable �~����, �� can 

be found as follows, 

D	=Es	Ln � +�,�t�,��u = 7 f�x�	Ln � +�,�t�,�� 	dx9�9  

Since, f�x�	= 
��Г�
� x��
�
�	e����� and g�x�	= wxГ�y� 	x��y�
�	e��z��, then, 

ln � +�,�t�,��	=ln { 	��Г���,.��/0�	1.2��3
zxГ�x�	,.�x/0�	1.2z�3| let	k	=ln ���Г�
�wxГ�
��, then, 

D	=	7 f�x� ~k − �α + 1� ln�x� + �a + 1� ln�x� − �, + w,� dx9,:;  

=	k − �α − a� 7 ln�x� f�x�dx − �β − b� 7 
, 	f�x�dx9,:;9,:;  

= k − �α − a�`ln�β� − ψ�α�a
− �β − b� β
Г�α�e x��
�
�
�	e�2�,3	dx9

;  

=k − �α − a�`ln�β� − ψ�α�a − �β − b� ��Г�
� 	Г�
�
���/0		  	=k − �α − a�`ln�β� − ψ�α�a − �β − b� 
�                (14) 

3. Stress-Strength Reliability 

Inferences about R = P[Y < X], where X and Y are two 

independent random variables, is very common in the 

reliability literature. For example, if X is the strength of a 

component which is subject to a stress Y, then R is a measure 

of system performance and arises in the context of 

mechanical reliability of a system. The system fails if and 

only if at any time the applied stress is greater than its 
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strength. 

Let Y and X be the stress and the strength random 

variables, independent of each other, follow respectively ����, �� and ����, ��	,	then, 

R	= p�y < �� = 7 f,�x�	Fh�x�	dx9,:;  

=7 ��Г�
� 	x��
�
�	e�����	. Г��,���Г��� 	dx9,:;	  

since, Г�s, λ� + 	γ�s, λ� = 	Г�s� , then, Г�s, λ� = Г�s� −	γ�s, λ� and 

R=	 ��Г�
� 7 x��
�
�	e�����	. �Г����)��,����Г��� 	dx9,:; 		 
since, γ �θ, �,�	= ��,�� Г�θ�	e����� 	∑ �����Г�����
�9�:;  then, 

R=	 ��Г�
� 7 x��
�
�	e�����.9,:; 	�Г���������Г���	1.2��3 	∑ 2��3�Г��/�/0��	��� �
Г��� 	dx 

=
��Г�
� 7 x��
�
�	e�����.9,:; �1 − ��,�� e����� 	∑ �����Г�����
�9�:; � 	dx  

=	 ��Г�
�7 x��
�
�	e�����	dx −9,:;
			 ��Г�
�7 x��
�
�	e����� 	��,�� e����� 	∑ �����Г�����
�9�:; 	dx	9,:; 	 

=	1 − 	 ��Г�
� 	∑ ��/�Г�����
�	9�:; 	7 x��
�����
�		e���/���9,:; dx		 
since, 7 x��
�
�	e�����dx9,:; 	=Г�
��� , then, 

R=	1 −	 ��Г�
�	∑ ��/�Г�����
� . Г�
�����������/�/�			9�:; 		 
		=	1 − �
����.�

Г�
� 	∑ � Г�
�����
Г�����
�����
���/��	�		9�:;            (15) 

when	θ	is	an	integer, R can be found as follows as a second 

way, 

R	= p�y < �� = 7 f,�x�	Fh�x�	dx9,:; 	 
=	7 ��Г�
� 	x��
�
�	e�����	. Г��,���Г��� 	dx9,:;	 	 

Since, 
Г��,���	Г���	 = ∑ e����� �����T!	 		 , then,9T��  

R	= 7 ��Г�
� 	x��
�
�	e�����	. ∑ 	e����� 	�����T! 	dx		9T��9,:;	  

=	 ��Г�
� 	∑ ��T! 	9T�� 7 x��
�
�	x�T	e�����	e�����	dx9,:;	 	 
=	 ��Г�
� 	∑ ��T! 	9T�� 7 	x��
�T�
�	e���/�� �	dx	9,:;	  

=	 ��Г�
�∑ ��T! 	9T�� . Г�
�T�������/�                                            (16) 

4. Parameters Estimation of Inverse 

Gamma Distribution 

The main aim of this section is to study different 

estimators of the unknown parameters of IG distribution. 

4.1. The Maximum Likelihood Estimator (MLE) 

If x
, xC. . , x� is a random sample from IG�α, β�, then the 

likelihood and log likelihood functions are respectively, 

L	= 
���`Г�
�a�	 	∏ �xT���
�
��T:
 	e�∑ 	���	���0  

Ln�L�=nα	Ln�β� − n	Ln`Г�α�a − �α + 1�∑ Ln�	xT��T:
 − ∑ �,��T:
  

Now, since		 �����	��� 	= 
�
� − ∑ �
,��		�T:
              (17) 

and	 �������
 	= n	Ln�β� − nψ�α� − ∑ Ln�xT��T:
         (18) 

from	�a. 1�, β¡¢�£	= 
�
¤∑ 2 0��3���0 	                (19) 

substituting	in	�a. 2�	we	get: 
nsLn�nα¤� − Ln �∑ �
,���T:
 �u − nψ�α¤�	= ∑ Ln�xT��T:
  

n	Ln�n� + n	Ln�α¤� − nψ�α¤�	=∑ Ln�xT� + nLn �∑ �
,���T:
 ��T:
  

Ln�α¤� − ψ�α¤�	=	∑ ���,�����0� + Ln �∑ �
,���T:
 	� − Ln�n� 
h�α¤�	=	∑ ���,�����0� + Ln �∑ �
,���T:
 � − Ln�n�          (20) 

once we get α ̂_MLE numerically from (20) we substitute it' s 

value in (19) to get β ̂_(MLE ) 

4.2. The Exact Method of Moments Estimator (EMME) 

Here we provide the method of moments estimators of the 

parameters of a (IG) distribution when both are unknown. 

Since the mean and variance of X which is follow IG (α,β� 
are defined in (6) and (7) respectively, then the coefficient of 

variation is, 

CV	= 
¨©y6�,�	£�,� = ��
�
�√
�C	 . 	
�
� = 
√
�C 

The CV is independent of scale parameter β, 

By equating the sample CV	with	population	CV , we 

obtain: 

ª,«	= 

√
�C 		 , and	then	can	get:			 
α¤£¢¢£	= �,«BªB	� + 2                         (21) 
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where		SC = ∑ �,��,«�B���0���
� 	and	x	¬= ∑ ,���T:
 	.	 
by substituting (21) in (6) we get the EMME of	β as follows, 

β¡£¢¢£	=	x	¬ �,«BªB + 1�                      (22) 

4.3. The Approximate Method of Moments Estimators 

(AMME) 

Since the mean and mode of X which is follow IG (α,β� 
are defined in (6) and (8) respectively, then 

,«¢­	= 

�
	
�
		                         (23) 

→		 
�

�
	= 
∑ ���	���0¢­    →		 �α + 1�Mo	= α − 1∑ ,��	�T:
   → 	αMo +Mo = αx« − x«, then, α�x« − Mo� = Mo + x«                        (24) 

is independent of the scale parameter β  , then, after 

calculating the sample mode and the sample mean and 

substituting their values in (24), One can get the AMME of α , say α¤°¢¢£		as	follows,  
α¤°¢¢£	= 

,«	�	¢­	,	¬�	¢­ 	                            (25) 

by substituting (25) in (6) we get the AMME of	β as follows: 

	β¡°¢¢£ = x« �,	¬�	¢­,	¬�	¢­ − 1�                    (26) 

4.4. Estimators Based on Percentiles (PE) 

Kao in (1959) [5] originally explored this method by 

using the graphical approximation to the best linear 

unbiased estimators. The estimators can be obtained by 

fitting a straight line to the theoretical points obtained 

from the distribution function and the sample percentile 

points. In the case of a IG distribution, it is possible to use 

the same concept to obtain the estimators of α and β based 

on percentiles because of the structure of its distribution 

function. 

Firstly, we find numerically the value of x=F^ (-1) (pi, α, 

β), where F is defined in (2) and pi is the estimate of 	F�x�T�, α, β�	 , then α¤±£	and	β¡±£	,  can be obtained by 

minimizing 

∑ ²x�T� − F�
�pi, α, β�³C	�T:
                      (27) with	respect	to	α	and	β, where  Equation (d.1) is a 

nonlinear function of α  and β  .It is possible to use some 

nonlinear regression techniques to estimate α  and β 

simultaneously, where E �F`x�T�a�=pi = T��
 is the most used 

estimator of F`x�T�	a. 
4.5. Least Squares Estimator (LSE) 

This method was originally suggested by Swain, 

Venkatraman and Wilson (1988) [8] to estimate the 

parameteres of beta distribution. Therefore in the case of IG 

distribution, the least squares estimators of α		and		β , Say α¤�´£	and	β¡�´£	 respectively, can be obtained by minimizing, 

∑ {Гs
, �����uГ�
� − T��
|
C		�T:
                        (28) 

With respect to α	and	β	. 
4.6. Weighted Least Squares Estimators (WLSE) 

The weighted least squares estimators of α	and	β  say α¤µ�´£	and	β¡µ�´£ can be obtained by	minimizing, 
∑ ωi {Гs
	, �����uГ�
� − T��
|

C
�T:
                      (29) 

with	respect	to	α	and	β		where, ωi = �n + 1�C�n + 2�i�n − i + 1� 	 
5. The Empirical Study and Discussions 

We conduct extensive simulations to compare the 

performances of the different methods, stated in section 4, for 

estimating unknown parameters of Inverted Gamma 

distribution, mainly with respect to their mean square errors 

(MSE) for different sample sizes and for different parameters 

values. 

The experiments are conducted according to run size · = 1000 . We reported the results for ¸ = 10  (small 

sample), ¸ = 20 (moderate sample) and ¸ = 50	, 100 (large 

sample) and for the following different values of º and », � 0.6 1 0.9 1.2 0.3 � 1 0.6 0.9 0.3 1.2 

The results are reported in table (1). From the table, we 

observe that, 

1) The MSE's decrease as sample size increases in all 

methods of estimation. It verifies the asymptotic 

unbiasedness and consistency of all the estimators. 

2) It can be said that the estimation of scale parameters are 

more accurate for the smaller values of those 

parameters whereas the estimation of shape parameters 

are more accurate for the larger values of those 

parameters. in other words, MSE's increase as scale 

parameter increases whereas MSE's increase as shape 

parameter decreases. 

3) The performances of LSE, EMME and AMME are 

according to their order.  

4) The performances of EMME's and AMME's are close to 

each other. 

5) For small (n=10) sample size and moderate (n=20) 

sample size, it is observed that PE works the best for 

both of the two parameters whereas the second best 

method is MLE. 

6) For large (n=50, 100) sample size, it is observed that 

MLE works the best from all other methods to estimate 
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the shape parameter whereas the second best method is 

PE. PE works the best from all other methods to 

estimate the scale parameter whereas the second best 

method is MLE. 

Table 1. Empirical MSE to estimate the IG distribution parameters � and �. 

¼½¾Z ¿ À Á Â Ã Ä½Å½ÆZÇZÅ¾ È É È É È É È É È É ¾½ÆÄÊZ	¾]ËZ ÇÌZ	ÆZÇÌÍÎ 0.6 1 1 0.6 0.9 0.9 1.2 0.3 0.3 1.2 

10 

MLE 10.04613 1.610114 9.668391 1.413262 9.796981 1.571422 9.145992 1.117305 12.47327 1.638623 EMME 12.56167 1.969878 12.15179 1.773704 12.29646 1.931186 11.58921 1.477069 14.97274 1.997708 AMME 12.65008 2.003139 12.28038 1.801535 12.43308 1.96309 11.77406 1.508972 15.12545 2.033685 PE 7.892236 1.596538 7.522538 1.392219 7.667203 1.551737 6.927808 1.098298 10.34349 1.620296 LSE 12.25627 1.953586 11.83032 1.748589 11.99105 1.906749 11.28381 1.45399 14.66734 1.978023 WLSE 11.36418 1.825293 10.93822 1.618259 11.11503 1.780492 10.4319 1.326375 13.80739 1.848372 

20 

MLE 7.868125 1.58364 7.410022 1.382037 7.594871 1.53884 6.87155 1.084722 10.27116 1.605362 EMME 12.34468 1.959696 11.90265 1.754698 12.07142 1.916931 11.3481 1.462814 14.75575 1.984132 AMME 12.49738 1.987526 12.11965 1.779814 12.22412 1.945441 11.53295 1.489287 14.90845 2.011284 PE 7.691313 1.508294 7.23321 1.303975 7.442169 1.467566 6.807254 1.01277 10.1506 1.537482 LSE 12.15179 1.925077 11.77406 1.718722 11.88658 1.882991 11.21951 1.42548 14.56286 1.95155 WLSE 11.35614 1.807644 10.95429 1.602647 11.08289 1.767595 10.40779 1.311442 13.77525 1.835475 

50 

MLE 7.305542 1.582283 6.847439 1.380679 7.032288 1.542234 6.341114 1.087438 9.660354 1.61215 EMME 12.24824 1.933222 11.86246 1.72551 12.00713 1.888422 11.26773 1.434304 14.66734 1.959017 AMME 12.43308 1.969878 12.0232 1.769632 12.16787 1.930507 11.42847 1.47639 14.81201 2.001102 PE 7.586834 1.484536 7.176952 1.277502 7.321616 1.441771 6.598295 0.98969 9.997904 1.51033 LSE 11.46866 1.823936 11.07485 1.616223 11.21951 1.779814 10.56049 1.327733 13.91991 1.849051 WLSE 11.28381 1.79882 10.86589 1.597216 11.03466 1.755377 10.35956 1.297187 13.69488 1.825293 

100 

MLE 7.016214 1.563276 6.622406 1.358958 6.742959 1.519833 6.035712 1.066395 9.427284 1.58975 EMME 12.15983 1.877561 11.7821 1.6746 11.88658 1.833439 11.24362 1.379322 14.5709 1.902676 AMME 12.33664 1.875524 11.92676 1.675957 12.5456 1.832081 11.38025 1.38 14.77182 1.903355 PE 7.442169 1.407831 7.056398 1.202834 7.225173 1.367103 6.485778 0.912986 9.837166 1.434983 LSE 11.29184 1.81036 10.89 1.606041 11.02663 1.765559 10.30331 1.311442 13.73506 1.834118 WLSE 11.17933 1.789317 10.81767 1.584319 10.92215 1.743837 10.25508 1.304654 13.65469 1.814432 

 

6. Summary and Conclusions 

In view of the great importance of Gamma distributions in 

statistical analysis, the inverted gamma distribution (IGD) is 

considered here. For IGD we derived exact formulas of 

hazard function, characteristic function, rth raw moment, 

skewness, kurtosis, Shannon entropy function, relative 

entropy, quantile function and stress-strength reliability. 

Different methods to estimate inverted gamma distribution 

parameters are studied, Maximum Likelihood estimator, 

Moments estimator, Percentile estimator, least square 

estimator and weighted least square estimator. An empirical 

study was conducted to compare among these methods. It 

seemed to us that the Percentile estimator is the best one for 

small and moderate samples and it is also the best to estimate 

the scale parameter for large samples, whereas the maximum 

likelihood estimator is the best to estimate the shape 

parameter for large samples.  
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