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Abstract: For filtering problems in StSHA under nonGaussian ShD methodological and algorithmically WL support is 

developed. 3 types of filters are considered: KBF (WLKBF), LPF (WLLPF) and SOLF (WLSOLF). These filters have the 

following advantages: on-line regime, high accuracy and possibility of algorithmically description of complex ShD. Wavelet 

filter modifications are based on Galerkin method and Haar wavelet expansions. WLF unlike KBF, LPF and SOLF do not need 

to integrate system of ordinary differential Eqs. These filters must solve system of linear algebraic Eqs with constant 

coefficients. KBF (WLKBF) and SOLF (WLSOLF) are recommended for StSHA with additive ShD whereas LPF (WLLPF) 

are recommended for StSHA with parametric and additive ShD. Basic applications are: on-line identification and calibration of 

nonstationary processes in StSHA of ShD. Methods are illustrated by example of 3 dimensional differential linear information 

control system at complex ShD. Basic algorithms and error analysis for KBF (WLKBF) and LPF (WLLPF) are presented and 

15 Figure; illustrate filters peculiarities for small and fin damping. These filters allow to estimate the accumulation effects for 

systematic and random errors. Results may be generalized for filtration, extrapolation with interpolation problems in StSHA 

and multiple ShD. 

Keywords: Kalman-Bucy WLF, Linear Pugachev WLF, Shock Disturbances,  

Stochastic Systems with High Availability (StSHA), Suboptimal Linear WLF, Wavelet Filtering (WLF) 

 

1. Introduction 

In series [1–6] methodological support for on-line express 

analysis of stochastic systems with high availability (StSHA) 

functioning at shock disturbances (ShD) was presented. 

Special attention was paid to wavelet methods and software 

tools. Wavelet modifications of Kalan-Bucy filters (WLKBF) 

for nonstationary linear StSHA at complex ShD were given 

and illustrated. Wavelet modifications of linear mean square 

(m.s.) conditionally optimal (Pugachev) filter (WLLPF) for 

StSHA with parametric ShD are presented and illustrated. 

Comparative computer results were described. Instrumental 

accuracy of WLKBF and WLLPF was considered. 

Let generalize [1] for KBF, LPF and suboptimal linearized 

filters (SOLF) in case of non Gaussian ShD. Section 2 is 

dedicated to KBF and WLKBF. LPF and WLLPF are 

described in Section 3. In Section 4 SOLF based on 

linearization by known exact shock distributions are 

considered. Basic Propositions 1-5 are illustrated by 3 

dimensional information control system at deterministic and 

stochastic ShD. 

2. Kalman-Bucy Filters at Shock 

Disturbances 

Kalman-Bucy Filter (KBF) for linear nonstationary StSHA 

is widely used for on-line analysis and synthesis problems. 

KBF is based on the following proposition [7–11]. 

Proposition 1. Let nonstationary differential StSHA being 

described by the following Eqs: 
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0 1 1 ,sh sh sh
t t tX a a X V= + +ɺ              (1) 

1 2.t t tZ Y b X V= = +ɺ               (2) 

Here ,t tX Yɺ  are states and observation vectors, 1 1
shV V=  

and 2V  are independent white noises (in strict sense) and 

nonGaussian in general case with intensity matrices 1 1
shv v=  

and 2v . Then at nonsingular observation noise 2(| det | 0)v ≠  

KBF equations are as follows: 

0 1 1 0 0
ˆ ˆ ˆ ˆ ˆ( ), ( ) ,sh sh

t t t t t tX a a X Z b X X t Xβ= + + − =ɺ
     (3) 

1
1 2 ,T

t tR b vβ −=                (4) 

1 1 1 2 0 0, ( ) ,T sh T
t t t t t tR a R R a v v R t Rβ β= + + − =ɺ   (5) 

where ˆ
tX  being mean square error estimate of tX ; tR   

being error covariance matrix; tβ  being matrix amplifier. 

Remark. 1. Calculation of tR  and tβ  does not need 

current observation and may be calculated a priori. 

For getting Eqs for WLKBF let us exchange variable 

according to the following Eqs: 

0

0

, [0,1],
t t

t t
T t

−
= ∈

−
          (6) 

0 0 0
ˆ ˆˆ ˆ( ) (( ) ), (0) ,X t X T t t t X X= − + =    (7) 

0 0 0 0

0 0 0 0 0

( ) ( )[ (( ) )

ˆ ˆ(( ) ) (( ) )], (0) ,

sh
t

t t

A t T t a T t t t

T t t t Z T t t t X Xβ

= − − + +

+ − + − + =
 (8) 

0 1 0 0 1( ) ( )[ (( ) ) ].tA t T t a T t t t bβ= − − − +     (9) 

As a result, we have 

0 0
ˆ ˆ ˆ ˆ'( ) ( ), (0) .t tX t A A X t X X= + =      (10) 

Remark. 2. Further we put t t= . 

Following [10–14] we introduce Haar wavelets iw  and 

integral of iw  using formulae 

1 00

1 [0,1),
( ) ( ) ( )

0 [0,1),

at t
w t t t

at t
ϕ ϕ

∈
= = =  ∉

      (11) 

2 00

1 [0,1/ 2),

( ) ( ) ( ) 1 [1/ 2,1),

0 [0,1),

at t

w t t t at t

at t

ψ ψ
∈

= = = − ∈
 ∉

   (12) 

2 [ / , ( 0.5) / ),

( ) ( ) 2 [( 0.5) / , ( 1) / ),

0 [ / , ( 1) / ).

j

j
i jk

at t k l k l

w t t at t k l k l

at t k l k l

ψ

 ∈ +

= = − ∈ + +
 ∉ +



 (13) 

Here ( )tϕ ϕ=  being scale function; ( )tψ ψ=  mother 

wavelet 

( ) 2 (2 ),j j
jk jk t t kψ ψ ψ= = −          (14) 

0,1,..., 1k l= − ; 2 jl = ; 1,2,...,j J= ; 2 2 jL = × , 

1; 3,4,...,i l k i L= + + = ; J  being maximal level of 

wavelet resolution. 

Define integrals ip  by formulae 

0

( ) ( ) ( 1, 2,..., ),

t

i ip t w t dt i L= =∫       (15) 

where 

1

at [0,1),
( )

0 at [0,1),

t t
p t

t

∈
=  ∉

 

2 ( / ) at [ / , ( 0.5) / ),

( ) 2 (( 1) / ) at [( 0.5) / , ( 1) / ),

0 at [ / , ( 1) / )

j

j
i

t k l t k l k l

p t t k l t t k l k l

t k l k l

 − ∈ +

= − − + − ∈ + +
 ∉ +



 ( 2,3,..., )i L= . 

For every component 
ˆ

hX  ( 1,2,..., )h p=  for 
ˆ
( )X t  Eq 

(10) gives the following expression: 

'
0

1

ˆ ˆ
( ) .

p

h h hk k

k

X t A A X

=

= +∑            (16) 

Let us expand the drerivative 
'ˆ
hX  into Haar series: 

'

1

ˆ
( ) ,

L

h hi i

i

X t c w

=

=∑                (17) 

1

'

0

ˆ
( ) .hi h ic t X w dτ= ∫                (18) 

Then we get for Eq (16) solution 

0

1

ˆ ˆ( ) .

L

h hi i h

i

X t c p X

=

= +∑           (19) 

After substitution Eq (17) and Eq (19) into Eq (16) we 

have the following expression for hic : 
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00

1 1 1

ˆ .

pL L

hi i hi i hh hk

i k i

c w A A c p X

= = =

 
= + + 

 
 

∑ ∑ ∑     (20) 
After projecting Eq (20) on basis iw , taking into 

consideration iw  orthonormality we come to ( )L p×  

dimensional system of linear algebraic equations (SLAEq): 

0 0

1 1 1

ˆ( , ) ( , ) ( , ) ( 1, 2,..., ).

= = =

= + + =∑ ∑ ∑
p L L

hs hi i s h s shk hk h

k i i

c c A p w X A w A w s L                        (21) 

Putting 

0

1 1 1

, , ,

L L L
hki hk h

i j j j j j jhk hk h

j j j

A p g w A q w A wρ
= = =

= = =∑ ∑ ∑  (22) 

1

0

1

0

1

0

0

( , ) ;

( , ) ;

( , ) ,

hki
j i j i jhk hk

hk
j j jhk hk

h
j j jh h

g A p w A p w d

q A w A w d

A w A w d

τ

τ

ρ τ

= =

= =

= =

∫

∫

∫

        (23) 

we rewrite Eqs (22) in the final form: 

0

1 1 1

ˆ ( 1,2,..., ).

p L L
hki hk h

hi s s shs h

k i i

c c g X q s Lρ
= = =

= + + =∑∑ ∑  (24) 

Thus we have Proposition 2 [6]. 

Proposition 2. At conditions 

(i) scalar functions '
0

ˆ ˆ
, , ,h h hk hX X A A  ( , 1,2,..., )h k p=  

belong to space 2[0,1]L , 

(ii) Haar functions iw , ip  are defined in space 2[0,1]L . 

Then Eqs for WLKBF being (19) at conditions (24). 

Note that Proposition 2 is the basis of corresponding 

algorithm for calculating m.s. estimation of state StSHA 

vector described by Eqs (1), (2): 

1) tR  and tβ off-line calculation according to Eqs (4), (5). 

2) Off-line definition of Haar iw , ip  in space 2[0,1]L  

according to Eqs (11)–(14) with maximal level of wavelet 

resolution J . 

3) Off-line calculation of ip  according to Eq (15). 

4) Off-line reduction of Eq (3) to Eq (10). 

5) Assign values of observation 
0( ) ( [ , ])Z t t t T∈  at points 

0 ( 1)jt t j t= − ∆  for 1,2,..., ;j L=
02 2 ; ( ) / ( 1)jL t T t L= ∆ = − −i . 

6) On-line composition and solution SLAEq (24) for 

coefficients hsc . 

7) On-line calculation of m.s. estimate 
ˆ

hX  for every 

component tX . 

8) On-line transition from [1,0]t ∈ , [1,0]t ∈  and 

calculation of m.s. estimate ˆ ( )X t  according to formula 

0 0

ˆ ˆ( ) (( ) ).X t X T t t t= − +  

3. Linear Pugachev Filter at Shock 

Disturbances 

Let us consider the following StSHA described by Eqs 

with shock parametric noises: 

0 1 10 1 0 01, ,
1 1

, ( ) ,+
= =

 
 = + + + + + =
 
 

∑ ∑ɺ
Y X

y

n n

t t t t t t t rt r rn r t
r r

X a a X a Y c c Y c X V X t X                       (25) 

0 1 20 2 0 02, ,
1 1

, ( ) ,+
= =

 
 = + + + + + =
 
 

∑ ∑ɺ
Y X

y

n n

t t t t t t t rt r rn r t
r r

Y b b Y b X c c Y c X V Y t Y                        (26) 

where V  being vector white noise. In this case LPF is defined by the following proposition [6]. 

Proposition 3. Let StSHA at ShD is describe by Eqs: 

0 1 0 1 0 0
ˆ ˆ ˆ ˆ ˆ[ ( )], ( ) .β= + + + − + + =ɺ

t t t t t t t t t t t t tX a a X a Y Z b b Y b X X t X                    (27) 

Probabilistic moments of first and second order of 1 1[ ... ... ]
Y X

T
n nY Y X X  satisfy the following Eqs: 

0
0 1 0, ,t t t t t

m a a m m m= + =ɺ                                     (28) 

0
0 0 0 0 0 0

1 , 1

( ) ( ), ,

+ +

= =

= + + + + + + =∑ ∑ɺ
Y X Y Xn n n n

T T T T T
t t t t t t t t t t rt rt t t rt t t st rt st rs t

r r s

K a K K a c v c c v c c v c m c v c m m K K K         (29) 
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where 

1 0 2
0

1 0 1

, , ,
t t t tt

t t rt

t t t rt

b b b c
a a c

a a a c

     
= = =     
          

                                (30) 

Error covariance matrix tR  satisfy Eq 

1 1 10 1 20 2 1 2

1 1 , 1

1 20 2
1

1 10 11

1 1

æ

+ + +

= = =

+ +

=

−

=

    
    = + − + + × + + ×     
    

    
    + + + +
    

  

×


∑ ∑ ∑

∑ ∑

ɺ
Y X Y X Y X

Y X Y X

n n n n n n

T T T T T
t t t t t t t t rt rt t t rt rt rt t st rs

r r r s

n n n n

T T
t t t rt rt t t rt rtt

r r r

R a R R a R b c c m v c c m c v c K

R b c c m v c c m 2 10 1

, 1 1

20 1 1 1

1 , 1

,

+ +

= =

+ +

= =

  
  + +
 

  

 
 × + +
 
 

∑ ∑

∑ ∑

Y X Y X

Y X Y X

n n n n

rt t rs t rt rt

s r

n n n n

T T T
t t rt rt rt t st rs

r r s

c v K c c m

v c c m c v c K

              (31) 

where 11æ t  and tβ  as follows 

20 2 20 2 2 2

1 1 , 1

11 ,æ

+ + +

= = =

   
   + × + +
   
  

=


∑ ∑ ∑
Y X Y X Y Xn n n n n n

T T T
t rt rt t t rt rt rt t st rs

r r r s

t c c m v c c m c v c K                      (32) 

1 10 1 20 2 1 2

1 1 , 1

1
11 æ .β

+ + +

= =

−

=

     
     + + × + +
     

    

= ∑ ∑ ∑
Y X Y X Y Xn n n n n n

T T T T
t t t rt rt t t rt rt rt t st rs

r r r s

t tb c c m v c c m c v cR K                

 

 (33) 

Remark. 3. LPF as KBF does not depend on current observations and the basic calculations may be performed a priori. 

For WLLPF we have the following Eqs [6]: 

'
0 0

ˆ ˆ ˆ ˆ( ) ( ), ( ) ( ),t tX t A A X t X t X t= + =ɶ ɶ                                 (34) 

'
0

1

ˆ ˆ
,

Xn

h h hk k

k

X A A X

=

= +∑ɶ ɶ                                       (35) 

1

ˆ ˆ ,

L

h hi i oh

i

X c p X

=

= +∑ ɶ                                       (36) 

1 1 1

ˆ ( 1,2,..., , 1,2,..., ),ρ
= = =

= + + = =∑∑ ∑ ɶɶ ɶ ɶ ɶ

p L L
hki hk h

hs hi s oh s s X

k i i

c c g X q h n s L                     (37) 

0

1 1 1

, , ,

L L L
hki hk h

hk i j j hk j j h j j

j j j

A p g w A q w A wρ
= = =

= = =∑ ∑ ∑ɶ ɶ ɶ ɶɶ ɶ                          (38) 

1 1 1

0

0 0 0

, , ,hki hk h
j hk i j j hk j j h jg A p w d q A w d A w dτ τ ρ τ= = =∫ ∫ ∫ɶ ɶ ɶɶɶ ɶ                          (39) 

0 0 0 0 0 0 0 0 0 0 1 0 0 1( ) ( )[ (( ) ) (( ) ) (( ) )], ( ) ( )[ (( ) ) ]β β= − − + + − + − + = − − − +ɶ ɶ ɶ ɶ
t t t tA t T t a T t t t T t t t Z T t t t A t T t a T t t t b     (40) 
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1 1 1 1
1

110 1 20 2 1 2

1 1 , 1

1 20 2 10 1

1 1

æ

+ + +

= = =

+ +

=

−

=

     
     = + − + + × + +
     

    

    
    + + +
   

   

×

×


∑ ∑ ∑

∑ ∑

ɺ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ

ɶ

Y X Y X Y X

Y X Y X

n n n n n n

T T T T T
t t t t r r t r r r t s rs

r r r s

n n n n

T T
t r r t r r

r r

R a R R a R b c c m v c c m c v c K

R b c c m v c c m 2 10 1

, 1 1

20 1 1 1

1 , 1

,

+ +

= =

+ +

= =

  
 + + +

  
  

 
 × + +
 
 

∑ ∑

∑ ∑

ɶɶ ɶ ɶ ɶ ɶ

ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ

Y X Y X

Y X Y X

n n n n

r t rs r r

r s r

n n n n

T T T
t r r r t s rs

r r s

c v K c c m

v c c m c v c K

       (41) 

1 10 1 20 2 1 2

1 1

1
1

, 1

1æ ,β
+ + +

−

= = =

     
     = + + + +
     

    
∑ ∑ ∑ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ

Y X Y X Y Xn n n n n n
T T T T

t t r r t r r r t s rs

r r r s

R b c c m v c c m c v c K                   (42) 

20 2 20 2 2 2

1 1 ,

1
11

1

æ ,
−

+ + +

= = =

   
   = + + +
   
   

∑ ∑ ∑ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ

Y X Y X Y Xn n n n n n

T T T
r r t r r r t s rs

r r r s

c c m v c c m c v c K                   (43) 

'
0 1 0, (0) ,t t tm a a m m m= + =ɶ ɶ ɶ ɶ                                   (44) 

'
0 0 0 0 0

1 , 1

( ) ( ), (0) ,

+ +

= =

= + + + + + + =∑ ∑ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

Y X Y Xn n n n

T T T T T
t t t t t r r t r r t s r s rs

r r s

K aK K a c v c c v c c v c m c v c m m K K K           (45) 

0 0, , .t t r rta a a a c c= = =ɶ ɶ ɶ          (46) 

Here we use wave for functions depending on 

dimensionless time �.� 

Using Proposition 3 in case 0ta = , 0tb = , 0 0tb =  for 

Eqs (25)-(27) we get the following proposal [6]. 

Proposition 4. At conditions of Proposition 3 and 

conditions: 

(iii) scalar functions 
'

0
ˆ ˆ

, , ,h h hk i hX X A p Aɶ ɶ  

( , 1,2,..., )Xh k n=  belong to space 2[0,1]L ; 

(iv) Haar functions iw , ip  belling to space 2[0,1]L  

WLLPF is defined by Eqs (36), (37). 

From Proposition 4 the corresponding algorithm follow. 

1) Off-line reduction of Eqs (25), (2) to dimensionless 

form. 

2) Off-line calculation of probability moments tmɶ  and 

tKɶ  of random vector 1 1[ ... ... ]
Y

T
n nXY Y X X  by 

integrating Eqs (44), (45). 

3) Off-line calculation of error covariance matrix tR  by 

Eq (41) integrating. 

4) Off-line calculation of parameter 11æɶ  and optimal 

amplifier tβɶ  according to formulae (42) and (43). 

5) Off-line introduction in space 2[0,1]L  Haar wavelet 

defined by Eqs (11)-(14) with maximal level of wavelet 

resolution J . 

6) Off-line calculation ip  for Haar wavelets according 

to formulae (15). 

7) On-line assign values 0( [ , ])tZ t t T∈  in points 

0 ( 1)jt t j t= + − ∆  for 1,2,...,j L= ; 2 2 jL = i ; 

0[ , ]t t T∈ . 

8) On-line composition and solution SLAEq (37) for 

determination of coefficients shξ . 

9) On-line computation of error m.s. estimations 
ˆ

hX  for 

every component tX  according to formula (36). 

10) On-line transition from [1,0]t ∈  to 0[ , ]t t T∈  and 

calculation ˆ ( )X t  to: 0 0

ˆ ˆ( ) (( ) )X t X T t t t= − + . 

4. Suboptimal Linearized Filters at Shock 

Disturbances 

If the noise V  in Eqs (25)-(26) is autocorrelated and 

connected with white noise shV  by linear Eqs of shape 

filter such StSHA with parametric ShD during small sock 

time comparable with time of StSHA inertia are reduced to 

bilinear StSHA of the form [7–10]: 
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0 1 10 1 0 01, ,
1 1

, ( ) ,+
= =

 
 = + + + + + =
 
 

∑ ∑ɺ
Y X

y

n n

sh
t t t t t t t rt r r tn r t

r r

X a a X a Y c c Y c X N X t X  

0 1 20 2 0 02, ,
1 1

, ( ) ,+
= =

 
 = + + + + + =
 
 

∑ ∑ɺ
Y X

y

n n

sh
t t t t t t t rt r r tn r t

r r

Y b b Y b X c c Y c X N Y t Y  

0 1 0 0, ( ) .sh sh sh sh sh
t t t t t t t tN c c N c V N t N= + + =ɺ      (47) 

For given exact distribution (ED) and using equivalent 

linearization of bilinear functions 0
sh

ED ht tE X N  we reduce 

Eqs (47) to Eqs for KBF (Section 2) and for WLKBF for the 

composed vector [ ]T T shT T
t t t tU X Y N=  (Section 3). So we 

have the following Proposition. 

Proposition 5. Let bilinear StSHA (47) at known exact 

distribution of ShD may be reduced to linear autocorrelated 

stochastic system with additive noises. Then KBF and 

WLKBF are defined by Eqs of Proposition 1 and 2 for the 

corresponding state vector tU . 

5. Example 

At first let us consider KBF for the following system: 

2
1 2 2 1 2 1 3 1, 2 , ,sh sh

c c tX X X X X S n V X Xω εω= = − − + + + =ɺ ɺ ɺ  

1 1 2 2 2 2 30, , 0,Z Y Z Y X V Z Y= ≡ = = + = ≡ɺ ɺ ɺ  (48) 

where 1 2 3[ ]TX X X X=  and 2[0 0]TY Y=  are state and 

observation vectors, 1
shV  and 2V  are scalar independent 

Gaussian noises with intensities 1
shv  and 2v  2( 0)v ≠ . Note 

that in case of Eq (48) KBF and LPF coincide. So using 

Poposition 1 we have the following vector Eqs for KBF: 

00 1 1 0
ˆ ˆ ˆ ˆ( ) , ( ) .sh sh

t t t t t t tX a Z a b X X t Xβ β= + + − =ɺ
 (49) 

2
0 1 1

0 0 1 0 0 0 0

, 2 0 , 0 1 0 .

0 1 0 0 0 0 0

ω εω
     
     = + = − − =     
         

sh sh sh
c ct ta S n a b     (50) 

2 12

1
2 221 2

2 23

0 (1/ ) 0

(1/ ) 0 ,

0 (1/ ) 0

T
t t

v R

R b v v R

v R

β −

 −
 

= = − 
 

−  

      (51) 

01 1 1 2 0, ( ) .T sh T
t tt t tR a R a R v v R t Rβ β= + + − =ɺ   (52) 

Eq (52) may be written in scalar form 

2
11 12 2 12 11 0 110

2
2 12 2212 22 11 12

12 0 120

23 2 12 2313 11 13 0 130

22
2 22122 12 22

22 0 220

2
23 12 13 23

2 , ( ) ;(1/ )

2 (1/ ) ,

( ) ;

(1/ ) , ( ) ;

2( 2 ) (1/ ) ,

( ) ;

2

c c

УД
c c

c c

R R R t Rv R

R R R R v R R

R t R

R R R v R R R t R

R R R v v R

R t R

R R R R

ω εω

ω εω

ω εω

= − =

= − − −

=

= + − =

= − + + −

=

= − − −

ɺ

ɺ

ɺ

ɺ

ɺ
2 22 23

23 0 230

2
2 2333 13 33 0 330

(1/ ) ,

( ) ;

2 (1/ ) , ( ) .

v R R

R t R

R R v R R t R














 =

 = − =
ɺ

 (53) 

So we get the final Eqs for KBF: 

1 2 12 2 2 12 2

3 1 2 23 2 2 23 2

2
22 1

22 2 2 22 2

ˆ ˆ[1 ] ,(1/ ) (1/ )

ˆ ˆ ˆ ,(1/ ) (1/ )

ˆ ˆ [2 (1/ )]

ˆ .(1/ )

sh
t c c

X X Zv R v R

X X X Zv R v R

X S n X v

X ZR v R

ω εω

= + −

= + −

= + − − − ×

× −

ɺ

ɺ

ɺ
    (54) 

Secondly we use Proposition 2 and notations 

0 00
ˆ ˆ ˆ, ( ) ,t tX A AX X t X= + =ɺ

      (55) 

2 12 2

2 22 20 0

2 23 2

(1/ )

[ ] (1/ ) ,

(1 / )

sh
th h

v R Z

A A v R Z S n

v R Z

 −
 

= = − + + 
 

−  

     (56) 

2 12

2
2 22,

2 23

0 1 (1/ ) 0

[ ] [2 (1/ )] 0 ,

1 0 (1/ )

ω εω

 +
 

= = − − − 
 
  

c chk h k

v R

A A v R

v R

 (57) 

'
00

ˆ ˆ ˆ ˆ, (0) ,tX A AX X X= + =        (58) 

2 12 2

0 2 22 20 0

2 23 2

(1 / )

[ ] ( ) (1 / ) ,

(1/ )

sh
th h

v R Z

A A T t v R Z S n

v R Z

 −
 

= = − − + + 
 

−  

  (59) 
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2 12

2
0 2 22,

2 23

0 1 (1/ ) 0

[ ] ( ) [2 (1/ )] 0 .

1 0 (1/ )

ω εω

 +
 

= = − − − − 
 
  

c chk h k

v R

A A T t v R

v R

 (60) 

So we get the final WLKBF Eqs: 

' 2
11 0 12 2 12 11 0 110

' 2
12 0 22 11 12

2 12 22 12 0 120

'
13 0 11 23 2 12 23

13 0 130

' 2
22 0 12 22

2
2 22 22

( )[2 (1/ ) ], ( ) ;

( )[ 2

(1/ ) ], ( ) ;

( )[ (1/ ) ],

( ) ;

( )[ 2( 2 )

(1/ ) ], (

c c

sh
t c c

R T t R v R R t R

R T t R R R

v R R R t R

R T t R R v R R

R t R

R T t v R R

v R R

ω εω

ω εω

= − − =

= − − − −

− =

= − + −

=

= − − + −

− 0 220

' 2
23 0 12 13 23

2 22 23 23 0 230

' 2
33 0 13 2 23

33 0 330

) ;

( )[ 2

(1/ ) ], ( ) ;

( )[2 (1/ ) ],

( ) .

c c

t R

R T t R R R

v R R R t R

R T t R v R

R t R

ω εω












 =
 = − − − −
− =

 = − −

 =    

 (61) 

0

1

ˆ
,

L

h hs s h

s

X c p X

=

=∑
               (62) 

3

1 1 1

ˆ

( 1, 2,..., , 1, 2,..., ),

L L
hki hk h

hs hi s oh s s

k i i

c c g X q

k p s L

ρ
= = =

= + +

= =

∑∑ ∑
     (63) 

1

0

1 1

0

0 0

( ) ( ) ( ) ,

( ) ( ) , ( ) ( ) .

hki
j hk i s

hk h
j hk s j h s

g A p w d

q A w d A w d

τ τ τ τ

τ τ τ ρ τ τ τ

=

= =

∫

∫ ∫

     (64) 

Computer experiments “Figures 1-15” were realized for the 

following values of parameters: 1; 1;c Sω = =  
2 1, 5v j= =  

and 0,7ε = ; 0,1ε = . The following variants of ShD were 

considered. 

1) Deterministic ShD with 
sh
tn  and stochastic ShD with 

sh
tv  at 2,1875sht = , 3, 3n t∆ = ∆ = . 

, at [ ; ],

0, at [ ; ],

, at [ ; ],

0, at [ ; ].

sh shsh
t

sh sh

sh shsh
t

sh sh

n t t t t
n

t t t t

n t t t t
v

t t t t

∆ ∈ + ∆= 
∉ + ∆

∆ ∈ + ∆= 
∉ + ∆

 

2) Deterministic ShD 
sh
tn  and stochastic ShD 

sh
tv  at 

2,1875sht =  

10, at [ ; 5],

0, at [ ; 5],

6, at [ ; 7],

0, at [ ; 7].

sh shsh
t

sh sh

sh shsh
t

sh sh

t t t
n

t t t

t t t
v

t t t

 ∈ += 
∉ +

 ∈ += 
∉ +

 

3) Deterministic ShD 
УД
tn  and stochastic ShD 

УД
tv  at 

0,135УДt = , 

10, at [ ; 1],

0, at [ ; 1],

6, at [ ; 1],

0, at [ ; 1].

sh shsh
t

sh sh

sh shsh
t

sh sh

t t t
n

t t t

t t t
v

t t t

 ∈ += 
∉ +

 ∈ += 
∉ +

 

 

Figure 1. Plot realization of 1X  and its estimation (variant 1) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 2. Plot realization of 2X  and its estimation (variant 1) for 0, 7ε =  (a) and 0,1ε = (b). 
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Figure 3. Plot realization of 3X  and its estimation (variant 1) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 4. Filter error variance plots 11 22 33, ,R R R  (variant 1) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 5. Filter error variance plots 12 13 23, ,R R R  (variant 1) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 6. Plot realization of 1X  and its estimation (variant 2) for 0, 7ε =  (a) and 0,1ε = (b). 
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Figure 7. Plot realization of 2X  and its estimation (variant 2) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 8. Plot realization of 3X  and its estimation (variant 2) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 9. Filter error variance plots 11 22 33, ,R R R  (variant 2) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 10. Filter error variance plots 12 13 23, ,R R R  (variant 2) for 0, 7ε =  (a) and 0,1ε = (b). 
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Figure 11. Plot realization of 1X  and its estimation (variant 3) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 12. Plot realization of 2X  and its estimation (variant 3) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 13. Plot realization of 3X  and its estimation (variant 3) for 0, 7ε =  (a) and 0,1ε = (b). 

 

Figure 14. Filter error variance plots 11 22 33, ,R R R  (variant 3) for 0, 7ε =  (a) and 0,1ε = (b). 
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Figure 15. Filter error variance plots 12 13 23, ,R R R  (variant 3) for 0, 7ε =  (a) and 0,1ε = (b). 

6. Conclusion 

For filtering problems in StSHA under nonGaussian ShD 

methodological and algorithmically WL support is developed. 3 

types of filters are considered: KBF (WLKBF), LPF (WLLPF) 

and SOLF (WLSOLF). These filters have the following 

advantages: on-line regime, high accuracy and possibility of 

algorithmically description of complex ShD. Wavelet filter 

modifications are based Galerkin method and Haar wavelet 

expansions. WLF unlike KBF, LPF and SOLF do not need to 

integrate system of ordinary differential Eqs. These filters must 

solve system of linear algebraic Eqs with constant coefficients. 

KBF (WLKBF) and SOLF (WLSOLF) are recommended 

for StSHA with additive ShD whereas LPF (WLLPF) are 

recommended for StSHA with parametric and additive ShD. 

Basic applications are on-line identification and calibration 

of nonstationary processes in StSHA at ShD. 

Methods are illustrated by example of 3 dimensional 

differential linear information control system at complex 

ShD. Basic algorithms and error analysis for KBF (WLKBF) 

and LPF (WLLPF) are presented on 15 figures illustrate 

filters popularities for small and big damping. These filters 

allow to estimate the accumulation effects for systematic and 

random errors. 

Results may be generalized for filtration, extrapolation and 

interpolation problems in StSHA with multiple ShD. 
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