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Abstract: With the continuous development of modern science and technology and the continuous improvement of data 

collection technology, researchers can collect a lot of high-dimensional data from various fields. At present, there has been 

some development in the selection of variables under high-dimensional data, but most of these studies only consider the 

selection of variables for main effects. However, when modeling many important practical problems, the main effects alone 

may not be enough to describe the relationship between the response variable and the predictor variable. Therefore, the 

variable selection problem with interaction terms under high-dimensional data is more meaningful. Based on this, this article 

focus on the robust estimation for semi-parametric models with interactions in high-dimensional data under the framework of 

mode regression. And the two-stage regularization method is applied to implement variable selection with high-dimensional 

data. At Stage 1, using the B-spline basic function to approximate the non-parametric function. Both parametric and non-

parametric components were selected simultaneously based on mode regression and the adaptive least absolute shrinkage and 

selection operator (LASSO) estimation. At Stage 2, the model variables are composed of the selected variables at Stage 1 and 

interaction terms are derived from the main effects. To maintain the heredity structure between main effects of linear part and 

interaction effects, we only selected the interaction terms to obtain important interaction effects. Then, under proper 

regularization conditions, oracle properties of variable selection and the consistency of the hierarchical structure are proved. 

Numerical results are also shown to demonstrate performance of the methods. 

Keywords: Semi-Parametric Models with Interaction, Variable Selection, Modal Regression, Adaptive LASSO 

 

1. Introduction 

In many practical problems, the main terms 1, , pX XL  alone 

may not be sufficient to depict the relationship between response 

and predictor variables. Therefore, the problem of variable 

selection with interaction terms under high-dimensional data is 

of more practical significance. In this paper, we consider the 

semi-parametric model with interaction, that is 

( )2 2
0 1 1 1,1 1 1,2 1 2 ,

1

d

i p p p p p l il i

l

Y X X X X X X g Zβ β β β β β ε
=

= + + + + + + + + +∑L L ,                                   (1) 

where iY  is the response, ( )1, ,
T

pβ β β= L is the � -

dimension unknown regression parameter vector,

( ) ( )1 , , dg g⋅ ⋅L  are respectively one-dimensional unknown 

smooth function, 1, , pX XL  are main effects, and order-2 

terms ( )1j kX X j k p≤ ≤ ≤  include quadratic main effects

( )j k=  and two-way interaction effect ( )j k≠ . d
iZ R∈  

is	�-dimensional covariable, and ε  is the noise with mean 

zero. A key feature of model (1) is that order-2 terms are 

derived from the main effects. We call j kX X  the child of jX

and kX , and jX  and kX  the parents of j kX X . 
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In recent years, the semi-parametric variable selection 

method has attracted the attention of statisticians. Liang [1] 

proposed a partial linear model-based profiled forward 

regression (PFR) screening method, which transformed the 

variable coefficient model into a traditional linear model with 

a profile least square method and obtained the PFR screening 

method through the forward regression algorithm. For robust 

variable selection, Zhao [2] approximated the non-parametric 

function with B-spline and realized simultaneously variable 

selection of parameters and variable coefficients based on the 

double penalty mode regression objective function. Based on 

mode regression, Zhang and Zhao [3] studied the two-step 

estimation of the partial variable coefficient model by using 

local polynomials, and obtained the estimation of the 

parameters and non-parametric functions respectively and 

reached the optimal convergence rate respectively. 

Since Efron [4] proposed the two-stage method of linear 

models with interaction effects, a large number of literatures 

have extended the two-stage method to various models. Hao 

and Zhang [5] proposed a forward-selection-based algorithms 

for interaction selection (iFOR) in the high dimensional 

interactive selection, which can effectively identify 

interaction effects and maintain the hierarchy. Subsequently, 

Hao and Feng [6] proposed regularization methods for high-

dimensional quadratic regression models with second-order 

interaction terms and established theoretical properties for 

two-stage LASSO. To deal with ultra-high-dimensional 

problems, Dong and Jiang [7] studied a two-stage method 

that requires sparsity in the high-order interaction model and 

used the square root hard ridge (SRHR) method to discover 

relevant variables in each stage. 

Inspired by the above methods, this paper proposes and 

studies the robust variable selection of a semi-parametric 

model with interaction in high dimensional data, and adopts a 

two-stage regularization method for variable selection. 

2. Variable Selection Method 

We define some notations used in the paper. Let 

( )1, ,
T

nX X X= L  be the n p×  design matrix of the main 

effect and ( )1, ,
T

ny yL  be the n -dimensional response 

vector, and let the index set of the linear term be 

{ }1,2, ,M p= L  and the index set of the second-order term 

be ( ){ }, :1j k j k pΙ = ≤ ≤ ≤ . The regression coefficient 

vector ( )0 , ,
T

T T
Mβ β β βΙ= , where ( )1, , pβ β β

Τ
Μ = L  and 

( )1,1 1,2 ,, , , p pβ β β β
Τ

Ι = L . For a subset A M⊂ , Aβ  is a 

subvector of Mβ , AX  is a submatrix of X , and jX  

represents the jth column of X . In addition, the subscript 

( ),j k  and ( ),k j  are the same, that is, , ,j k k jβ β= . 

To estimate the non-parametric part of the semi-parametric 

model (1), we use the B-spline basis function to approximate 

every non-parametric function ( )lg z , and model (1) is 

expressed as 

2 2
0 1 1 1,1 1 1,2 1 2 ,

T
i p p p p p i iY X X X X X Xβ β β β β β γ ε≈ + + + + + + + + Ψ +L L ,                                    (2) 

where ( )1 , ,T T
dγ γ γ= L , and the definition of iΨ  is described in lv [8]. 

2.1. Variable Selection at Stage 1 

The objective function of the first stage is given below 

( ) { }0 0

1

, ,
n

T T

h i i M i

i

L Y Xβ β γ φ β β γ
=

= − − − Ψ∑ ,                                                  (3) 

where ( ) ( )1

h t h t hφ φ−= , and ( )tφ  is a kernel density function and h  is window width. β%  and γ%  are estimated by 

maximizing the objective function (3). In order to realize variable selection, according to the mode regression estimation 

method of Yao [9], the adaptive LASSO penalty function is introduced, then the objective function of the first stage becomes 

( ) { }1 0 0 1 2

1 1 1

, ,
l

pn d
T T

M h i i i k k k l l l H
i k l

G Y X n nβ β γ φ β β γ λ ω β λ ω γΜ
= = =

= − − − Ψ − −∑ ∑ ∑ ,                              (4) 

where ( ) ( )1
h t h t hφ φ−= , ( )tφ  is a kernel density function, 

h  is window width, 1λ  and 2λ  are regularization 

parameters, and kω  and lω  are the penalty weights. 

Generally, 
v

k kω β
−

= %  and 
v

l lω γ −= %  are taken, where v  is 

a positive constant, ( )1 2

l

T
l l lH

Hγ γ γ=  and the definition of 

lH  are shown in literature Li [10]. Sparse solutions β̂  and 

γ̂  of 1λ  and 2λ  can be obtained by selecting appropriate 

regularization parameters 1λ  and 2λ  and maximizing 

objective function (4), and the estimation of ˆ
lg  can be 

expressed by γ̂ . 

Since it is difficult to maximize equation (4) directly, local 

quadratic estimation algorithms (LQA) and expectation 
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maximization (EM) proposed by Fan et al. (2001) [11] are 

adopted to obtain penalty estimation. Given initial values 

0 0, 1, ,k k pβ > = L  and 
0 0, 1, ,l l dγ > = L , the penalty 

function can be expressed as 

( )
( )

( ) 2
20 01

1 1
0

1

2

k k
k k k k k kk k

k

ω λλ ω β λ ω β β β
β

 
≈ + − 

    
 

,                                                       (5) 

( )
( ) ( )( )0 00 2

2 2
0

1

2

TTl l
l l l l l l l l l lH H

l
H

H H
ω λλ ω γ λ ω γ γ γ γ γ
γ

≈ + − .                                                (6) 

So for ease of calculation, let ( ),
T

T Tθ β γ= , ( ),T T
i i iZ X= Ψ  and 0m = , we have 

( )( ) { }1 2

1 1 1 1
0 0 0 0

, 11 1 1 1 21 1 2, , , , ,
m

p p p l d d d
H H

diag H Hλ λ θ λ ω β λ ω β λ ω γ λ ω γ
− − − −

Σ = L L

, 

The EM algorithm to obtain the penalty estimation in (4) is as follows: 

Step 1 (E-Step): Update ( )( )m
iπ θ  by the following formula 

( )( )
( ){ }

( ){ }1

mT
h i i

m

n mT
h i ii

Y Z
i

Y Z

φ θ
π θ

φ θ
=

−
=

−∑
,  

Step 2 (M-Step): Update 
( )1mθ +

 

( ) ( )( ) ( ){ } ( )( )1 2

1
,

1

arg max log
2

n
m m m mT T

h i i

i

n
i Y Zθ λ λθ π θ φ θ θ θ θ+

=

 = − − Σ 
 

∑  

( )( )( )1 2

1

,
mT TZ WZ n Z WZλ λ θ

−
= + Σ ,  

where ( )1, ,
T

nZ Z Z= L , W  is a n n×  diagonal matrix and 

its i th diagonal element is ( )( )m
iπ θ . 

Step 3: Iterate E-Step and M-Step repeatedly until the 

algorithm converges. Let the estimate of θ  be θ̂ , then 

( )ˆ ˆ,0
np p p dKIβ θ× ×= , ( ) ˆˆ 0 ,

n n ndK p dK dKIγ θ× ×= , and 

( ) ˆˆ
T

l l l lg zψ γ= , 1, ,l d= L . 

2.2. Variable Selection at Stage 2 

Define 2X X X=o
o  as an 

( )1

2

p p
n

+
×  matrix consisting 

of all pairwise column products, that is, for 

( )1, , pX X X= L , 

( )2
1 1 1 2, , , p pX X X X X X X X X= = ∗ ∗ ∗o

o L , where ∗  

represents the entry-wise product of two column vectors. For 

an index set A M⊂ , define 2A A A= =o
o  

( ){ }, :1 ; ,j k j k p j k A I≤ ≤ ≤ ∈ ⊂ , and use 2
AX o  as a short 

notation for ( ) 2

AX
o

, and the columns of ( ) 2

AX
o

 are indexed 

by 2Ao . { }ˆ ˆ: 0, 1, ,jA j j p Mβ= ≠ = ⊂L  is used to 

represent the model selected in the first stage. In the second 

stage, Â  is extended by all the two-way interactions of those 

main effects within Â , and the nonparametric part of the first 

stage is denoted by { }ˆ ˆ: 0, 1, ,lL l g l s= ≠ = L . 

To maintain the hierarchy structure, only interaction terms 

are penalized in the second stage, and the coefficient of the 

interaction term j kx x  should satisfy , 0j kβ ≠ , if and only if 

0jβ ≠  and 0kβ ≠ . The objective function of the second 

stage is 

( ) { }2 2

2

2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 0 0 ,

ˆ1

, , ,

n

h i k jL L LA A A A A A
i A

G Y X X n α
α

β β β γ φ β β β γ λω β
= ∈

= − − − − Ψ −∑ ∑o o

o

o
.                       (7) 
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For the variable selection in the second stage, the following formula is solved 

{ }2

2

2
ˆ ˆ ˆ ˆ ˆ ˆ0 ,

ˆ1

ˆ arg max

n
AL

h i j kL LA A A A
i A

Y X X nµ α
α

µ φ β β γ β λω β
= ∈

  = − − − Ψ − − 
  
∑ ∑o

o

o ,                       (8) 

where λ  is the regularization parameter, and αω  is the 

penalty weight of the α th component of ,k jβ . Generally, 

v

α αω β −=  is taken, where v  is a positive constant. 

By using appropriate penalty parameters, coefficient 

estimators can be obtained and variable selection can be 

achieved. In this stage, only interaction terms are penalized. The 

iterative calculation process is the same as that in the first stage. 

3. Theoretical Properties 

If we ignore the interaction terms, let 0
Mβ  and ( )0l lg z  be 

the true values of Mβ  and ( )l lg z , respectively. Let 

{ }, 1 2 0 0max , 0, 0n k l k l k la λ λ β γ= ≠ ≠  and 0nna → , where 

n → ∞ . Let { }, 1 2 0 0min , 0, 0n k l k l k lb λ λ β γ= = =  and 

nnb → ∞ , where n → ∞ . At Stage 2, to keep the 

hierarchy, the coefficient of the interaction term j kx x  should 

satisfy , 0j kβ ≠ , if and only if 0jβ ≠  and 0jβ ≠ , 

ˆ1 ; ,j k p j k A≤ ≤ ≤ ∈ . 

Theorem 1. Suppose that (C-1) - (C-6) hold, and the 

number of nodes is ( )1 2 1rK O n += , then 

(1) ( )0 2 1ˆ r r
p nO n aβ β − +

Μ Μ− = + , 

(2) ( ) ( ) ( )2 1
0

ˆ , 1, ,r r
l l l l p ng z g z O n a l s− +− = + = L . 

The definition of r  is shown in the regular condition (C-2). 

Let 0 0, 1, ,k k tβ ≠ = L , and 0 0, 1, ,k k t pβ = = + L . 

Similarly, let 0 0, 1, ,lg l s≠ = L  and 0 0, 1, ,lg l s d= = + L . 

Define ( ),
T

T T
a bβ β β=

, and ( ),
T

T T
a bγ γ γ=

, where 

( )1, ,
T

a tβ β β= L
 and ( )1, ,

T

a sγ γ γ= L
 correspond to 

covariates aX  and aΨ . Under the regular condition, the 

first-stage penalty estimation has sparsity. 

Theorem 2. Suppose that (C-1) - (C-6) hold, and the 

number of nodes is ( )1 2 1rK O n += , then 

(1) ˆ 0, 1, ,k k t pβ = = + L , 

(2) ˆ 0, 1, ,lg l s d= = + L . 

The asymptotic normal distribution of the nonzero 

component of the parameter is given. Let 

( ) ( ){ }, , ,hF x z h E X x Z zφ ε′′= = = , 

( ) ( ){ }2
, , ,hG x z h E X x Z zφ ε′= = = , 

( ){ } ( ){ }, ,T T
hE E F x z hφ ε′′Φ = ΨΨ = ΨΨ ,

( ){ } ( ){ }, ,T T
hE X E F x z h Xφ ε′′Γ = Ψ = Ψ , 

1TX X∗ −= − Γ Φ Ψ , ( ){ }, , TE F X Z h X X∗ ∗Σ = , 

( ){ }, , TE G X Z h X X∗ ∗Ω = . 

Theorem 3. Under the condition of Theorem 3.2, then 

( ) ( )1 1
0

ˆ 0,
d

a a a a an Nβ β − −− → Σ Ω Σ , 

where aΣ  and aΩ  are the pre- t t×  submatrices of Σ  and 

Ω , respectively. 

Theorem 4. Suppose the regularization condition (C-1) - 

(C-6) hold, and the number of nodes is ( )1 2 1rK O n += , then 

(1) ( )0 2 1
ˆ ˆ

ˆ r r
p nA A

O n aβ β − +− = + , 

(2) ( )2 2
0 2 1

ˆ ˆ
ˆ r r

p nA A
O n aβ β − +− = +o o , 

(3) ( ) ( ) ( )2 1
0

ˆˆ ,r r
l l l l p ng z g z O n a l L− +− = + ∈ . 

Theorem 5. Suppose the regularization condition (C-1) - 

(C-6) hold, and the number of nodes ( )1 2 1rK O n += , let 

( ){ },
ˆ, : 0, 1k jc k j t k j pβ= = + ≤ ≤ ≤% , then  

( ),
ˆ 0, ,k j k j cβ = ∈ % . 

Let ABΣ  be the submatrix of Σ , the row index is A  and 

the column index is B . Refer to Hao and Zhang [12]. 

and define the index set of important main effects as 

{ }2 2
,1

: 0
p

j j kk
S j β β

=
= + >∑ , and let s S= , 

( ){ },, : 0k lT k l β= ≠ , and 
2T S⊂ o

. In addition, we follow 

Wainwright [13] and define 

( ) 1
c c c c cSSS S S S S S SS

−Σ = Σ − Σ Σ Σ , where 
cS M S= − . Let 

( )min AΛ  be the smallest eigenvalue of A , and 

( ) maxu i iiA Aρ = . Assume the following technical 

conditions: 

(B1) ( ) ( ]1
1 , 0,1c SSS S

γ γ−

∞
Σ Σ ≤ − ∈ , 

(B2) ( )min min 0SS CΛ Σ ≥ > . 

Theorem 6. Suppose that the regular condition (B-1)-(B-2) 

hold, consider the family of regularized parameters 
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( ) ( ) ( ) ( )2 2

2

4 logcp u S S

n p

p

n

φ ρ σ τ
λ φ

γ

Σ +
= , 

where 2pφ ≥ . For some fixed 0δ > , the sequence 

( ), ,n p s  and regularization sequence { }nλ  satisfy 

( ) ( )
( ) ( )2 2

min

2 2
min

2
1 1

2 log

cu S S

n

Cn

s p s C s

ρ σ τ
δ

γ λ

 Σ +
 > + +
 −  
 

. 

then the following holds with probability greater than 

( )
1

2
1 21 exp min , log ,c c s p s n

    − − − 
    

. 

(i) The adaptive LASSO has a unique solution; 

(ii) Define the gap 

( )
22

1 2 2
3 1 3

min min

9
20

I

n n SS

ss
g c

C n C n

βσλ λ −

∞
= Σ + + . 

Then if ( )min min j n
j S

gβ β λ
∈

= > , then 

( ) ( )ˆ
L Msign signβ β= . 

4. Selection of Window Width and 

Adjustment Parameters 

4.1. Selection of Window Width 

Referring to theorem 1 of Liu [14], we can obtain that the 

ratio of the spline mode estimate to the asymptotic variance 

of the least squares estimate is 

( ) ( ) ( )2

2

G h F h
r h

σ

−

� , 

where ( )2 2Eσ ε= , ( ) ( ){ }hF h E φ ε′′= , and 

( ) ( ){ }2

hG h E φ ε′= . The optimal window width h  can be 

obtained by minimizing ( )R h , that is, 

( ) ( ) ( )2arg min arg minopt
h h

h R h G h F h−= = . 

Therefore, opth  does not depend on n  but only on the 

distribution of ε . In practical problems, the distribution of 

model error ε  is usually unknown, so the window width 

cannot be solved directly by equation (3). Considering the 

method proposed by Yao [9], the estimation of ( )F h  and 

( )G h  is used in equation (3), that is, 

( ) ( ) ( ) ( ){ }2

1 1

1 1ˆˆ ˆ ˆ,

n n

h i h i

i i

F h G h
n n

φ ε φ ε
= =

′′ ′= =∑ ∑ , 

then the estimate of ( )r h  is ( ) ( ) ( )2

2

ˆ ˆ
ˆ

ˆ

G h F h
r h

σ

−

= , where 

ˆˆ ˆT T
i i i iY Xε β γ= − − Ψ  represents the estimation of the 

residuals, γ̂ , β̂ , and σ̂  are the initial estimates, and the 

lattice point method can be used to obtain the optimal 

window width. 

4.2. Selection of Adjustment Parameters 

According to Zhao [15], let 

1 2
1 2,

l

k l
lk H

λ λλ λ
γβ

= =
% %

, 

where kβ%  and lγ%  are the no-penalty estimates of kβ  and lγ , 

respectively. To choose the optimal regularization parameters 

1λ  and 2λ , Bayesian criterion (BIC) is applied in this paper. 

Particularly, BIC is defined as 

( ) { } ( ) ( )
1 21 2 0

1

log log1 ˆ ˆBIC ,

n
nT T

h i i i n c
ni

n K n
Y X df df

n n K n
λ λλ λ φ β β γ

=

= − − − − Ψ + +∑ , 

where 
1

ˆ
λβ  and 

2
ˆλγ  represent the penalty estimates given 1λ  

and 2λ , ndf  is the number of nonzero additive functions and 

cdf  is the number of nonzero parameter. 

5. Simulation Results 

In this section, an example is used as a simulation study to 

test the performance of the two-stage regularization method. 

The two-stage adaptive LASSO method studied in this paper 

is compared with other penalty estimates, including LASSO 

and SCAD. In the simulation study, we generate data from 

the semi-parametric model. The sample size is 200n =  and 

400n = , the number of covariables is set as 10p = , and 

5d = , iX  is subject to a multivariate normal distribution, iZ  

is the independent uniform distribution on the interval [ ]0,1 , 

and the error distribution is considered as a standard normal 

distribution. In the real model, let the coefficient of the linear 

part be ( )3,2,1,0,0,0,0,0,0,0β = , the coefficient of the 

linear interaction item be 3,2 2β = , and the non-parametric 

part be ( ) ( ) ( )1 1 1 15*cos 3sini i ig Z Z Z= + , 

( )1 0, 2, ,l ig Z l d= = K . I represents the number of 

interaction items non-zero coefficient estimated to be 0 in the 

simulation, and C represents the number of interaction item 

zero coefficient estimated to be 0 in the simulation. The 

generalized mean square error (GMSE) to evaluate the 
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accuracy of the estimated parameters is defined as 

( ) ( )( )ˆ ˆ
T

TGMSE E XXβ β β β= − − ,  

The square root of the mean square error (RASE) to 

evaluate the estimation accuracy of the nonparametric 

component ( )1 1ig Z  is defined as 

( ) ( )( )2

1 1

1 1

1
ˆ

n d

l i l i

i l

RASE g Z g Z
n = =

= −∑∑ . 

As shown in Table 1, in the first stage of simulation, 

adaptive LASSO is selected for variable selection, and the 

interaction term is not considered in the process of variable 

selection. The main effect 1 2 3, ,β β β  is selected, while the 

non-parametric part ( )1 1ig Z  is selected. In the second stage, 

to maintain the hierarchical structure of the model, only the 

interaction terms are punished, and the punishment methods 

include adaptive LASSO, smoothly clipped absolute deviation 

(SCAD), and LASSO estimation. Table 2 shows the results of 

the second stage simulation, comparing the performance of the 

three methods. It is not difficult to see that there is little 

difference in the performance of the three methods in selecting 

covariables, but adaptive LASSO is a little smaller than the 

GMSE and RASE of the other two methods. On the other hand, 

with the increase of GMSE and RASE, the three different 

methods decreased, and the simulation results were closer to 

the real model. It can be seen that adaptive LASSO is a 

relatively effective variable selection method. 

Table 1. Variable Selection at Stage 1. 

(n, p, d)   GMSE RASE 

(200,10,5) 1 2 3, ,β β β  ( )1 1ig Z  0.049 0.182 

(400,10,5) 1 2 3, ,β β β  ( )1 1ig Z  0.032 0.290 

Table 2. Variable Selection at Stage 2. 

(n, p1, p2, d) Method β1 β2 β3 β3,2 I C GMSE RASE 

(200,3,9,1) adaptive LASSO 1.0053 1.0152 1.9639 2.2475 0 8 0.0481 0.5901 

 SCAD 1.1309 1.1147 1.7983 3.1058 0 8 0.0563 0.6301 

(400,3,9,1) adaptive LASSO 1.0037 1.0078 1.9491 2.2191 0 8 0.0392 0.5710 

 SCAD 1.3530 1.6407 1.1449 2.1472 0 8 0.0404 0.5863 

 

6. Technical Proofs 

To prove the conclusion of the theorem, some regular 

conditions are given: 

Let rH  denote the totality of the function ( )h t  on [ ]0,1  

that satisfies the following conditions, that the m -order 

derivative ( )mh t  of ( )h t  is continuous and satisfies the v -

order Holder&&  condition, and that r m v= + , that is, that there 

is a constant ( )0 0,M ∈ ∞  such that the absolute value 

inequality ( ) ( ) 0

vm mh s h t M s t− ≤ −  holds for any 

[ ], 0,1s t ∈ .; 

(C-1) ( )( ) 0l lE g z =  and ( ) , 1, , , 1 2l l rg z H l d r∈ = >L ; 

(C-2) The covariate lZ  has a continuous density function 

( )
lz lf z  and the presence of constants 1δ  and 2δ  such that 

( )
lz lf z  satisfies ( )1 20 , 1, ,

lz lf z l dδ δ< ≤ ≤ < ∞ = L  on the 

interval [ ]0,1 ; 

(C-3) For 1 i n≤ ≤ , the random variable is uniformly 

bounded and the eigenvalues of { }T
i i iE X X Z  are bounded 

away from 0  and infinity is consistent for 1 i n≤ ≤ ; 

(C-4) Let 1, ,
nkt tL  be an inner node on the interval [ ]0,1 , 

and with 0 1 10, 1,
nk i i it t t tξ+ −= = = − , and { }max iξ ξ= , 

there is a constant 0C  such that 

{ } { } ( )1
0 1, max

min
i i n

i

C o k
ξ ξ ξ

ξ
−

+≤ − =  

holds; 

(C-5) ( ), ,F x z h  and ( ), , ,G x z u h  are continuous 

concerning ( ),x z , and ( ), , 0, 0F x z h h< ∀ > ; 

(C-6) The random error ε  satisfies 

( )( ), 0hE X x Z zφ ε′ = = = , ( )( )2
,hE X x Z zφ ε′′ = = , 

( )( )3
,hE X x Z zφ ε′ = = , and ( )( ),hE X x Z zφ ε′′′ = =  

concerning the variables x  and z  are continuous. 

Proof of Theorem 1. Let 2 1

r

r
nn aδ

−
+= + , 0

1M Mβ β δα= + , 

0 2γ γ δα= + , ( )1 2,T Tα α α= . Now we work on the first part 

of Theorem 1. For 0η∀ > , there is a large constant C , such 

that 
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( ) ( )0 0sup 1
C

G G
α

θ δα θ η
=

  Ρ + < ≤ − 
  

.                                                                       (9) 

According to the arbitrariness of η , there is a local maximum point θ̂  in the interior of ball { }0 : Cθ δα α+ ≤ , that is, 

( )0
ˆ Opθ θ δ− = . Let ( ) ( ) ( ){ }1

0 0 0K G Gθ θ δα θ−∆ = + − , 

( ) ( ) ( ){ }1
0 0 0K G Gθ θ δα θ−∆ = + −  

( ) ( ){ } { }1 0 1 0
1 0 2 0

1 1

n n
T T T T

h i i M i h i i M i

i i

K Y X K Y Xφ β δα γ δα φ β γ− −

= =

= − + − Ψ + − − − Ψ∑ ∑  

( ) ( )1 1 0 2 2 0

1 1
l l

p d

k k k k k l l l l lH H
k l

n n

K K
ω λ β λ β ω λ γ λ γ

= =

− − − −∑ ∑ . 

Taylor expansion is performed on the above formula. The above equality becomes 

( ) ( ){ }( ) ( ){ }( )
2 2

0 1 2 1 2

1 1

1
1 1

2

n n
T T T T

h i d i i i h i d i i i

i i

R Z X R Z X
K K

δ δθ φ ε α α φ ε α α
= =

′ ′′∆ ≤ − + + Ψ + + + Ψ∑ ∑  

( )( )
3 3

1 2

1

1

6

n
T T

h i i i

i

X
K

δ φ ξ α α
=

′′′− + Ψ∑  

( ) ( )1 1 0 2 2 0

1 1
l l

p d

k k k k k l l l l lH H
k l

n n

K K
ω λ β λ β ω λ γ λ γ

= =

− − − −∑ ∑  

1 2 3 4 5I I I I I+ + + +� . 

Where iξ is between ( )1i d iR Zε +  and ( ) ( )1 21 T T
i d i i iR Z Xε δ α α+ − + Ψ , 1d  represents a d -dimensional column vector 

with all 1  elements. ( ) ( ) ( )( )1 1 , ,
T

i i d idR Z R Z R Z= L , ( ) ( )1 0 0
T

l i l il il lR Z g z ψ γ= − , 1, ,l d= L . According to de Boor [16], we 

get ( ) ( )iR Z Op δ= . Using Taylor expansion again for 1I , we have 

( ) ( ) ( ) ( ) ( ) ( )2

1 1 2

1

1
1 1

2

n
T T

h i h i d i h i d i i i

i

I R Z R Z X
K

δ φ ε φ ε φ ε α α∗

=

 ′ ′′ ′′′  = − + + + Ψ  
 

∑
 

Where iε∗  is between iε  and ( )1i d iR Zε + . By the 

condition (C-4) and na , we can get 

( ) ( )1 2 1
1

rI Op nK K Op n Kδ α δ α− − −= =  

( )( ) ( )22 1
2 , ,I E F X Z h Op n Kδ α−=  

Thus, for sufficiently large positive integers C , 2I  is able 

to consistently control 1I  when Cα = . 

In a similar way, we have ( )32 1
3I Op n Kδ α−= . If 

0δ → , then ( )0T Cδ α→ = . We can get ( )3 2I op I= , 

that is, 2I  is able to consistently control 3I  when Cα = . 

On the other hand, 

( )2 11
4

r r
n nI tnK a sn aδ α α+−≤ =  

Conditioned on na , ( )4I op α=  holds for 
Cα = . 

Therefore, 4I  is consistently controlled by 2I , and 5I  is 

consistently controlled by 2I . Moreover, conditioned on (C-

6) and ( ), , 0F x z h < , then ( )0 0θ∆ < . Therefore, inequality 

(9) holds with probability 1 η− . So there are local maximum 

points ˆ
Mβ  and γ̂  that satisfies 
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( ) ( )0 0
ˆ ˆ,M Op Opβ β δ γ γ δ− = − = .       (10) 

Now we work on the second part of Theorem 1, let 

( ) ( ) ( )( )1 , , , 1, ,
n

T

l l lKz z z l dψ ψ ψ= =L L , 

( ) ( ) ( ) ( )
12 2

0 0
0

ˆ ˆ
l l l lg z g z g z g z dz− = −∫  

( ) ( ) ( ){ }1 2

0
0

ˆT T
l l l l lz z R z dzψ γ ψ γ= − +∫  

( ) ( ){ } ( )
1 12 2

0
0 0

ˆ2 2T T
l l l l lz z dz R z dzψ γ ψ γ≤ − +∫ ∫  

( ) ( ) ( )
1 2

0 0
0

ˆ ˆ2 2
T

l l l l l lH dz R z dzγ γ γ γ= − − + ∫ . 

Where lH  is a n nK K×  matrix, and the ( ),k k ′ th element 

is ( ) ( )
1

1 1
0

k kz z dzψ ψ ′∫ . If ( )1lH O= , then 

( ) ( )
2

22 1
0 0

ˆ ˆ

r
T

r
l l l l l nH Op n aγ γ γ γ

−
+

 
 − − = +
 
 

,      (11) 

Moreover, 

( )
2

1 2 2 1

0

r

r
lR z dz Op n

−
+

 
 =
 
 

∫ ,                  (12) 

Combining (11) and (12), the second part of Theorem 1 is 

easily obtained. 

Proof of Theorem 2. No we will prove the first part of the 

Theorem 2. The goal is to show that, with overwhelming 

probability, under Theorem 1, inequality 

( ),
0, 0 , 1, , ,

M
k

k

G
v k t p

β γ
β

β
∂

< < < = +
∂

L   (13) 

( ),
0, 0, 1, , ,

M
k

k

G
v k t p

β γ
β

β
∂

> − < < = +
∂

L   (14) 

hold for each 
( )2 1r r

v Cn
− += , lγ  and kβ , where 

( )( )2 1
0

r r
l l Op nγ γ − +− =  and ( )( )2 1

0
r r

k k Op nβ β − +− = . 

Now the goal is to prove that (13) and (14) are true. It is 

straightforward to get 

( ) ( ) ( )1

1

,
sgn

n
M T T

i h i i M i k k k
k i

G
X Y X n

β γ
φ β γ λ ω β

β =

∂
′= − − − Ψ −

∂ ∑  

( )( ) ( )( ) ( ) ( ){ 0
0

1

1 1

n
T T

i h i d i h i d i i i M M

i

X R Z R Z Xφ ε φ ε γ γ β β
=

 ′ ′′= − + − + Ψ − + −
 ∑  

( ) ( ) ( ) ( )
2

0
0 1

1
sgn

2

T T
h i i i M M k k kX nφ ζ γ γ β β λ ω β ′′′+ Ψ − + − −  

 

( ) ( )( )2 11 1
1 1sgn

r r
k k k k kn Op nλ ω β λ ω − +− − = − +

  
 

where iζ  is between ( )1i d iR Zε +  and T T
i i M iY X β γ− − Ψ . 

By nb , we have ( ) ( )2 1 2 1
1 ,

r r r r
k nn b nλ − + − +≥ → ∞

1, ,k t p= + L . Therefore, we have the sign of 

( ),M kG β γ β∂ ∂  determined by kβ , that is, (13) and (14) are 

true. 

Based on Theorem 1, for ( )1l Oψ =  and 

( ) ( ) ( ) ˆˆ
T

l l l lg z l zψ γ= , equality ( )ˆ 0, 1, ,lg l s d⋅ = = + L  

holds with overwhelming probability. 

Proof of Theorem 3. By Theorem 1 and 2, when n → ∞ , 

( ),G γ β  reaches its maximum at points ( )ˆ ,0
T

T
aβ  and 

( )ˆ , 0
T

T
aγ with probability 1 . By definition of ( ),G γ β , we 

have 

( )
( ) ( ) ( )1ˆ ,0

1 1

,1 1 ˆ ˆˆ sgn 0T
T T
a

pn
T T

i h i i a a a k k k

i k

G
X Y X

n nβ β

β γ
φ β γ λ ω β

β =
= =

∂
′− = − − Ψ + =

∂ ∑ ∑ ,  

( )
( ) ( ) 2

ˆ ,0
1 1

, ˆ1 1 ˆ ˆ 0
ˆ

T
T T
a

l

n d
T T a

i h i i a a a l l
ai l H

G H
Y X

n nβ γ

β γ γφ β γ λ ω
γ γ=

= =

∂
′− = Ψ − − Ψ + =

∂ ∑ ∑ ,  



 International Journal of Statistical Distributions and Applications 2023; 9(2): 49-61 57 

 

By Theorem 1 and na , we have 

( ) ( )1 01

ˆ ˆsgn
p

k k k p a ak
oλ ω β β β

=
= −∑ , ( )( ) ( )2 1

0
ˆ 1

r r
pOp n oβ β − +− = = , ( )0

ˆ 1poγ γ− = ,  

Combining Theorem 1 and Theorem 2, we can get 

( ) ( ) ( ) ( ) ( ){ 0 0

1

1 ˆˆ1

n
T T T

i h i h i d i i a a i a a

i

X R Z X
n

φ ε φ ε γ γ β β
=

 ′ ′′+ − Ψ − − −  ∑  

( ) ( ) ( ) ( ) ( )2

0 0 0

1 ˆ ˆˆ1 0
2

T T T
h i d i i a a i a a p a aR Z X oφ ξ γ γ β β β β ′′′+ − Ψ − − − + − =   

,                              (15) 

( ) ( ) ( ) ( ) ( ){ 0 0

1

1 ˆˆ1

n
T T T

i h i h i d i i a a i a a

i

R Z X
n

φ ε φ ε γ γ β β
=

 ′ ′′Ψ + − Ψ − − −  ∑  

( ) ( ) ( ) ( ) ( )
2

0 0 0

1 ˆˆ ˆ1 0
2

T T T
h i d i i a a i a a p a aR Z X oφ ξ γ γ β β γ γ ′′′+ − Ψ − − − + − =   

,                                    (16) 

where iξ is between iε  and ˆ ˆT T
i i a a aY X β γ− − Ψ . Let ( ) ( ) ( )

1

1
1

n T
n i h i h i d ii

R Z
n

φ ε φ ε
=

 ′ ′′Λ = Ψ + ∑ , ( )
1

1 n T
n h i i iin

φ ε
=

′′Φ = Ψ Ψ∑ , 

( )
1

1 n T
n h i i ii

X
n

φ ε
=

′′Γ = Ψ∑ . By Theorem 2, (C-3) and na , equation (16) becomes 

( )( ) ( ){ }1

0 0
ˆˆ 1a a n p n a a noγ γ β β

−
− = Φ + −Γ − + Λ ,                                                  (17) 

Moreover, we have 

( ) ( )( ) ( ) ( )1
0 0

1

1 ˆ ˆ1

Tn
T

h i i n n p i a a p a a

i

X o o
n

φ ε β β β β−

=

 ′′ − Γ Φ + Ψ − + −
 ∑  

( ) ( ) ( ) ( ) ( )( )1

1

1
1 1

n
T T

i h i h i d i h i i p n

i

X R Z o
n

φ ε φ ε φ ε −

=

 ′ ′′ ′′= + − Ψ Φ + Λ
 ∑ ,                                       (18) 

On the other hand, 

( ) ( )1 1

1

1
0

n
T T T

h i n i i i n n

i

E X
n

φ ε − −

=

 
′′ Γ Φ Ψ − Ψ Φ Γ = 

  
∑ ,  

( ) ( ) ( )1 1

1

1
1

n
T T T

h i n i i i n n p

i

Var X o
n

φ ε − −

=

 
′′ Γ Φ Ψ − Ψ Φ Γ = 

  
∑ ,  

then 

( ) ( ) ( )0

1

1 ˆ1

n
T

h i i i p a a

i

X X o n
n

φ ε β β∗ ∗

=

  ′′ + − 
  
∑  

( ) ( ) ( ) ( ) ( )( )1

1 1 1

1 1 1
1 1

n n n
T

h i i h i i d i h i i n p n

i i i

X X R Z X o
n n n

φ ε φ ε φ ε∗ ∗ ∗ −

= = =

′ ′′ ′′= + − Φ + Λ∑ ∑ ∑ .                            (19) 

Let ( )1

1

1 n

h i i

i

J X
n

φ ε ∗

=

′= ∑ , ( ) ( )2

1

1
1

n
T

h i i d i

i

J X R Z
n

φ ε ∗

=

′′= ∑ , and ( ) ( )( )1

3

1

1
1

n

h i i n p n

i

J X o
n

φ ε ∗ −

=

′′= − Φ + Λ∑ , then equation (19) can be 
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expressed as 1 2 3J J J+ + , where 1T
i i n n iX X∗ −= − Γ Φ Ψ , 3 0J = . For 2J , we can get 

( ) ( ) ( ) ( )1

2

1

1
1

n
T T

h i i n n i d i

i

J X E E R Z
n

φ ε −

=

 ′′= − Γ Φ Ψ  ∑  

( ) ( ) ( )( ) ( )1 1

1

1
1

n
T T T

h i n n n n i d i

i

E E R Z
n

φ ε − −

=

′′+ Γ Φ − Γ Φ Ψ∑  

Let ( ) ( ) ( ) ( )1

21

1

1
1

n
T T

h i i n n i d i

i

J X E E R Z
n

φ ε −

=

 ′′= − Γ Φ Ψ
 ∑  and ( ) ( ) ( )( ) ( )1 1

22

1

1
1

n
T T T

h i n n n n i d i

i

J E E R Z
n

φ ε − −

=

′′= Γ Φ − Γ Φ Ψ∑ , 

then the above equation can be expressed as 21 22J J+ . 

when 

( ) ( ) ( ){ }1
0

T T
h i i n n i iE X E Eφ ε − ′′ − Γ Φ Ψ Ψ =  

,  

implies 

( ) ( ) ( )( ) ( )1

1

1
1

n T T
h i i n n i i pi

X E E O
n

φ ε −

=
′′ − Γ Φ Ψ Ψ =∑ . 

Combining ( ), ,T T
i il idψ ψΨ = L , ( )1il Oψ =  and ( ) ( )( )2 1r r

iR Z O n
− += , we have ( )21 1pJ o= . Apply the same technique 

and combine the results, we have ( )22 1pJ o= . Equation (19) can be expressed as 

( ) ( ) ( ) ( )1
0

1 1

1ˆ 1

n n
T

h i i i a a h i i p

i i

n X X n X o
n

φ ε β β φ ε− ∗ ∗ ∗

= =

′′ ′− = +∑ ∑ ,                      (20) 

Combining regular condition and Law of Large Number, 

we can get 

( )
1

1
n

pT
h i i i

i

X X
n

φ ε ∗ ∗

=

′′ →Σ∑ ,                    (21) 

On the other hand, by the Central Limit Theorem, we have 

( ) ( )
1

0,

n
d

h i i

i

n X Nφ ε ∗

=

′ → Ω∑ ,                 (22) 

Therefore, combining (20)-(22) and Slutsky Theorem, we 

can get 

( ) ( )1 1
0

ˆ 0,
d

a an Nβ β − −− → Σ ΩΣ .             (23) 

Now we work on (22). For any vector ς that is not all 0 , 

such that 

( )1

1 1

1
n n

T T
h i i i i

i i

G X a
n

ς ς φ ε ξ∗

= =

′=∑ ∑� ,  

where ( )2 1
, ,

T T
iai i i iaa G X Z h Z Z

n
ς ς

∨∨
= , Conditioned on iX  

and iZ , we have that iξ  is an independent random variables 

with zero mean. Now verify the condition of Lindeberg 

Central Limit Theorem, if 

2

2

1

max
0

pi i

n

ii

a

a
=

→
∑

,                        (24) 

then ( )2

1 1
0,1

n n d
i i ii i

a a Nξ
= =

→∑ ∑ . (22) is easily 

obtained. For (24), if ( )2 22T
i iX Xς ς∗ ∗≤ , then

( )
222 1 , ,i i i ia n G X Z h Xς− ∗≤  and 

1T
i i n n i iX X X∗ ∗ − ∗= − Γ Φ Ψ ≤ 1T

n n i
−+ Γ Φ Ψ . Combining 

(C-3), we have ( )max 1i i pX n o=  and 

( )1max 1T
i n n i pn o−Γ Φ Ψ = . By Slutsky Theorem, (24) is 

easily obtained. Hence, it is straightforward to get Theorem 

3. 

Proof of Theorem 4. The proof is similar to Theorem 1. 

Conditioned on (C-9), let 
0

Â
β  be the true value of 

Â
β , let 

2
0

Â
β o  be the true value of 2Â

β o , and let 0γ%  be the true value 

of γ% . If 
( )2 1r r

nn aδ − += + , then 
0

ˆ ˆ 1A A
β β δα ′= + , 

2 2
0

ˆ ˆ 2A A
β β δα ′= +o o  and 0 3γ γ δα ′= +% % . Let 
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( )1 2 3, ,T T Tα α α α′ ′ ′ ′= . Now we work on the first part of 

Theorem 4. For 2 0η > , there is a larger constant 2C  

satisfies 

( ) ( )2 2

0 0
ˆ ˆ ˆ ˆ2 2 0 2sup , , , , 1
A A A A

C

G G
α

β β γ β β γ η
′ ′=

  Ρ < ≤ − 
  

o o
% % .  (25) 

Combining the results of Theorem 1, we can get (25). So 

there is a local maximum point ( )2ˆ ˆ
ˆˆ ˆ, ,

A A
β β γΤ Τ Τ

o
%  that satisfies 

( )0
ˆ ˆ

ˆ
A A

Opβ β δ− = , ( )2 2
0

ˆ ˆ
ˆ

A A
Opβ β δ− =o o  and 

( )0
ˆ Opγ γ δ− =% % . Moreover, we have 

( ) ( ) ( )0
ˆ

l l l lg Z g Z Op δ− = . It is straightforward to get 

Theorem 4. 

Proof of Theorem 5. The proof is similar to Theorem 2. By 

Theorem 4, we just have to prove that for any
( )2 1r r

v Cn
− +′ =  

and ( )( )2 10
, ,

r r
k j k j p nO n aβ β − +− = + , when n → ∞ , with 

probability 1, we have 

( ) ( )
2ˆ ˆ ˆ2 2

,
,

, ,
ˆ0,0 , , ,

LA A
j k

j k

G
v j k A

β β γ
β

β
∂

′> < < ∈
∂

o
o

      (26) 

( ) ( )
2ˆ ˆ ˆ2 2

,
,

, ,
ˆ0, 0, , .

LA A
j k

j k

G
v j k A

β β γ
β

β
∂

′< − < < ∈
∂

o
o

  (27) 

(26) and (27) imply that ( )2ˆ ˆ ˆ2 , ,
LA A

G β β γo  is greatest at 

( ) 2
,

ˆ0, ,k j k j Aβ = ∈ o
. So we just have to prove that (26) and 

(27) are true. By equality 

( ) { } ( )2

2

ˆ ˆ ˆ2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

, 1

, ,
sgn

n
LA A

h i j kL LA A A A A
j k i

G
X Y X X n α

β β γ
φ β β γ λω β

β =

∂
= − − − − Ψ −

∂ ∑
o

o

o o  

( ) ( )( )2 11 1
,sgn

r r
j kn Op nα αλω β λ ω − +− − = − +

  
, 

we know that the sign of 
( )2ˆ ˆ ˆ2

,

, ,
LA A

j k

G β β γ
β

∂

∂
o

 is determined 

by ,j kβ . It is straightforward to get Theorem 5. 

Proof of Theorem 6. We will adopt the primal-dual witness 

(PDW) mothod and refer to the proof of Theorem 3 in 

Wainwright (2009) [13]. Meanwhile, using (W1), (W2), …, 

to denote the formula (1), (2), …, in Wainwright (2009). 

Therefore, the proof of this theorem only needs to verify the 

strict dual feasibility and sign consistency. 

(i) Verifying strict dual feasibility 

The proof of the strict dual feasibility only needs to prove 

that under condition (10), for any cj S∈ , the inequality 

1jZ < holds, where jZ  is defined in (W10). 

For each cj S∈ , conditioned on SX , then

( ) 1T T T
j jS SS S jX X E

−= Σ Σ + , where jX  is a normal 

distribution with mean zero. jE  is independent and has the 

same distribution, and 0, cij S S
jj

E N
  ∑    

� . In addition, 

under condition SX , (W37) gives a decomposition 

j j jZ A B= + , where 

( ) 1

S

T T
j j S S S S X

n

A E X X X z
n

ω
λ⊥

−   = + Π   
   

(
, 

( ) 1

j jS SS SB z
−= ∑ ∑
(

. 

Hence, according to condition (B1), then max 1
c j

j S
B γ

∈
≤ − . 

Conditioned on SX  and ω , for 

( ) ( )var c cij uS S S S
jj

E ρ = ∑ ≤ ∑
  

, then jA  is Gaussian with 

mean zero and variance ( ) ( )var cj u nS S
A Mρ≤ ∑ , where 

21

2

1

S

T
S S

n S S X
n

X X
M z z

n n n

ω
λ⊥

−
Τ    

= + Π    
  

( (
. 

From Lemma 1 in Hao and Zhang (2018) [6], 

max 1 max
c cj j

j S j S
Z A γ

∈ ∈

   Ρ ≥ ≤ Ρ ≥   
     

( ) { }( )2
1 2max exp min ,

c

c
j

j S
A C C n sγ ε ε

∈

 ≤ Ρ ≥ Τ + − 
 

. (28) 

Given ( ) ( ){ }n nM Mε εΤ = > , conditioned on ( )cT ε , 

( ) ( ) ( )var cj u nS S
A Mρ ε≤ ∑ , then 

( ) ( ) ( ) ( )

2

max 2 exp

2
c

c

c
j

j S
u nS S

A p s

M

γγ ε
ρ ε∈

 
  Ρ ≥ Τ ≤ − −  

  ∑ 
  , 

From ( )1
a

o
n

= , ( )
2

1
1

n

o
nλ

= , we have ( ) ( )1nM oε = . 
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Therefore, it is easy to check that (10) can guarantee that 

max 1
c j

j S
Z

∈
<  holds with probability at least 

( ){ }( )1 2
1 21 exp min , log ,c c s p s n− − − . 

(ii) Sign consistency 

To prove sign consistency, we just have to prove that 

(W13) holds, that is, 

( ) ( ) ,j j jsign sign j Sβ β+ ∆ = ∈                (29) 

where ( )
1

1
T

T TS S
j j S n S

X X
e X sign

n n
ω λ β

−
   ∆ = −       

. From 

the definition of j∆ , applying the triangle inequality, we 

have 

( )
1 1

1 1 1
max sgnT T T

j n S S S S S S
j S

X X X X X
n n n

λ β ω
− −

∈
∞ ∞

   ∆ ≤ +   
   

 

( )1 2 1 2,1 2,2F F F F F+ ≤ + +� , 

where 

1

2,1

1 1T T
S S SF X X X

n n
ε

−

∞

 =  
 

, 

1

2,2

1 1T T
S S S IF X X X

n n
γ

−

∞

 =  
 

. 

From (W41) and (W42), we have 

( ){ }( )2
1 2

1 3 24exp min , logn SSF c c s p sλ −
∞

 Ρ > ∑ ≤ − − 
 

,  (30) 

( )
2

2,1 1
min

20 4 exp
s

F c s
C n

σ 
 Ρ ≥ ≤ −
 
 

.       (31) 

Now we work on 2,2F , by (W60), 

( )
1

min
2

1 9
2exp 2T

S SX X n
n C

− 
  Ρ ≥ ≤ −   

 

, 

( )
( )

2 ; ,
2

1 1
max

T T
S S I j k l

j S k l T
X X X X X

n n
β

∈ ∈

 
≤ ∗ 

 
, 

where ( )1 T
j k lX X X

n
∗  is a sample third moment. By Lemma 

B.5 in Hao and Zhang [12], 

( ) ( )2 3 2
4 5

1
exp

T
j k lX X X c c n

n
ε ε 

Ρ ∗ > ≤ − 
 

. 

Therefore, we have 

2

3 23
4 52

2

1
exp

T
S I IX s c c n

n
γ β ε ε

  
 Ρ ≥ ≤ −       

, 

2

3 23
2,2 6 72

min

9
expIF s c c n

C
β ε ε

  
 Ρ ≥ ≤ − 
    

. 

Let 
1 2

1 3

s

n
ε = , 

( )2
2,2 8 91

3
min

9
exp

I s
F c c s

C n

β
 
 

Ρ ≥ ≤ − 
 
 

,      (32) 

Combining (30), (31) and (32), we have that with 

probability greater than ( ){ }( )1 21 exp min , logc c s p s′ ′− − − , 

( )
22

1 2 2
3 1 3

min min

9
max 20

I

j n nSS
j S

ss
c g

C n C n

βσλ λ−

∞∈
∆ ≤ Σ + + = . 

Therefore, (29) holds when ( )min ngβ λ> . 

7. Conclusions and Future Studies 

In this paper, we have used the two-stage regularization 

method for simultaneously fitting a regression model and 

identifying interaction terms. The proposed method 

automatically enforces the heredity constraint. In addition, it 

enjoys the “oracle” property under regularity conditions. Due 

to the property of the two-stage regularization method, the 

whole solution path is highly dependent on the result of 

variable selection in the first stage, so there will be some 

errors in the selected interaction terms. Based on this, future 

research should consider the regularization method under the 

marginal principle, so that main terms and interaction terms 

can be selected simultaneously. 
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