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Abstract: Factor analysis (FA) is similar to the principal component analysis (PCA), but not the same. PCA can be considered 

as a basic of FA. PCA and FA aim to reduce dimension of a data, but the techniques are different. FA is clearly designed to 

identify the latent factors from the observed variables, PCA does not directly apply this aim. Eigenvalues of PCA are dispersed 

component loadings, with variance errors. FA assumes that the covariation of observed variables is due to the presence of latent 

variables. In contrast, PCA not depends on such causal relationship. If the factor model is incorrectly, then FA will give error 

results. PCA employs a transformation of the original data with no assumptions about the covariance matrix. PCA is used to 

determine linear combinations of the original variables and summarize the data set without losing information. For these reasons, 

we compared practically between FA and PCA using three different types of data. One of them is simulated data, and others are 

real data. R program is used for analysis the data, using suitable different packages and functions. Results are presented 

graphically and tabulated for the purposes of comparison. An obtained results interested for each data with three criteria: FA 

criterion is used to specify whereas a two factors are sufficient or not; the SS loadings specified the factor is worth keeping; the 

observed correlations between all original variables high or low; the Cattell's scree test, says to drop all further components after 

starting at the elbow. The PCA criterion, is used to determine the variable's importance, which have high Eigenvalue. The VRPC 

criterion is used to determine the variables tend to suitable factor. 
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1. Introduction 

FA is similar to PCA, in that FA also involves linear 

combinations of variables. Different from PCA, FA is a focused 

on the off diagonal correlations, while PCA focuses on 

explaining the terms on the diagonal. However, PCA also tends 

to fit relatively well the off diagonal correlations.
  
 Results of 

PCA and FA are too similar, but this is not always. FA is 

generally used when the research purpose is detecting data 

structure. If the factor model is incorrectly formulated, then FA 

will give erroneous results. FA takes into account the random 

error, whereas PCA fails to do that. Brown [4] explains this 

point. There are many articles discussed FA and PCA from 

many sides. Abdi and Williams [1] presented the definition and 

rules of PCA. Bandalos and Boehm-Kaufman [2] presented 

four common misconceptions in exploratory factor analysis 

(EFA). Emmanuel et al. [8] presented the robust PCA. Whereas 

Bouwmans and Zahzah [3] presented the robust PCA via 

Principal Component Pursuit. Chachlakiset al. [6] explained the 

L1- norm tucker tensor decomposition. Courtney [7] 

determined the number of factors to retain in EFA. Forkman et 

al. [10] tested the PCA when variables are standardized. 

Garrido et al. [11] presented a new look at Horn's parallel 

analysis with ordinal variables. Psychological Methods. Giorgia 

[12] presented PCA for stock portfolio management. Guan and 

Dy [13] devoted the sparse probabilistic PCA. Journee et al. [14] 

generalized the power method for sparse PCA. Larsen and 

Warne [16] estimated confidence intervals for Eigenvalues in 

EFA. Ledesma and Valero-Mora [17] determined the number 

of factors to retain in EFA: an easy-to-use computer program 

for carrying out parallel analysis. Liao et al. [18] presented a 

discriminant analysis of principal components as a new method 

for the analysis of genetically structured populations. 

Markopoulos et al. [19] presented the efficient L1-norm PCA 

via Bit Flipping. Miranda et al. [20] presented a new routes 

from minimal approximation error to principal components. 
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Moghaddam et al. [21], presented exact and greedy algorithms 

for the spectral bounds for sparse PCA. Ren et al. [22] presented 

a non-negative matrix factorization for the robust extraction of 

extended structures. Ritter [23] presented a comparison of 

distribution free and non-distribution free methods in factor 

analysis. Ruscio and Roche [24] determined the number of 

factors to retain in an exploratory factor analysis using 

comparison data of known factorial structure. Tran and 

Formann [26] explained the performance of parallel analysis in 

retrieving unidimensionality in the presence of binary data. 

Warne and Larsen [27] evaluated a proposed modification of 

the Guttman rule for determining the number of factors in an 

exploratory factor analysis. Zou and Xue [28] presented a PCA. 

This paper compared practically between FA and PCA 

using three different types of data, simulated, Hunua and Iris 

data. Software R program is used for analysis, using suitable 

different packages and functions. 

This paper is ordered as: Section 2 present the definition 

and attributes of PCA. Section 3 presents the definition and 

attributes of FA. Section 4 presents the differences between 

PCA and FA. Section 5 presents the numerical examples. 

Section 6 presents the results and discussion. Finally, section 7 

presents the conclusion. 

2. PCA 

The PCA of a collection of points in a real coordinate space 

are a sequencors. PCA creates variables that are linear 

combinations of the original variables. The new variables have 

the property that the variables are all orthogonal. PCA 

transformation can be helpful as a pre-processing step before 

clustering. PCA is seeking to reproduce the total variable 

variance. PCA is generally preferred for purposes of data 

reduction, but not when the goal is to detect the latent construct 

or factors. A best fitting minimizes the average squared distance 

from the points to the line. These directions constitute an 

orthonormal basis. PCA is the process of computing the 

principal components and using them to perform a change of 

basis data, sometimes using only the first few principal 

components and ignoring the rest. PCA is used for making 

predictive models. First principal component can be defined as 

a direction that maximizes the variance of the projected data. 

The principal components are Eigenvectors of the data's 

covariance matrix. Principal components are often computed by 

Eigen decomposition of the data covariance matrix. PCA is also 

related to canonical correlation analysis (CCA). The CCA 

defines coordinate systems that optimally describe the 

cross-covariance between two datasets.
 

First principal 

component corresponds to a line that passes through the 

multidimensional mean and minimizes the sum of squares of 

the distances of the points from the line. Second principal 

component corresponds to the same concept after all correlation 

with the first principal component has been subtracted from the 

points. Singular values in Σ are the square roots of the 

Eigenvalues of the matrix X
T
X. Each Eigenvalue is 

proportional to the portion of the variance associated with each 

Eigenvector. Sum of all the Eigenvalues is equal to the sum of 

the squared distances of the points from their multidimensional 

mean. PCA rotates the set of points around their mean in order 

to align with the principal components. This moves as much of 

the variance as possible into the first few dimensions. Remain 

values tend to be small and may be dropped with minimal loss 

of information. PCA is sensitive to the scaling of the variables. 

If we have just two variables and they have the same sample 

variance and are positively correlated, then PCA will rotatE 45° 

and the weights for the two variables with respect to the 

principal component will be equal. If we multiply all values of 

the first variable by 100°, then the first principal component will 

be almost the same with a small contribution from the other 

variable, whereas the second component will be almost aligned 

with the second original variable. This means that whenever the 

different variables have different units, PCA is a somewhat 

arbitrary method of analysis. Mean subtraction is necessary for 

performing PCA to ensure that the first principal component 

describes the direction of maximum variance. If mean 

subtraction is not performed, the first principal component 

might instead correspond more or less to the mean of the data. 

Mean of zero is needed for finding a basis that minimizes the 

mean square error of the approximation data. Mean centering is 

unnecessary if performing PCA on a correlation matrix, as the 

data are already centered after calculating correlations. 

Correlations are derived from the cross-product of two standard 

scores or statistical moments. 

3. FA 

The FA is used to describe variability among observed, 

correlated variables in terms of a potentially lower number of 

latent variables called factors. FA searches for such joint 

variations in response to latent variables. The observed 

variables are modelled as linear combinations of the potential 

factors plus error terms. FA is used in marketing, finance, and 

machine learning, and … etc.. It deal with data sets where 

there are large numbers of observed variables to reflect a 
smaller number of latent variables. FA is used to identify 

factors that explain a variety of results on different tests. FA in 

psychology is most often associated with intelligence research. 

However, it also has been used to find factors in a broad range 

of domains such as personality, attitudes, beliefs, etc. It is 

linked to psychometrics, as it can assess the validity of an 

instrument by finding if the instrument indeed measures the 

postulated factors. FA is a frequently used technique in cross 

cultural research. There are different types of factor analysis: 

Exploratory factor analysis (EFA): is used to identify complex 

interrelationships among items. Researcher makes no a priori 

assumptions about relationships among factors. Confirmatory 

factor analysis (CFA): is a more complex approach that tests 

the hypothesis that the items are associated with specific 

factors. CFA uses SEM to test a measurement model whereby 

loading on the factors allows for evaluation of relationships 

between observed variables and latent variables. SEM 

approaches can accommodate measurement error and are less 

restrictive than LSE. There are types of factor extraction: PCA 

is a method for factor extraction. The weights are computed to 
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extract the maximum possible variance. The factor model 

must then be rotated for analysis. Canonical factor analysis 

(CAFA) is a different method of computing the same model as 

PCA, which uses the principal axis method. CAFA seeks 

factors have the highest canonical correlation with the 

observed variables. Common factor analysis (COFA) also 

principal axis factoring, it seeks the fewest factors which can 

account for the common variance (correlation) of a set of 

variables. Image factoring (IF) is based on the correlation 

matrix of predicted variables rather than actual variables, 

where each variable is predicted from the others using 

multiple regression. Alpha factoring (AF) is based on 

maximizing the reliability of factors assuming variables are 

randomly sampled from a universe of variables. Factor 

regression model (FRM) is a combinatorial model of factor 

model and regression model. It can be viewed as the hybrid 

factor model, whose factors are partially known. 

There are some of terminology: Communality is the square 

of the standardized outer loading of an item. The squared 

factor loading is the percent of variance. To get the percent of 

variance in all the variables accounted for by each factor, add 

the sum of the squared factor loadings for that factor and 

divide by the number of variables. This is the same as dividing 

the factor's Eigenvalue by the number of variables. Sum of the 

squared factor loadings for all factors for a given variable is 

the variance in that variable accounted for by all the factors. 

Communality measures the percent of variance in a given 

variable explained by all the factors jointly. If the 

communality exceeds 1, there is a spurious solution, which 

may reflect too small sample or the choice to extract too 

many/few factors. Eigenvalues measure the amount of 

variation in the total sample accounted for by each factor. 

Ratio of Eigenvalues is the ratio of explanatory importance of 

the factors with respect to the variables. If a factor has a low 

Eigenvalue, then it is contributing little to the explanation of 

variances and may be ignored as less important than the 

factors with higher Eigenvalues. Component is retained if the 

associated Eigenvalue is bigger than the 95th percentile of the 

distribution of Eigenvalues derived from the random data. 

Kaiser criterion: Kaiser rule [15] is used to drop all 

components with Eigenvalues under 1, this being the 

Eigenvalue equal to the information accounted for by an 

average single item. Variation of this method has been created 

where a researcher calculates confidence intervals for each 

Eigenvalue and retains only components which have the entire 

confidence interval greater than 1. Cattell scree (test) plots the 

components as the X-axis and the corresponding Eigenvalues 

as the Y-axis. As one moves to the right, toward later 

components, Eigenvalues drop. When the drop ceases and the 

curve makes an elbow toward less steep decline, Cattell's scree 

test says to drop all further components after the one starting at 

the elbow [5]. Variance explained criterion: Some researchers 

simply use the rule of keeping enough factors to account for 

90% of the variation. The purpose of a rotation is to produce 

factors with a mix of high, low and moderate loadings. From a 

mathematical viewpoint, there is no difference between a 

rotated and un-rotated matrix. Fitted model is the same, the 

uniquenesses are the same, and the proportion of variance 

explained is the same. Un-rotated output maximizes variance 

accounted for by the first and subsequent factors, and forces 

the factors to be orthogonal. Rotation serves to make the 

output more understandable: Pattern of loadings where each 

item loads strongly on only one of the factors, and much more 

weakly on the other factors. Rotations can be orthogonal or 

oblique. Varimax rotation is an orthogonal rotation of the 

factor axes to maximize the variance of the squared loadings 

of a factor. Each factor will tend to have either large or small 

loadings of any particular variable. Varimax solution yields 

results which make it as easy as possible to identify each 

variable with a single factor. Orthogonality (independence) of 

factors is often an unrealistic assumption. Oblique rotations 

are inclusive of orthogonal rotation. It is allowing for factors 

that are correlated with one another. One may examine both a 

pattern matrix and a structure matrix. Structure matrix is 

simply the factor loading matrix as in orthogonal rotation. 

Pattern matrix contains coefficients which just represent 

unique contributions. More factors, Lower pattern coefficients. 

For oblique rotation, the researcher looks at both the structure 

and pattern coefficients when attributing a label to a factor. 

Quartimax rotation is an orthogonal alternative that minimizes 

the number of factors. This often generates a general factor on 

which most variables are loaded to a high or medium degree. 

Equimax rotation is a compromise between Varimax and 

Quartimax criteria. Promax rotation is an alternative 

non-orthogonal (oblique) rotation method. Higher-order 

factor analysis is a consisting of repeating steps factor analysis 

Oblique rotation factor analysis of rotated factors. 

There are many advantages of FA: Reduction of number of 

variables, by combining two or more variables into a single 

factor. Identification of groups of inter related variables. Also, 

there are some disadvantages of FA: Each orientation is 

equally acceptable mathematically. Interpreting FA is based 

on using a heuristic, which is a solution that is convenient 

even if not true. More than one interpretation can be made of 

the same data factored the same way, and factor analysis 

cannot identify causality. 

4. Differences Between PCA and FA 

Fabrigar et al. [9] address a number of reasons used to suggest 

that PCA is not equivalent to FA: PCA is computationally 

quicker and requires fewer resources than FA. PCA and FA can 

produce similar results. Where data correspond to assumptions of 

the model, the results of PCA are inaccurate results. Researchers 

gain extra information from a PCA approach. Differences 

between PCA and FA are illustrated by Suhr [25]: PCA results in 

principal components that account for a maximal amount of 

variance for observed variables. FA accounts for common 

variance in the data. PCA inserts ones on the diagonals of the 

correlation matrix. FA adjusts the diagonals of the correlation 

matrix with the unique factors. PCA minimizes the sum of 

squared perpendicular distance to the component axis. FA 

estimates factors that influence responses on observed variables. 

The component scores in PCA represent a linear combination of 
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the observed variables weighted by Eigenvectors. Observed 

variables in FA are linear combinations of the underlying and 

unique factors. Explained from PCA perspective, but it is not 

from FA perspective. 

To compute the factor score for a given case for a given 

factor, one takes the case's standardized score on each variable, 

multiplies by the corresponding loadings of the variable for the 

given factor, and sums these products. Computing factor scores 

allows one to look for factor outliers. Also, factor scores may be 

used as variables in subsequent modeling. Researchers wish to 

avoid such subjective or arbitrary criteria for factor retention. A 

number of objective methods have been developed to solve this 

problem, allowing users to determine an appropriate range of 

solutions to investigate. The parallel analysis may suggest 5 

factors while Velicer's MAP suggests 6 factors, so the 

researcher may request both 5 and 6 factor solutions and discuss 

each in terms of their relation to external data and theory. 

5. Numerical Examples 

FA is introduced by the 'factana' function of 'stats' package. 

The function performs maximum-likelihood factor analysis on 

a covariance matrix. The number of factors to be fitted is 

specified by the argument factors. Moreover, by the additional 

argument rotation the transformation of the factors may be 

specified by either 'Varimax', 'Oblique' or 'None' rotation. In 

addition to the data set the 'factanal' function requires an 

estimate of the number of factors. If we have a hypothesis 

about the latent variables, we may start with an informed 

guess. If we do not have any clue about the latent variables, we 

may start with an informed guess. If we do not have any clue 

about the number of factors and the number of variables in the 

data set is not too large, one may simply try out several values 

for initializing the model. Another, more sophisticated 

approach is to use PCA to get a good initial estimate of the 

number of factors. In the numerical examples, we just make a 

guess and set the number of factor to be. Further, we keep the 

defaults for the scores "none" and the rotation "Varimax". FA 

creates linear combinations of factors to abstract the variable’s 

underlying communality. To the extent that the variables have 

underlying communality, fewer factors capture most of the 

variance in the data set. This allows us to aggregate a large 

number of observable variables in a model to represent an 

underlying concept, making it easier to understand the data. 

Variability in our data, Χ , is given by ∑ and its estimate ∑̂

is composed of the variability explained by the factors 

explained be a linear combination of the factors (communality) 

and of the variability, which can not be explained by a linear 

combination of the factors (uniqueness). 

ˆ ˆ ˆ ˆ
uniquenesscommunality

T∑ = +ΑΑ Ψ               (1) 

The model output starts with the function call to remind us on 

the specifications of our function call. First chunk provides the 

'uniquenesses', which range from 0 to 1. Uniqueness, sometimes 

referred to as 'noise' corresponds to the proportion of variability, 

which can not be explained by a linear combination of the factors. 

This is Ψ̂  the in Equation (1) above. High uniqueness for a 

variable indicates that the factors do not account well for its 

variance. The 'loadings', which range from -1 to 1, Α̂  in 

Equation (1) above. Loadings are the contribution of each 

original variable to the factor. Variables with a high loading are 

well explained by the factor. There is no entry for certain 

variables. That is because R does not print loadings less than 0.1. 

This is meant to help us spot groups of variables. By squaring the 

loading we compute the fraction of the variable’s total variance 

explained by the factor. This proportion of the variability is 

denoted as communality. Another way to calculate the 

communality is to subtract the 'uniquenesses' from the 'observed 

correlations'. An appropriate factor model results in low values 

for uniqueness and high values for communality. 

The loadings shows the proportion of variance explained by 

each factor. The row 'cumulative var' gives the cumulative 

proportion of variance explained. These numbers range from 0 

to 1. The row 'proportion var' gives the proportion of variance 

explained by each factor, and the row 'SS loadings' gives the 

sum of squared loadings. This is sometimes used to determine 

the value of a particular factor. A factor is worth keeping if the 

'SS loading' is greater than 1 (Kaiser’s rule). The last section of 

the function output shows the results of a hypothesis test. Null 

hypothesis, 
0

H , is that the number of factors in the model is 

sufficient to capture the full dimensionality of the data set. 

Conventionally, we reject 
0

H  if the p-value is less than 0.05. 

Such a result indicates that the number of factors is too small. In 

contrast, we do not reject 
0

H  if the p-value exceeds 0.05. Such 

a result indicates that there are likely enough (or more than 

enough) factors capture the full dimensionality of the data set. 

High p-value in our example above leads us to not reject the 
0

H , 

and indicates that we fitted an appropriate model. This 

hypothesis test is available thanks to our method of estimation, 

maximum likelihood. Note that if you provide a covariance 

matrix to the 'factanal' function and not a data frame, the 

hypothesis test is not provided if we do not explicitly provide 

the number of observations as an additional argument to the 

function call. Using our model (1), we may calculate ∑̂  and 

compare it to the observed correlation matrix (S) by simple 

matrix algebra. We now subtract the fitted correlation matrix 

( ∑̂ ) from (S). The resulting matrix is called the residual matrix. 

Numbers close to 0 indicate that our factor model is a good 

representation of the underlying concept. 

Let us apply a factor analysis on three types of different data. 

First one is generated or simulated data. Second is Hunua data. 

Last one is Iris data. We will discuss these data sets in details 

in the next subsections for two methods; present the FA and 

PCA for the types data as following: 

5.1. Simulated Data 

In this subsection, we generated a multivariate binary data for 

five independent variables using the marginals respectively (0.4, 

0.6, 0.5, 0.3, 0.8) with n = 500 observations. for each binary 

variables. Then we get the correlation matrix for the binary 

variables to generate a multivariate normal data for five 
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correlated variables, with n = 500 observations. The next results 

come from FA and PCA respectively as shown below: 

5.1.1. Factor Analysis for Simulated Data 

Using R program, the function 'factanal', and the packages 

'stats, nFactors', we have the next results: 

Table 1. Maximum likelihood FA for simulated data. 

Variables x1 x2 x3 x4 x5 

SS loadings 
Proportion 

var. 

Cumulative 

var. 
Uniqueness 0.982 0.956 0.957 0.980 0.005 

Communality 0.018 0.044 0.043 0.020 0.995 

Factor1 - - - - 0.997 1.004 0.201 0.201 

Factor2 0.112 0.200 0.204 0.140 - 0.115 0.023 0.024 

 

Chi square statistic is 0.75 on 1 degree of freedom. P-value is 

0.386. Two factors are sufficient for the simulated data. From 

Table 1 a high uniqueness for variables x1, x2, x3 and x4 

indicate that the factors do not account well for its variance. But 

a low uniqueness for the variable x5 indicates that the factors do 

account well for its variance. Also, the variables x1, x2, x3 and 

x4 with a high loading are well explained by factor2. But the 

variable x5 explained by factor1. An appropriate factor model 

results in low values for uniqueness and high values for 

communality, a factor2 is good for the simulated data. Factor1 

is worth keeping if the 'SS loading' is greater than 1. 

Table 2. Correlations (S) for simulated data. 

Variables x1 x2 x3 x4 x5 

x1 1.000000 0.016844 0.008003 0.044034 -0.069885 

x2 0.016844 1.000000 0.049388 0.013203 0.064135 

x3 0.008003 0.049388 1.000000 0.027447 -0.029514 

x4 0.044034 0.013203 0.027447 1.000000 0.004473 

x5 -0.069885 0.064135 -0.029514 0.004473 1.000000 

The observed correlations between all original variables are 

too low. 

Table 3. Residual matrix (S - ∑̂ ) for simulated data. 

Variables x1 x2 x3 x4 x5 

x1 0.000008 -0.001363 -0.017543 0.028352 -3.0e-06 

x2 -0.001363 -0.000002 0.010597 -0.014813 1.0e-06 

x3 -0.017543 0.010597 0.000003 -0.001081 -1.0e-05 

x4 0.028352 -0.014813 -0.001081 -0.000002 1.5e-05 

x5 -0.000003 0.000001 -0.000010 0.000015 0.0e+00 

We subtracted the fitted correlation matrix ∑̂  from our 

observed correlation matrix S. The resulting matrix is called 

the residual matrix. Numbers close to 0 indicate that our factor 

model is a good representation. Let us fit two factor models, 

one with 'no' rotation, one with 'Varimax' rotation, and one 

with 'Promax' rotation, and make a scatter plot of the first and 

second loadings. 

 

Figure 1. Rotation processes for simulated data. 
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It is clear that the variables x1, x2, x3, x4 tend to factor2, 

we can put them into factor2, whereas the variable x5 tend to 

factor1. This is too clear using 'Varimax' rotation. 

Table 4. Number of factors to extract for simulated data. 

Optimal 

coordinates 

Acceleration 

factor 
Parallel 

Kaiser 

(Eigenvalues) 

0 2 5 2 

Number of factors in Acceleration factor is 2 factors and it 

suitable for simulated data with 5 variables. 

 

Figure 2. Scree plot for simulated data. 

Cattell's scree test says to drop all further components 

(Fourth and Fifth) after (Third) starting at the elbow. 

5.1.2. PCA for Simulated Data 

Using R program, the function 'princomp', we have the next 

results: 

Table 5. Eigenvalues for simulated data. 

X1 X2 X3 X4 X5 

1.0934456 1.0746981 0.9915222 0.9646287 0.8757054 

The variables x1 and x2 are good and have high 

Eigenvalues. 

 

Figure 3. Variances of components for simulated data. 

Table 6. Importance of components for simulated data. 

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

Standard deviation 1.0456795 1.0366764 0.9957521 0.9821552 0.9357913 

Proportion of Variance 0.2186891 0.2149396 0.1983044 0.1929257 0.1751411 

Cumulative Proportion 0.2186891 0.4336287 0.6319332 0.8248589 1.0000000 

 

Table 7. Loadings for simulated data. 

Variables Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

x1 0.631 - 0.288 0.548 0.461 

x2 -0.116 0.709 - 0.482 -0.496 

x3 0.289 0.468 -0.665 -0.357 0.358 

x4 0.336 0.369 0.605 -0.583 -0.211 

x5 -0.627 0.367 0.322 - 0.607 

 

Components Comp.5 

Loadings 1.0 

Proportion var. 0.2 

Cumulative var. 1.0 

5.1.3. VRPC for Simulated Data 

Using R program, the function 'principal', and the package 

'psych', we have the next results: 

Table 8. Standardized loadings for simulated data: Pattern matrix based 

upon correlation matrix. 

Components RC1 RC2 

SS loadings 1.09 1.08 

Proportion var. 0.22 0.22 

Cumulative var. 0.22 0.43 

Proportion Explained 0.50 0.50 

Cumulative Proportion 0.50 1.00 

Mean item complexity = 1.4. Two components are not sufficient. The root 

mean square of the residuals (RMSR) is 0.22 with the empirical chi square 

501.9 with P. value < 3.7e-111. Fit based upon off diagonal values = -31.29. 

For factor analysis 'Varimax' rotation, the simulated data, 

the variables x1, x2, x3 and x4 have high loadings for the 

factor2, then they have something in common. Figure 4 

appears that factor1 accounts x5. Whereas factor1 accounts 

for x1, x2, x3 and x4. 
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Figure 4. Biplot of FA for simulated data. 

5.2. Hunua Data 

These were collected from the Hunua Ranges, a small 

forest in southern Auckland, New Zealand. At 392 sites in 

the forest, the presence/absence of 17 plant species was 

recorded, as well as the altitude. Each site was of area size 

200 m
2
. 

5.2.1. FA for Hunua Data 

Using R program, the function 'factanal', and the packages 

'stats, nFactors', we have the next results: 

From Table 9, a high uniqueness for all variables except 

"daccup" indicate that the factors do not account well for its 

variance. Also, a " daccup " with a high loading is well 

explained by the factor2. Since an appropriate factor model 

results in low values for uniqueness and high values for 

communality, the factor2 is good for the variable ' daccup'. 

From "SS loadings", factor1 is worth keeping. 

Table 9. Maximum likelihood FA for hunua data. 

Variables agaaus beitaw corlae cyadea cyamed daccup dacdac eladen hedarb 

Uniqueness 0.839 0.620 0.944 0.894 0.839 0.005 0.874 0.994 0.834 

Communality 1.608442e-01 3.802777e-01 5.649836e-02 1.058853e-01 1.605772e-01 9.950003e-01 1.257536e-01 6.114275e-03 1.662007e-01 

Factor1 -0.399 0.532 0.230 0.307 0.394 -0.509 -0.109 - 0.398 

Factor2 - 0.312 - 0.107 - 0.858 0.337 - - 

 

Variables hohpop kniexc kuneri lepsco metrob neslan rhosap vitluc 

Uniqueness 0.988 0.919 0.648 0.919 1.000 0.975 0.718 0.945 

Communality 1.224671e-02 8.129281e-02 3.515201e-01 8.087977e-02 1.190216e-06 2.489148e-02 2.824767e-01 5.504454e-02 

Factor1 - 0.140 -0.539 -0.118 - 0.117 0.513 0.222 

Factor2 - 0.248 -0.247 -0.259 - 0.106 0.140 - 

 

Variables SS loadings Proportion Var Cumulative Var 

Factor1 1.834 0.108 0.108 

Factor2 1.212 0.071 0.179 

Chi square statistic is 302.78 on 103 degrees of freedom. P-value is 1.53e-21. Two factors are not sufficient for Hunua data. 

Table 10. S for hunua data. 

Variables hohpop kniexc kuneri lepsco metrob neslan rhosap vitluc 

agaaus -0.037114 0.143306 0.186334 -0.017856 0.008629 0.019321 -0.198111 -0.151687 

beitaw -0.059785 0.279432 -0.423300 -0.203572 0.077050 0.168472 0.201053 0.120120 

corlae -0.018288 -0.066591 -0.074363 -0.062272 0.012127 -0.052680 0.163486 0.369843 

cyadea -0.050153 0.069583 -0.077047 -0.076422 -0.008431 0.020159 0.284249 -0.028213 

cyamed -0.043033 0.058431 -0.231632 -0.071216 -0.014488 0.022051 0.303075 0.053919 

daccup -0.047565 0.141540 0.062414 -0.161963 0.000631 0.030829 -0.140517 -0.047588 

dacdac 0.062603 -0.031807 -0.046198 -0.110715 -0.008399 0.009087 0.025297 0.113552 

eladen -0.014284 0.086389 -0.061576 -0.048639 0.111585 -0.041147 -0.100211 0.007058 

hedarb -0.029235 0.090943 -0.251613 -0.099549 0.046529 0.100006 0.158368 -0.082933 

hohpop 1.000000 -0.012614 0.098250 -0.017462 -0.013263 -0.014772 -0.035977 -0.034257 

kniexc -0.012614 1.000000 -0.106616 -0.110477 0.068639 -0.010152 0.111684 0.015548 

kuneri 0.098250 -0.106616 1.000000 0.008554 0.074519 -0.069097 -0.339457 -0.142166 

lepsco -0.017462 -0.110477 0.008554 1.000000 -0.045161 -0.050301 -0.122504 -0.088176 

metrob -0.013263 0.068639 0.074519 -0.045161 1.000000 0.033797 -0.093045 0.021192 

neslan -0.014772 -0.010152 -0.069097 -0.050301 0.033797 1.000000 0.089205 0.000676 

rhosap -0.035977 0.111684 -0.339457 -0.122504 -0.093045 0.089205 1.000000 0.217076 

vitluc -0.034257 0.015548 -0.142166 -0.088176 0.021192 0.000676 0.217076 1.000000 

The observed correlations between all species of hunua data is low. 
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Table 10. Continued. 

Variables agaaus beitaw corlae cyadea cyamed daccup dacdac eladen hedarb 

agaaus 1.000000 -0.191522 -0.106310 -0.203506 -0.198297 0.238344 -0.152379 -0.038280 -0.193740 

beitaw -0.191522 1.000000 0.132864 0.143659 0.144296 -0.003215 0.006641 0.130807 0.296369 

corlae -0.106310 0.132864 1.000000 0.047602 0.015248 -0.169624 -0.031151 -0.050940 -0.043441 

cyadea -0.203506 0.143659 0.047602 1.000000 0.255477 -0.064669 -0.058388 0.001805 0.179530 

cyamed -0.198297 0.144296 0.015248 0.25547 1.000000 -0.135862 -0.057952 0.000615 0.150970 

daccup 0.238344 -0.003215 -0.169624 -0.064669 -0.135862 1.000000 0.345391 -0.045930 -0.128802 

dacdac -0.152379 0.006641 -0.031151 -0.058388 -0.057952 0.345391 1.000000 -0.055241 -0.107897 

eladen -0.038280 0.130807 -0.050940 0.001805 0.000615 -0.045930 -0.055241 1.000000 0.032573 

hedarb -0.193740 0.296369 -0.043441 0.179530 0.150970 -0.128802 -0.107897 0.032573 1.000000 

hohpop -0.037114 -0.059785 -0.018288 -0.050153 -0.043033 -0.047565 0.062603 -0.014284 -0.029235 

kniexc 0.143306 0.279432 -0.066591 0.069583 0.058431 0.141540 -0.031807 0.086389 0.090943 

kuneri 0.186334 -0.423300 -0.074363 -0.077047 -0.231632 0.062414 -0.046198 -0.061576 -0.251613 

lepsco -0.017856 -0.203572 -0.062272 -0.076422 -0.071216 -0.161963 -0.110715 -0.048639 -0.099549 

metrob 0.008629 0.077050 0.012127 -0.008431 -0.014488 0.000631 -0.008399 0.111585 0.046529 

neslan 0.019321 0.168472 -0.052680 0.020159 0.022051 0.030829 0.009087 -0.041147 0.100006 

rhosap -0.198111 0.201053 0.163486 0.284249 0.303075 -0.140517 0.025297 -0.100211 0.158368 

vitluc -0.151687 0.120120 0.369843 -0.028213 0.053919 -0.047588 0.113552 0.007058 -0.082933 

The observed correlations between all species of hunua data is low. 

Table 11. Residual matrix (S – ∑̂ ) for hunua data. 

Variables hohpop kniexc kuneri lepsco metrob neslan rhosap vitluc 

agaaus -0.057972 0.189017 -0.018559 -0.054250 0.008681 0.061749 0.000643 -0.066279 

beitaw 0.001709 0.127419 -0.059542 -0.060124 0.076590 0.073174 -0.115394 -0.021676 

corlae -0.009758 -0.083508 0.034220 -0.051116 0.012138 -0.073105 0.054401 0.323567 

cyadea -0.021385 0.000036 0.114992 -0.012602 -0.008618 -0.027134 0.111687 -0.104556 

cyamed -0.011849 -0.015340 -0.000946 -0.005425 -0.014662 -0.032005 0.090762 -0.039145 

daccup -0.000189 -0.000159 -0.000027 0.000094 -0.000160 -0.000109 0.000026 0.000038 

dacdac 0.086826 -0.100223 -0.021889 -0.036314 -0.008732 -0.013703 0.034086 0.112161 

eladen -0.010128 0.077238 -0.021354 -0.041297 0.111574 -0.049526 -0.139136 -0.009683 

hedarb 0.003284 0.013691 -0.015547 -0.030264 0.046341 0.044193 -0.057991 -0.177923 

hohpop 0.000000 0.018843 0.042292 -0.048510 -0.013150 0.002163 0.008555 -0.013564 

kniexc 0.018843 0.000000 0.030242 -0.029694 0.068341 -0.052800 0.005011 -0.034455 

kuneri 0.042292 0.030242 0.000000 -0.118896 0.074912 0.020165 -0.028496 -0.003747 

lepsco -0.048510 -0.029694 -0.118896 0.000001 -0.044857 -0.009154 -0.025774 -0.042315 

metrob -0.013150 0.068341 0.074912 -0.044857 0.000000 0.033656 -0.093318 0.021058 

neslan 0.002163 -0.052800 0.020165 -0.009154 0.033656 0.000000 0.014300 -0.033377 

rhosap 0.008555 0.005011 -0.028496 -0.025774 -0.093318 0.014300 0.000000 0.092631 

vitluc -0.013564 -0.034455 -0.003747 -0.042315 0.021058 -0.033377 0.092631 0.000000 

Table 11. Continued. 

Variables agaaus beitaw corlae cyadea cyamed dacdac dacdac eladen hedarb 

agaaus 0.000000 0.007870 -0.012183 -0.085224 -0.044327 0.000081 -0.209895 -0.006922 -0.038321 

beitaw 0.007870 0.000000 0.029907 -0.053129 -0.088471 -0.000184 -0.040383 0.091600 0.057521 

corlae -0.012183 0.029907 0.000000 -0.016443 -0.070534 -0.000044 0.014710 -0.069256 -0.129629 

cyadea -0.085224 -0.053129 -0.016443 0.000000 0.126462 0.000377 -0.060684 -0.021381 0.047834 

cyamed -0.044327 -0.088471 -0.070534 0.126462 0.000000 0.000196 -0.040141 -0.029508 -0.012343 

daccup 0.000081 -0.000184 -0.000044 0.000377 0.000196 0.000000 0.000315 -0.000213 -0.000006 

dacdac -0.209895 -0.040383 0.014710 -0.060684 -0.040141 0.000315 -0.000001 -0.044326 -0.093376 

eladen -0.006922 0.091600 -0.069256 -0.021381 -0.029508 -0.000213 -0.044326 0.000000 0.002157 

hedarb -0.038321 0.057521 -0.129629 0.047834 -0.012343 -0.000006 -0.093376 0.002157 0.000000 

hohpop -0.057972 0.001709 -0.009758 -0.021385 -0.011849 -0.000189 0.086826 -0.010128 0.003284 

kniexc 0.189017 0.127419 -0.083508 0.000036 -0.015340 -0.000159 -0.100223 0.077238 0.013691 

kuneri -0.018559 -0.059542 0.034220 0.114992 -0.000946 -0.000027 -0.021889 -0.021354 -0.015547 

lepsco -0.054250 -0.060124 -0.051116 -0.012602 -0.005425 0.000094 -0.036314 -0.041297 -0.030264 

metrob 0.008681 0.076590 0.012138 -0.008618 -0.014662 -0.000160 -0.008732 0.111574 0.046341 

neslan 0.061749 0.073174 -0.073105 -0.027134 -0.032005 -0.000109 -0.013703 -0.049526 0.044193 

rhosap 0.000643 -0.115394 0.054401 0.111687 0.090762 0.000026 0.034086 -0.139136 -0.057991 

vitluc -0.066279 -0.021676 0.323567 -0.104556 -0.039145 0.000038 0.112161 -0.009683 -0.177923 
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Figure 5. Rotation processes for hunua data. 

The variable 'daccup' tend to factor2. The rest variables tend 

to factor1. 

Table 12. Number of factors for to extract hunua data. 

Optimal 

coordinates 

Acceleration 

factor 
Parallel 

Kaiser 

(Eigenvalues) 

5 1 7 7 

 

Figure 6. Scree plot for hunua data. 

Cattell's scree test says to drop all further components 

(Third to Seventeenth) after (Second) starting at the elbow. 

5.2.2. PCA for Hunua Data 

Using R program, the function 'princomp', we have the next 

results: 

 

Figure 7. Variances of components for hunua data. 
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Table 13. Eigenvalues for hunua data. 

agaaus beitaw corlae cyadea cyamed daccup' dacdac eladen hedarb 

2.5683761 1.6116994 1.4990880 1.2728054 1.1421284 1.0750427 1.0377820 0.9895705 0.8744913 

Species 'agaaus, beitaw, corlae, cyadea, cyamed, daccup and dacdac' have high Eigenvalues. 

Table 13. Continued. 

agaaus hohpop kniexc kuneri lepsco metrob neslan rhosap vitluc 

2.5683761 0.8529391 0.7791596 0.6546264 0.6399470 0.6012691 0.5394572 0.4520016 0.4096160 

Species 'agaaus, beitaw, corlae, cyadea, cyamed, daccup and dacdac' have high Eigenvalues. 

Table 14. Importance of components for hunua data. 

Variables Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16 Comp.17 

Standard deviation 0.92354700 0.88270019 0.80908988 0.79996687 0.77541545 0.73447752 0.67231066 0.64001253 

Proportion of Variance 0.05017289 0.04583292 0.03850744 0.03764394 0.03536877 0.03173278 0.02658833 0.02409506 

Cumulative Proportion 0.76023076 0.80606368 0.84457112 0.88221506 0.91758383 0.94931661 0.97590494 1.00000000 

Table 14. Continued. 

Variables Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 

Standard deviation 1.6026154 1.26952725 1.22437251 1.12818678 1.06870408 1.03684266 1.0187158 0.99477157 0.93514241 

Proportion variance 0.1510809 0.09480585 0.08818165 0.07487091 0.06718402 0.06323781 0.0610460 0.05821003 0.05144067 

Cumulative proportion 0.1510809 0.24588680 0.33406845 0.40893935 0.47612338 0.53936118 0.6004072 0.65861721 0.71005787 

Table 15. Loadings for hunua data. 

Variables Comp.10 Comp.11 Comp.12 Comp.13 Comp.14 Comp.15 Comp.16 Comp.17 

agaaus 0.105 0.137 0.241 0.357 0.210 - 0.393 0.303 

beitaw -0.126 -0.137 0.284 -0.268 -0.256 -0.187 - 0.602 

corlae -0.170 -0.177 0.416 - - 0.489 -0.111 -0.180 

cyadea - -0.585 0.191 0.139 - -0.235 0.287 - 

cyamed 0.334 0.510 0.263 -0.389 0.248 0.145 - - 

daccup - - 0.260 - 0.338 -0.155 -0.562 - 

dacdac - - - - - 0.408 0.441 0.169 

eladen 0.567 -0.154 - 0.210 0.143 0.198 - - 

hedarb -0.450 - -0.212 0.123 0.586 0.193 - - 

hohpop - - 0.198 0.107 0.116 -0.114 - - 

kniexc -0.102 -0.208 -0.338 -0.302 - 0.222 - -0.280 

kuneri - -0.180 -0.301 -0.326 0.102 0.203 -0.205 0.487 

lepsco - -0.353 0.113 - 0.261 - -0.101 0.202 

metrob -0.202 0.214 - 0.239 -0.107 - - - 

neslan 0.459 -0.199 - -0.120 - 0.111 - -0.170 

rhosap 0.123 - -0.288 0.528 -0.203 0.195 -0.385 0.259 

vitluc 0.127 - -0.346 - 0.420 -0.460 0.151 - 

Table 15. Continued. 

Variables Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 

agaaus 0.301 0.257 - 0.132 0.529 - 0.113 0.114 - 

beitaw -0.399 0.295 - 0.205 - -0.196 - 0.117 - 

corlae -0.179 -0.266 -0.403 0.352 0.175 - 0.166 - -0.139 

cyadea -0.282 - 0.163 -0.242 - 0.461 - -0.261 - 

cyamed -0.324 - 0.126 -0.213 - 0.262 - -0.114 0.228 

daccup 0.162 0.538 -0.240 -0.226 - - -0.108 -0.135 - 

dacdac - 0.260 -0.476 -0.322 -0.384 - -0.157 -0.103 0.130 

eladen - 0.134 0.172 0.446 -0.339 - -0.357 - -0.215 

hedarb -0.305 - 0.344 - -0.175 -0.131 0.138 - -0.237 

hohpop - - - - -0.393 0.225 0.300 0.751 0.194 

kniexc -0.134 0.428 0.114 0.178 0.286 0.221 -0.147 0.306 0.339 

kuneri 0.395 - - - - 0.391 0.304 -0.147 - 

lepsco 0.144 -0.346 0.177 - - -0.366 -0.300 - 0.578 

metrob - 0.147 - 0.424 -0.287 0.166 0.284 -0.404 0.522 

neslan -0.101 0.173 - -0.106 -0.238 -0.474 0.622 -0.119 - 

rhosap -0.405 - -0.123 -0.214 0.238 0.103 - - 0.149 

vitluc -0.198 -0.113 -0.532 0.284 - - - - 0.104 
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Variables Comp.17 

SS loadings 1.00 

Proportion var. 0.059 

Cumulative var. 1.00 

 

5.2.3. VRPC for Hunua Data 

Using R program, the function 'principal', and the package 

'psych', we have the next results: 

Table 16. Standardized loadings for hunua data. 

Components RC1 RC2 

SS loadings 2.5 1.68 

Proportion var. 0.15 0.10 

Cumulative var. 0.15 0.25 

Proportion Explained 0.6 0.40 

Cumulative Proportion 0.6 1.00 

Mean item complexity = 1.3. Tow components are not sufficient. The root 

mean square of the residuals (RMSR) is 0.09. with the empirical chi square 

868.16 with prob < 2.5e-121. Fit based upon off diagonal values = 0.51. 

For factor analysis 'Varimax' rotation for hunua data, the 

variable 'daccup'' has a high loadings for the factor2. Figure 8 

appears that factor1 and factor2 account almost all variables. 

5.3. Iris Data 

The obtained results are: 

5.3.1. FA for Iris Data 

Using R program, the function 'factanal', and the packages 

'stats, nFactors', we have the next results: 

 

Figure 8. Biplot of FA for hunua data. 

Table 17. Maximum likelihood FA for iris data. 

Variables Sepal. Length Sepal. Width Petal. Length Petal. Width Species SS loadings Proportion Cumulative 

Uniqueness 0.005 0.614 0.022 0.043 0.054 
   

Communality 0.995 0.386 0.978 0.957 0.946 

Factor1 0.997 -0.108 0.865 0.810 0.774 3.010 0.602 0.602 

Factor2 - -0.612 0.480 0.548 0.590 1.252 0.250 0.852 

Chi square statistic is 44.93 on 1 degree of freedom. P-value is 2.05e-11. Two factors are not sufficient for Iris data. 

From Table 17 a high uniqueness for "Sepal. Width" indicate 

that the factors do not account well for its variance. The remain 

variables have low uniquenesses, this indicate that the factors 

do account well for its variance. Also, a "Sepal. Width" with a 

high loading is well explained by the factor2. An appropriate 

factor model results in low values for uniqueness and high 

values for communality, the factor2 is good for "Sepal. Width". 

From "SS loadings", a factor1 is worth keeping. 

Table 18. S for iris data. 

Variables Sepal. Length Sepal. Width Petal. Length Petal. Width Species 

Sepal. Length 1.000000 -0.117570 0.871754 0.817941 0.782561 

Sepal. Width -0.117570 1.000000 -0.428440 -0.366126 -0.426658 

Petal. Length 0.871754 -0.428440 1.000000 0.962865 0.949035 

Petal. Width 0.817941 -0.366126 0.962865 1.000000 0.956547 

Species 0.782561 -0.426658 0.949035 0.956547 1.000000 

The observed correlations between original variables are good. 

Table 19. Residual matrix (S - ∑̂ ) for iris data. 

Variables Sepal. Length Sepal. Width Petal. Length Petal. Width Species 

Sepal. Length -0.000021 0.001692 0.000249 -0.000289 -0.000007 

Sepal. Width 0.001692 0.000022 -0.041454 0.056566 0.017665 

Petal. Length 0.000249 -0.041454 0.000000 -0.000719 -0.003019 
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Variables Sepal. Length Sepal. Width Petal. Length Petal. Width Species 

Petal. Width -0.000289 0.056566 -0.000719 0.000000 0.006672 

Species -0.000007 0.017665 -0.003019 0.006672 0.000000 

 

Figure 9. Rotation processes for iris data. 

 

Figure 10. Scree plot for iris data. 
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Cattell's scree test says to drop all further components (Third to Fifth) after (Second) starting at the elbow. 

Table 20. Number of factors to extract for iris Data. 

Optimal coordinates Acceleration f. Parallel Kaiser (Eigenvalues) 

1 1 1 1 

5.3.2. PCA for Iris Data 

Using R program, the function 'princomp', we have the next results: 

Table 21. Eigenvalues for iris data. 

Sepal. Length Sepal. Width Petal. Length Petal. Width Species 

3.83701790 0.91413636 0.18622615 0.04208608 0.02053351 

Variable 'Sepal. Length' has high Eigenvalue. 

 

Figure 11. Variances of components for iris data. 

Table 22. Importance of components for iris data. 

Components Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

Standard deviation 1.9588307 0.9561048 0.43153927 0.205148913 0.143295198 

Proportion of Variance 0.7674036 0.1828273 0.03724523 0.008417215 0.004106703 

Cumulative Proportion 0.7674036 0.9502309 0.98747608 0.995893297 1.000000000 

 

Table 23. Loadings for iris data. 

Variables Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 

Sepal. Length 0.445 0.382 0.751 0.141 0.270 

Sepal. Width -0.233 0.921 -0.287 - -0.122 

Petal. Length 0.506 - - -0.243 -0.827 

Petal. Width 0.497 - -0.385 -0.613 0.474 

Species 0.495 - -0.452 0.739 - 

 

Components Comp.5 

Loadings 1.0 

Proportion var. 0.2 

Cumulative var. 1.0 

5.3.3. VRPC for Iris Data 

Using R program, the function 'principal', and the package 

'psych', we have the next results: 

Table 24. Standardized loadings for iris data. 

Components RC1 RC2 

SS loadings 3.55 1.20 

Proportion var. 0.71 0.24 

Cumulative var. 0.71 0.95 

Proportion Explained 0.75 0.25 

Cumulative Proportion 0.75 1.00 

Mean item complexity = 1.1. Two components are sufficient. The root mean 

square of the residuals (RMSR) is 0.03 with the empirical chi square 2.82 with 

prob < 0.093. Fit based upon off diagonal values = 1. 
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Figure 12. Biplot of FA for iris data. 

For factor analysis 'Varimax' rotation for iris data, the 

variable 'Sepal. Width' has a high loadings for the factor2. 

Figure 12 appears that factor1 accounts all variables except 

the variable 'Sepal. Width'. 

6. Results and Discussion 

From the obtained results from tables 1 to 24, we have: 

For simulated data: FA: Two factors are sufficient for the 

simulated data. From 'SS loading', Factor1 is worth keeping. 

The observed correlations between the original variables are 

too low. Number of factors in Acceleration factor is 2 factors 

of 5 variables. Cattell's scree test says to drop all further 

components (Fourth and Fifth) after (Third) starting at the 

elbow. PCA: The variables x1 and x2 are good and have high 

Eigenvalues. VRPC: Mean item complexity = 1.4. Two 

components are not sufficient. The root mean square of the 

residuals (RMSR) is 0.22 with the empirical Chi square 501.9 

with P. value < 3.7e-111. Fit based upon off diagonal values = 

-31.29. For factor analysis 'Varimax' rotation, the variables x1, 

x2, x3, x4 tend to factor2, whereas the variable x5 tend to 

factor1. 

For hunua data: FA: Two factors are not sufficient for 

Hunua data. From "SS loadings", factor1 is worth keeping. 

The observed correlations between all species of hunua data is 

low. Number of factors in Acceleration factor is 1 factor of 17 

variables. Cattell's scree test says to drop all further 

components (Third to Seventeenth) after (Second) starting at 

the elbow. PCA: Species 'agaaus, beitaw, corlae, cyadea, 

cyamed, daccup and dacdac' have high Eigenvalues. 

VRPC: Mean item complexity = 1.3. Tow components are 

not sufficient. The root mean square of the residuals (RMSR) 

is 0.09. with the empirical chi square 868.16 with P. value < 

2.5e-121. Fit based upon off diagonal values = 0.51. For factor 

analysis 'Varimax' rotation, the variable 'daccup' tend to 

factor2. The rest 16 variables tend to factor1. 

For iris data: FA: Two factors are not sufficient for iris data. 

From "SS loadings", a factor1 is worth keeping. The observed 

correlations between all original variables are good. Number 

of factors in Acceleration factor is 2 factors with 5 variables. 

Cattell's scree test says to drop all further components (Third 

to Fifth) after (Second) starting at the elbow. PCA: Variable 

'Sepal. Length' has high Eigenvalue. VRPC: Mean item 

complexity = 1.1. Two components are sufficient. The root 

mean square of the residuals (RMSR) is 0.03 with the 

empirical chi square 2.82 with P. value < 0.093. Fit based 

upon off diagonal values = 1. It is clear that the variables 

'Sepal. Length, Petal. length, Petal. Width and Species' tend to 

factor1, whereas the variable 'Sepal. Width' tend to factor2. 

This is too clear using 'Varimax' rotation. 

7. Conclusion 

In this paper, the characteristics of principal component 

analysis and the factor analysis techniques and their attributes 

are presented. Also, the similarity and difference between the 

two techniques are explained. The practical comparison 

between the two techniques are presented using three types of 

data. R program is used for analysis, using suitable different 

packages and functions. The results are presented graphically 

and tabulated form, for the process of comparison. The 

obtained results interested for each data with three criteria. FA 

criterion is used to specify whereas two factors are sufficient 

or not; from SS loadings, we specified the factor is worth 

keeping; The observed correlations between all original 

variables high or low; Cattell's scree test says to drop all 

further components, after starting at the elbow. PCA criterion 

is used to determine the variable's importance, which have 

high Eigenvalue. VRPC criterion is used to determine the 

variables tend to suitable factor. 
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