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Abstract: We develop a model to determine an optimal investment strategy to improve the performance of undergraduate 

students in the US. Our model has three parts: In the first part, we collect data about the focus of other foundations’ investment by 

subjects and locations. We consider the charitable identity of the Goodgrant as well. Then we set out to decide our focus, which is 

to invest more on those schools with more minority races, lower educational performance, higher debt ratio and so on. In this part, 

we also classify the data into two groups, one for school selecting, and another for ROI determining. In the second part, as a data 

extraction, we build an efficient and intuitive model to rank the candidate schools in accordance with the correlation of our focus, 

using the PCA method. After that, the top 50 schools are selected as our target schools. In the third part, we make a key 

assumption that the social utility of a school has logarithmic relationship with the earnings of graduated students and the 

graduation rate. More over, we create a parameter k to denote the marginal rate of substitution (MRS) between the two factors 

above. After that, we come to define the ROI function of each target school as the incremental utility. We further discuss how to 

devise the best strategy with several methods. At last, we choose the improved PSO algorithm based on augmented Lagrange 

function. This algorithm is a typical method to solve the multivariable optimization problem with constraint conditions. Then we 

offer a recommending list by the cumulative ROI in five years. What’s more, our model is broad enough to accommodate any 

non-linear constraint optimization problem. Finally, we change the numerical value of parameter k to examine the sensitivity of 

our investment strategy. The result shows that our model is robust. 

Keywords: Principal Component Analysis, Big Data, Utility Function, Lagrange Multiplier,  

Karush–Kuhn–Tucker Conditions, Particle Swarm Optimization 

 

1. Problem Statement 

Private foundations are created by an individual, family, or 

business to fulfill specific charitable missions. Those like 

Gates foundation and Lumina foundation make great efforts 

to improve the quality of health and education in relatively 

poor areas. We must set big goals and spare no effort on the 

way because the world won’t get better by itself. The 

Goodgrant, one of the foundations, intends to help improving 

educational performance of undergraduates attending 

colleges and universities in the United States. Given its 

potential donation of 100 million dollars per year in five 

years, what is the best investment strategy? We are tasked 

with creating models that can be applied in the universities 

across the nation. The solution proposed within this paper 

will offer an insight to use the big data and will objectively 

devise the investment strategy including the target schools, 

investment amount and duration. 

2. Planned Approach 

Our objective is to set out the best strategy including three 

components: (1) target schools; (2) the investment amount 

per school; (3) the investment duration. And also we will 

offer an optimized and prioritized recommendation list of 

candidate schools based on each school’s return on 

investment (ROI). 

Faced with the big data problem, we can’t use the data 

directly because of the limitation of our personal computers 

and the length of the contest. If the data are directly applied, 
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the computing system will run several days or weeks. As a 

result, the data selection is extremely important, which will 

also reflect the focus of the foundation. To determine the 

most effective computing system, we divide the problem into 

three parts together with the procedures as follows: 

Part one: Data Analysis and Focus Decision 

1. We will give an analysis of the big data of the problem, 

which includes information of near 3000 schools. 

2. Based on the data given and the statistics of the focus of 

foundations collected from the Internet, we will decide the 

focus of the Goodgrant, avoiding duplicating the investment 

and focus of other large grant organizations. 

Part two: School Selecting 

1. Manual selection. We have taken some schools out of 

consideration for certain reasons (the reason will be 

explained below). For example, we exclude the schools 

located at NY, CA, WA and MA due to the large amount of 

existing grant foundations. 

2. PCA (principle component analysis) selection [1]. 

According to part of the data, the PCA method can rank the 

candidate schools by the degree of correlation of our focus. 

The top 50 schools will be selected out. 

Part three: Strategy Making 

1. Derive a ROI function that, given the year and a specific 

investment amount of a candidate school, can output the 

utility in an appropriate manner. The function is based on the 

graduation rate, earnings of graduated students and so on. 

2. Utilize an optimization algorithm to maximize the total 

utility of the target 50 schools (in part two (2)), return the 

amount of investment and the time duration per school. 

3. Assumptions 

Due to limited data about the educational performance of 

the candidate schools, the performance of the undergraduate 

students and the specific distribution of other grants by 

subjects, races and locations, we use the following 

assumptions to complete our model. These simplified 

assumptions will be used through our paper and can be 

improved with more reliable data. 

� The statistics of the candidate schools can be regarded 

as constant within five years. This assumption is 

reasonable to a large extent because the identities of a 

specific college won’t change a lot in five years. 

� The school will devote all the funding received this year 

to improving the students’ performance. 

� The appropriate manner to measure the return on the 

investment is the school’s incremental utility. The utility 

function must be concave (���/���<0). If not, we 

should give the whole 100 million to one college to 

maximize the total incremental utility, which is oppos. 

� ite against the common sense. And it’s reasonable in 

economic consideration, as with the capital growth, the 

marginal production will be less and less. So we assume 

the utility function has this typical formulation 

�� = log	(�) , where ��  is the utility, �  are the 

independent variables. 

� Neglect the discount rate of the capital. In this paper, 

we do not take the inflation into consideration. 

Here are the notations and their meanings in our paper: 

Table 1. Notation. 

Notation Meaning 

U Social utility of the school 
x Amount of the investment 
j Time period (j =0,1,2,3,4,5) 
m Share of students earning over $25,000/year 

M 
Median earnings of students working and not enrolled 10 
years after entry 

N Number of undergraduate degree-seeking students 
k MRS (marginal rate of substitution) 
g Graduation rate 

,λ ν  Lagrange multiplier 

4. Data Analysis and Focus Decision 

Since we are tackling with a problem with big data, there 

is a diversity of inputs with different types. On the other hand, 

the inputs interact with each other to some degree. We must 

deeply analyze the data to dig out the meaning of each 

column and separate them in different groups.[2] 

After the analysis, we set out to collect the data of other 

large grant foundations，including their focus by different 

subjects, races and locations, together with other information 

available. Based on the data collected, we can determine the 

focus of the Goodgrant, which ensures the least degree of 

duplication. 

4.1. Data Analysis 

We analyze the data in the attached Excel sheet Most 

Recent Cohorts Data. We find out that there are continuous 

and discrete data. The continuous data can be separated into 

two groups, one for determining the focus as well as school 

selecting, another for measuring the school’s utility as well as 

determining the ROI. So at last, we separate them into three 

components, each for different use. 

Table 2. The different types of variables and their use. 

Type and use Variable 

Continuous data for school selecting 

SAT/ACT scores 

PCIP (the distribution by subject) 

UGDS_(the distribution by race) 

PPTUG_EF(part-time ratio) 

PCTPELL(pell grant ratio) 

UG_25_abv(the percentage of students above 25) 

GRAD_DEBT_MDN_SUPP(debt) 
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Type and use Variable 

RPY_3YR_RT_SUPP(debt ratio) 

Discrete data for school selecting CONTRAL PBI ANNHI TRIBAL AANAPII HIS NANTI 

Continuous data for determining the ROI 

UGDS (the number of students) 

C150 C200 (graduation rate) 

md_earn_wne_p10(median of earnings) 

gt_25k_p6(earnings above 25k ratio) 

 

4.2. Focus Decision 

First of all, we define the Goodgrant as a charitable 

organization to make the world more equal. Based on this 

duty, the Goodgrant aims at helping those undergraduate 

students who are relatively poor, under debt, or has low 

SAT/ACT scores and those schools located at small cities, 

consisting of more minority races, with low graduated rate 

and so on. 

Secondly, for not duplicating other organizations’ 

investment and focus, we collect the data of the distribution 

of 1000 foundations by location and subject. The statistics 

are presented below. 

 

Source: http://data.foundationcenter.org/#/fc1000/subject:all/all/total/bar:amount/2012 

Figure 1. Distribution of grants from FC 1000 foundations by subject area [3]. 

We can see that most foundation invested in the following 

three subjects: Health, Education and Human services from 

Figure 1. We define these three subjects as strong subjects. 

Notice that we have already the PCIP data (the percentage of 

degree awarded in different subjects). Compared to other 

subjects, the above three major subjects have received a large 

amount of grants. Further, the students who major in these 

three subjects will benefit a lot. So we decide to invest less 

on these three subjects but more on other subjects. 

However, there is a problem behind the logic above. The 

large amount of capital invested on these three subjects 

doesn’t mean that we should invest less on them. We only 

consider the capital supply while neglecting the capital 

demand. In other word, the financing gap really counts. 

However, taking capital demand into consideration will make 

the problem even complex. Also, we find it difficult to 

acquire the data of capital demand. As a result, we only 

consider the supply of capital, reluctantly. 
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Source: http://data.foundationcenter.org/#/fc1000/subject:all/all/total/bar:amount/2012 

Figure 2. Distribution of grants from FC 1000 foundations by recipient location. 

Figure 2 tells us that most of the recipients are in four states: 

New York, California, District of Columbia and Massachusetts. 

Follow the focus of the Goodgrant, we decide not to invest on 

these four states because these four states are relatively 

wealthy and already have many foundations. However, the 

problem also exists which is similar to the above. 

Here is a summary of our focus. We will invest more on 

schools which are/have: 

1. Lower SAT/ACT scores 

2. Lower percentage of students who receive pell grant 

3. Higher percentage of minority races 

4. Higher percentage of degree awarded in week subjects 

5. Higher part-time ratio 

6. Higher debt/loan 

5. School Selecting 

Based on the data analysis and our focus explained above, 

we intend to reduce the number of candidate schools from 

2977 to 500 by manual selection and PCA selection. The 

smaller number of schools will make the algorithm easier to 

run in the next part “strategy making”. 

5.1. Manual Selection 

According to the analysis and explanation above, we don’t 

invest on the schools in four states: New York, California, 

District of Columbia and Massachusetts. So we directly 

delete the schools in these four states from our candidate 

sheet. This step reduces the number from 2977 to 2323. 

5.2. PCA Selection 

In this part, we intend to rank the schools based on the 

correlation between the school’s identities and our focus. Since 

we make use of 68 indicators with complex interactions, we 

ought to extract a few principle indicators (usually 3 or 4) from 

the original 68 ones. And give them different weights to 

computer the final score to rank the schools. 

The PCA (principle component analysis) is an ideal 

method to tackle this problem with high efficiency [4]. PCA 

uses linear equation to combine the original indicators, 

generating principle components �� 	with the maximized 

variance. The variance of a component was defined as its 

amount of information. 

5.2.1. Standardization 

Firstly, we recognize that the original data are not 

complete. We use the mean value to fill up the data, where � 

is the number of the school, � is the number of the indicator. 

This treatment is reasonable because it doesn’t influence the 

result [5]. 
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5.2.2. Calculation 

We use the equation below to compute the covariance 

matrix where �, � both are the indicators and � are the data 

after standardization. 
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And then we calculate the eigenvalue and eigenvector of 
the covariance matrix: 

Eigenvalue: iλ ; Eigenvector: iα� , ( 1,2, , )i p= ⋯ . 

5.2.3. Principle Components 

The steps above can generate 68 principle components 

while we can only utilize 3 or 4 of the components, which 

have the highest contribution rate. The contribution rate can 

be calculated by the equation: 

Contribution rate
1

/

p

i i

i

λ λ
=

= ∑             (4) 

The sum of the contribution rate is denoted by �, the 

cumulative contribution rate. The higher T, the more 

information contained in the principle components. 

At last, we can sum the scores of the principle components 

and use the total score to rank the schools. 

5.2.4. PCA Results 

We set the cumulative contribution rate � = 90%, the 

2323 schools and 68 indicators as inputs. And apply the PCA 

method to compute the score of the schools, the top 500 

schools will go around to next part. Here is the table of the 

top ten schools. 

Table 3. Top ten candidate schools by PCA. 

Rank UNITID INSTNM PCA Score 

1 244190 Widener University-Delaware Campus 32.87 

2 227429 Paul Quinn College 30.15 

3 138761 Andrew College 27.14 

4 225575 Huston-Tillotson University 25.09 

5 102270 Stillman College 24.99 

6 140720 Paine College 21.81 

7 447582 New River Community and Technical College 21.58 

8 198862 Livingstone College 21.30 

9 229063 Texas Southern University 20.43 

10 233338 Richard Bland College of the College of William and Mary 20.21 

 
In the table above, the school that has the highest PCA 

scores has the largest demand of grant based on our focus. 

Please notice that this is not the final recommending list of 

the schools, because we haven’t considered the ROI of these 

schools. After deriving the ROI function, we will offer a list 

based on the potential use of the investment. Further more, 

we will compare the difference between the PCA rank list 

between the final list later. 

Checking the statistics of the top school Widener 

University-Delaware Campus, we find that the students in 

this school are under a large amount of debt. It is the main 

indicator pushing the school to the top one. To some degree, 

it reflects that our model is reasonable and efficient for we 

pay attention to those schools whose students are under much 

debt. On another hand, our PCA-ranking model has a clear, 

easy-to-understand basis in focus correlation measures and 

gives reasonably accurate results. It should be noted that we 

choose this approach to ranking schools over a much simpler 

approach such as simply summing the indicators for various 

reasons, one of which is that there are interactions between 

the indicators and PCA is skilled at solving this kind of 

problems. 

6. Strategy Making 

The model we created in the sections above works well for 

selecting the target schools. In this part, in order to rank the 

target schools and determine the investment strategy, we 

must determine the return on investment (ROI), before this, 

we should derive a utility function which measures the 

contribution of the school to the society. ROI is defined as 

the difference between the utility before and after the 



59 Li Yizhang et al.:  The Optimal Investment Strategy Based on the Large-Scale Non-Linear Constraint Optimization Methods 
 

investment. 

The utility of a school is an abstract value, and it has no 

real unit for it’s not money, not earnings or other things. And 

the input x is a vector, including four main factors, student 

number, graduated ratio, earnings of graduated students and 

the investment. The construct of x will be explained later. 

Here is the key assumption: the utility �� and the inputs x 

have the relationship below: 

log( )iU x=                 (5) 

First of all, the utility function must be concave for two 

reasons: 

1. If the function is linear or convex, the best strategy is to 

give the whole 100 million to one school to maximize the 

total utility. 

2. The utility is a state value. If both a high state and a low 

state school receive a same amount of investment, the low 

state school will generate more incremental utility. Because 

there are more opportunities to use the money and more 

things to be improved in the low state one. 

Secondly, motivated by the utility function in 

microeconomics, we use the “log” relationship to determine 

the utility function. Although the relationship may be more 

complex in real life, it gives us reasonable ROI function 

below and works well with our model. 

6.1. The ROI Function 

Here we come to the ROI function, the function describes 

the relationship between investment and incremental utility. 

Once the ROI function is decided, we can make the 

investment strategy to maximize the total ROI. 

Naturally, the ROI function is the difference of the utility 

function: 

0 0log( ) log( )i i iROI U x x x= ∆ = + ∆ −          (6) 

We can plot a figure to describe the relationship: 

In Figure 3 and equation (6), ∆��  is the incremental 

amount of the inputs triggered by the investment. In the 

following steps, we will derive an explicit equation of x. 

 

Figure 3. The relationship between incremental utility and investment. 

Firstly, we consider the number of the students N, median 

of earnings after 10 years M and the ratio of students who 

earn more than 25k per year after 6 years m. We multiply 

them together to measure the total earnings [6]: . 

The earnings measure one aspect of the utility, the higher it is, 

the higher the state of school will be. 

Secondly, we take a deep look at the graduation rate g 

(same for two year school or four year school). This indicator 

measures another aspect of the utility. It also has a positive 

relationship between the utility. We intend to combine the 

two aspects together but the units are not equal. Then, we 

define a constant k to balance the unit. As a result, the utility 

function can be written as the form below: 

0 log( )U m M N k g= ⋅ ⋅ + ⋅          (7) 

Here all the variables are different for each school, for 

simplicity, we eliminate the subscript i. 

Take the investment into consideration, the utility will be: 

1

0

log( )

j

j p j

p

U x x m M N k g

=

=

= + + ⋅ ⋅ + ⋅∑    (8) 

where j represents the time period, 1,2,3,4,5j =  and 

0 0x = . 0x  is the initial investment the school received 

from other foundations or the government. In this problem, 

we simply assume 0 0x =  because of the limited data. 

At last, we can write down the ROI function: 

1 2
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∑ ∑

⋯
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                     (9) 

The ROI function above is dynamic with respect to time 

period. In other words, when time changes, the ROI function 

changes in response. To be more specific, once we invest in a 

school, the ROI in the next period will decrease. The larger 

amount of investment there is, the lower the ROI will be. 

This character of our ROI function describes the real 

situation precisely, which makes model close to the reality. 

6.2. Optimizing the Total ROI 

We now assign 100 million dollars to 50 target schools to 

maximize the total ROI. Each school’s ROI is defined in 

 m ⋅ M ⋅ N
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Equation (9). We use the equations below to simplify the 

form of our ROI function: 
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The utility function will be: 
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The ROI function will be: 

1j j jROI U U U −= ∆ = −              (12) 

We want to maximize the total ROI, the function can be: 
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The result is really exciting! It is noted that the ROI of one 
school in different time period cancels out with each other. 

As 0i

i

U∑  is constant, the problem will be in this form: 
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The equations (14) are the final form of our model. Up to 

know, we have already derived a mathematical problem of 

the real situation. Now, we attempt to choose the best method 

to solve the optimization problem. 

6.2.1. Karush-Kuhn-Tucker Conditions 

At first, we set out to implement KKT conditions to solve 

the optimization problem [7]. For the problem below: 

0min ( )
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the KKT conditions are presented as follows: 
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where 
*

iλ is Lagrange multiplier associated with ( ) 0if x ≤ ; 

*
iν is Lagrange multiplier associated with . 

For our problem, we can easily transform the formulation 

into the standard form, and the corresponding KKT 

conditions are: 
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Figure 4. Flow chart of the LA_PSA_GT algorithm. 
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 is the maximum of the total ROI function 

�
����

 is vector of investment amount per year 

The KKT conditions ensures the existence of the solutions. 

Solving the equations above, we will absolutely get the 

optimized strategy. However, the equations are extremely 

difficult since there are 250 variables. In general, the KKT 

method is highly efficient dealing with small number of 

variables. So, as a result, the number of the variable is too big 

for us to solve the equation when it comes to our problem. In 

other words, we are not able to create a program to solve the 

equations. Consequently, we have to give up and search for 

other algorithms. 

6.2.2. PSO Algorithm 

The PSO (particle swarm optimization) is an efficient 

method, imitating the flying path of a bird swarm. PSO 

algorithm uses three flying principles, collision avoidance, 

velocity matching and flock centering to search the extrema 

within the boundary conditions. The algorithm starts with a 

randomly initialized investment vectors and iterate them until 

reaching the maximum point [8]. We create a program based 

on the PSO, but the algorithm takes a very long time to 

converge and does not produce the optimal values. Therefore, 

we decide to use another method to improve the 

performance. 

6.2.3. Improved PSO Algorithm Based on Augmented 

Lagrange Function (LA_PSO_GT) 

We search for other literary researches and decide to 

use the method above. The algorithms utilize the 

augmented Lagrange function to change the optimization 

problem into boundary constraint optimization problem. 

After that, the LA_PSO_GT combines Conjugate Gradient 

method and PSO algorithm together, which overcome the 

defect of the length of the convergence time and improves 

the computing efficiency [9]. The whole procedures will 

be attached in the appendix. Above is the flow chart of 

this algorithm. 

7. Result 

After running the program, we get the amount of 

investment for each target school in each year and the ROI in 

five years. 

The fitness figure of the algorithm is presented below: 

From the fitness figure below, we can see that the 

algorithm converges after 50 iterations. It proves that our 

method is efficient and powerful. 

 

Figure 5. Fitness of the algorithm. 

For some schools, the investment is too small. For example, 

if only 1000 dollars is invested in a school in a year, it is 

obviously useless in real situation. Therefore, we eliminate the 

value and set it as zero. Although we don’t use the whole 100 

million, but the utilization rates are all above 99%. 
Then we arrive at the optimal investment strategy and the 

recommending list. 

Here is a table of top ten schools in the recommending list 

ranked by total ROI in five years, including the investment 

amount each year and the time duration. The full table of all 

target schools will be attached in appendix. 

Table 4. The top ten schools and their investment amount in our recommending list (unit: million) [10]. 

Rank INSTNM ROI t 1 2 3 4 5 

1 MacCormac College 2.22 4 13.62 0.17 0.00 5.69 4.78 

2 Paul Quinn College 2.02 5 7.84 1.02 3.09 2.92 5.10 

3 Andrew College 1.81 3 0.00 0.00 0.33 5.11 7.94 

4 Bidwell Training Center Inc 1.80 4 0.18 0.00 7.18 0.66 0.75 

5 Colorado Heights University 1.64 3 8.24 0.46 11.32 0.00 0.00 

6 Tougaloo College 1.12 5 12.01 0.31 0.44 5.62 2.29 

7 Brevard College 1.05 4 5.46 0.00 9.13 0.22 1.85 

8 Paine College 0.98 4 0.00 0.98 3.48 6.12 0.43 

9 Fisk University 0.90 5 8.84 1.49 0.70 0.71 0.14 

10 Southeast Missouri Hospital College of Nursing and Health Sciences 0.84 4 2.38 1.32 0.00 5.59 3.80 

… … … … … … … … … 

 Utilization rate of funds in each year(%)   99.60 99.79 99.63 99.71 99.69 
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As we can see in the recommending list, two of the 

schools, Paul Quinn College and Andrew College are also the 

top ten schools in the PCA result. Note that we use different 

data to rank the schools, it proves that the data has 

correlation. What’s more, it shows that two results are 

consistent with each other. The target schools are those with 

high ROI and worth investmemt. 

8. Testing Our Model 

To test our model whether it duplicates the investment and 

focus of Gates Foundation or not, we collect data of the 

investment distribution of the two foundations, and compare 

them to our recommending list. 

Table 5. The top ten schools ranked by Gates Foundation’s investment 

amount. 

Rank INSTNM Investment amount (million) 

1 Harvard University 24.14 

2 University of Washington 16.42 

3 Seattle University 15.80 

4 Yale University 7.50 

5 Texas Tech University 6.96 

6 University of Michigan 6.85 

7 Land-Grant Universities 4.95 

8 University of Kentucky 4.50 

9 Columbia University 3.78 

10 Stanford University 3.25 

In the table above, we can see that Gates Foundation 

invested mostly on those well-known schools like Harvard 

and Yale. But none of these schools appear in our 

recommending list. It proves that our model efficiently 

eliminate other foundations’ investment and focus. 

We then come to the Sensitivity Analysis. In the process of 

determining the ROI function, we create a constant k to make 

the unit equal while this parameter lacks database. We use the 

ratio of mean earnings and mean graduation rate to determine 

the value of k. To some degree, k is the marginal rate of 

substitution between the two factors. How does the change of k 

influence our outputs? We analyze the standard deviation of 

the invest mount caused by a slightly change of k. 

Table 6. The standard deviation of the investment amount correspond to the 

change of MRS k. 

Year � −  !%  � − "%  � + "%  � +  !%  

1 12.18% 5.33% 4.52% 9.51% 

2 9.09% 4.25% 5.64% 11.88% 

3 10.88% 6.37% 5.63% 13.28% 

4 7.64% 3.29% 3.27% 13.33% 

5 12.67% 4.90% 4.94% 7.41% 

Mean value 10.49% 4.83% 4.80% 11.08% 

From the table above, we can see that the influence of k is 

not very large, and within the range we can bear. 

9. Conclusion 

We have been asked by the Goodgrant Foundation to 

determine the optimal investment strategy base on the 

potential and ROI of the candidate schools. Since it is a big 

data problem, we use data classification, data selection as 

pretreatment, after which we decide the investment focus of 

the foundation and the ROI of the schools. Finally, we make 

the optimal strategy by PSO algorithm. 

Our model has the following strengths: 

1. Data classification. When faced with big data problems, 

the pattern classification is extremely useful and important. 

Based on this insight, our model firstly implements a data 

classification, separating the data for two major purposes,  

one for selection, another for determining the ROI function. 

By this means, we make the most use of the data attached. 

2. Data extraction. Our model utilizes the PCA method to 

select the target schools based on the focus of our foundation. 

The data selection is also an important part in big data 

problem, which will improve the efficiency for further data 

processing. 

3. Reasonable ROI function. Another strength of our 

model is that we create an ROI function by analyzing the 

relationship between earnings and graduation rate. 

Furthermore, our function can easily be modified if other 

researches find the accurate relationship. 

4. Suitable algorithm. In the third part, we derive a 

mathematical problem to describe the strategy in a general 

form. In order to solve the math problem, we have tried 

several algorithms and finally decide to choose the most 

suitable one. 

We deeply analyze the types, meanings, and interactions of 

the data. Then, by deciding our focus for charitable meanings, 

we attempt to invest much on those schools with more 

minority races, low SAT scores, high debt ratio and so on. 

We want to help those schools who don’t performance well 

as they have the highest likelihood of producing a strong 

positive effect on student performance. 

Then, we select the target schools by PCA based on the 

key indicators we focused. PCA ranks the candidate schools 

by the correlation with our concern, and we select the top 50 

of them as target schools. After that, we determine an 

estimated ROI function to quantify the incremental utility of 

the schools that receive our investment based on the earnings 

and graduate rate. 

Using an iterative, multivariable, machine-learning 

algorithm, we are able to optimize the total ROI of our target 

schools in five years. The solutions combine the investment 

amount and time duration of each school. Since we have the 

investment amount already, we can calculate the cumulative 

ROI in five years of each school and offer a recommending 

list. The top schools in the list are not well known schools, 

but the schools in village, small cities and so on, which 

correspond to our foundation’s focus. 
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Appendix 1 

Recommending List 

Table A1. Recommending list. 

Rank INSTNM ROI t 1 2 3 4 5 

1 MacCormac College 2.22 4 13.62 0.17 0.00 5.69 4.78 

2 Paul Quinn College 2.02 5 7.84 1.02 3.09 2.92 5.10 

3 Andrew College 1.81 3 0.00 0.00 0.33 5.11 7.94 

4 Bidwell Training Center Inc 1.80 5 0.18 0.00 7.18 0.66 0.75 

5 Colorado Heights University 1.64 3 8.24 0.46 11.32 0.00 0.00 

6 Tougaloo College 1.12 6 12.01 0.31 0.44 5.62 2.29 

7 Brevard College 1.05 5 5.46 0.00 9.13 0.22 1.85 

8 Paine College 0.98 5 0.00 0.98 3.48 6.12 0.43 

9 Fisk University 0.90 6 8.84 1.49 0.70 0.71 0.14 

10 Southeast Missouri Hospital College of Nursing and Health Sciences 0.84 5 2.38 1.32 0.00 5.59 3.80 

11 Stillman College 0.83 3 0.00 1.95 2.75 6.29 0.00 

12 Livingstone College 0.75 3 0.00 6.15 0.00 0.78 3.92 

13 Leech Lake Tribal College 0.73 2 2.00 3.60 0.00 0.00 0.00 

14 Virginia Union University 0.70 5 1.95 10.62 2.42 1.70 0.32 

15 Widener University-Delaware Campus 0.69 3 0.00 2.02 0.11 1.98 0.00 

16 University of South Carolina-Salkehatchie 0.66 5 2.10 2.58 0.25 0.30 1.28 

17 Elizabeth City State University 0.66 5 3.26 8.59 6.22 2.30 4.88 

18 Huston-Tillotson University 0.65 4 1.32 7.13 0.39 0.00 3.80 

19 Edward Waters College 0.64 4 0.00 3.49 1.08 1.89 0.24 

20 Claflin University 0.62 4 2.46 4.10 5.49 0.00 5.61 

21 Sterling College 0.60 3 0.00 0.00 4.92 0.26 3.06 

22 Olivet College 0.60 4 0.00 3.49 5.29 2.33 3.47 

23 Ohio Valley University 0.51 2 1.35 0.00 3.40 0.00 0.00 

24 Rust College 0.49 5 0.30 0.46 1.10 0.10 1.67 

25 Culver-Stockton College 0.48 4 0.00 9.01 0.16 1.78 0.26 

26 Bethany College 0.47 4 0.00 1.55 0.30 6.24 0.82 

27 Greensboro College 0.46 4 0.00 0.43 5.36 0.11 4.16 

28 Ottawa University-Ottawa 0.46 3 0.00 0.38 0.00 8.62 0.20 

29 Webber International University 0.44 3 0.00 6.00 1.43 0.17 0.00 

30 Bacone College 0.42 3 2.72 0.00 0.45 4.32 0.00 

31 Dillard University 0.38 5 0.53 1.10 1.98 3.74 1.86 

32 North Greenville University 0.38 5 2.10 0.20 3.70 0.26 9.26 

33 Manor College 0.36 4 0.00 2.31 0.12 5.08 0.66 

34 Newberry College 0.36 5 0.35 0.44 0.70 0.80 5.42 

35 New River Community and Technical College 0.36 5 0.15 3.26 0.49 1.26 8.15 

36 Orleans Technical Institute 0.31 4 0.89 1.19 0.00 0.16 0.36 

37 Louisburg College 0.27 3 0.00 0.81 1.07 0.00 0.18 

38 Bethune-Cookman University 0.21 3 8.43 1.15 0.00 0.78 0.00 

39 Richard Bland College of the College of William and Mary 0.21 4 1.32 0.00 1.56 1.26 0.40 

40 Chowan University 0.20 3 0.42 1.55 0.00 3.32 0.00 

41 Alabama State University 0.16 5 1.69 0.00 0.54 5.06 1.28 

42 Campbell University 0.12 5 2.59 0.61 6.94 0.10 5.85 

43 Delaware State University 0.11 3 0.00 3.41 0.00 0.53 3.69 

44 Texas Southern University 0.10 4 1.13 1.95 4.85 0.00 1.20 

45 Cumberland University 0.09 3 0.37 0.00 0.11 2.02 0.00 

46 Cochise College 0.09 2 2.61 2.36 0.00 0.00 0.00 

47 Central State University 0.07 4 0.17 0.14 0.12 0.76 0.00 

48 Alcorn State University 0.07 3 0.81 0.00 0.00 2.19 0.61 

49 Saint Augustine's University 0.06 2 0.00 0.18 0.00 0.56 0.00 

50 Chattanooga State Community College 0.02 2 0.00 1.83 0.65 0.00 0.00 

 Utilization rate of funds of each year (%)   99.60 99.79 99.63 99.71 99.69 
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Appendix 2 

An Introduction to the Improved PSO Algorithm Based on 

Augmented Lagrange Function 

(source: Li Desheng. Improvement and Application of 

Particle Swarm Optimization Coupling with Classic 

Optimization[D]. Beijing: Beijing University of Civil 

Engineering and Architecture, 2014: 29-43.) 

The algorithm attempts to solve the non-linear constraint 

optimization problem below: 

1

min : ( )

( ) 0, 1,2, ,

. . ( ) 0, , ,

i e

j e

f x

c x i m

s t c x j m m

l x u

+

 = =
 ≥ =
 ≤ ≤

⋯

⋯
          (A1) 

For this problem, if there is not the constraint l x u≤ ≤ , 

we can use the augmented Lagrange multiplier method to 

solve it. Given the Lagrange multiplier vector kλ  and the 

barrier parameter vector kσ , the sub-problem of the step k is: 

min ( , , )k kP x λ σ                 (A2) 

where: 

1

2

1

1
( , , ) ( ) [ ( ) ( ( )) ] ( , , )

2

e

e

m m

i i i i i

i i m

P x f x c x c x P xλ σ λ σ λ σ
+= =

= − − −∑ ∑   (A3) 

2

2

1
( ) ( ( )) , ( ) 0

2
( , , )

1
/ ,

2

i i i i i i i

i

i i

c x c x if c x

P x

otherwise

λ σ λ σ
λ σ

λ σ

 − − >= 



 (A4) 

If there is the boundary constraint l x u≤ ≤  in the 

non-linear constraint optimization problem, we modify the 

augmented Lagrange multiplier method above. We assume 

that we knew the Lagrange multiplier vector kλ  and the 

barrier parameter vector kσ . So we solve the sub-problem in 

step k: 

min ( , , )

. . 

k kP x

s t l x

λ σ
µ




≤ ≤
            (A5) 

The Lagrange multiplier method is accomplished by inside 
and outside to-tier construct. We solve the equations (A5) 
inside the construct, generating a group of new initial 
variable. And modify the outside barrier parameter vector 
and the multiplier vector. Test whether satisfies the iteration 
criterion or not. If not, construct the sub-problem in the next 
iteration. If so, stop the algorithm. 

When initialing the multiplier vector 0λ  and the barrier 

parameter vector 0σ , they are usually set as positive vector. 

In the process of iteration, we use the equations below to 

modify the Lagrange multiplier vector λ : 

1

1
1

( ), 1, 2, ,

max{ ( ),0}, , ,

k k k k
i i i i e

k k k k
i i i i e

c x i m

c x i m m

λ λ σ

λ λ σ

+

+
+

 = − =


= − =

⋯

⋯
   (A6) 

where kx  is the solution of NO. k sub-problem (A5), and 

we use the equation below to modify the barrier parameter 

vector: 

1k kσ γσ+ =                   (A7) 

When 

1
2 2

1
( ) ( )

4

k k
c x c x

+ ≤� � � �
, we set 1γ = ; if not, we 

set 1γ ≻  (usually 10 or 100), where: 
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Given an $, the stopping criterion is 2( )c x ≤� �  $, stop 

the iteration of Lagrange multiplier method. kx  is an 

approximate optimization of (A1) 
The specific process of the improved PSO algorithm based 

on augmented Lagrange function: 

Step A: initialize 0λ  and 0σ ; 

Step B: construct boundary constraint optimization 

problem (A5); 
Step C: initialize PSO parameters, including initial 

position and velocity; 

Step D: compute the position ( 1)jx t + and velocity

( 1)jv t + of the next period; 

Step E: update the personal best particle jp and global best 

particle gp ; 

Step F: set 
0 0 0, 0.001, 1.0 3, , 0gx p eps e d g kkγ= = = − = − =  

Step G: if kkd eps≤� � or 2kk > , switch to Step L, or 

switch to Step H 

Step H: set 1α = ; 

Step I: 1kk kk kkx x dα+ = +  

Step J: if 1 0 0( ) ( ) T
kk kkf x f x d dγα+ < − , switch to Step K, or 

set 0.5α α= ∗ , back to Step I; 

Step K: compute 1 1
T
kk kk

kk T
kk kk

g g

g g
β + += , 

1 1kk kk kk kkd g dβ+ += − + , set 1kk kk= + , back to Step G; 

Step L: update g kkp x=  

Step M: judge the PSO stopping criterion, if so, switch to 

Step N, or back to Step D; 

Step N: judge the Lagrange multiplier stopping criterion, if 

so, stop the algorithm, output the result, or switch to Step O; 

Step O: modify the Lagrange multiplier parameter ,k kλ σ
according to (A6)~(A9) 
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