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Abstract: In this paper, we study a first order random coefficient autoregressive model with Laplace distribution as marginal. 

A random coefficient moving average model of order one with Laplace as marginal distribution is introduced and its properties 

are studied. By combining the two models, we develop a first order random coefficient autoregressive moving average model 

with Laplace marginal and discuss its properties. A first order random coefficient moving average process with generalized 

Laplace innovations is also obtained. 
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1. Introduction 

Laplace distribution, also known as double exponential 

distribution, is one of the widely used symmetric 

distributions for modeling data with heavier tails than normal 

distribution. This distribution that arises as the difference of 

two exponential random variables, has found applications in 

a variety of areas such as image and speech recognition, 

dynamics of manufacturing companies, ecosystem 

respiration, ocean engineering, vision, image and signal 

processing, dynamics of electricity prices, fracture problems, 

information theory, steam generator inspection, inventory 

management and quality control, financial data, geographical 

information systems etc.  

The probability density function (pdf) of classical Laplace 

distribution defined in [8], denoted by L (θ, σ) is  

f (x)=
�

�� ��│���│	

� ,
�����,
�����,���.

 

and the characteristic function is 

����� = ����
���
�
 ; 	! > 0. 

Mathai (see [10]) introduced generalized Laplace 

distribution as the distribution of difference of two Gamma 

variables. This distribution have applications in different 

contexts such as input – output processes, growth- decay 

mechanism, residual effect, gain or loss, formation of sand 

tunes, growth of melatonin in human body, formation of 

solar neutrinos etc. 

The pdf of GL�$, %, !, &� is 
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where 5; is the modified Bessel function of third kind with 

index λ, see [8]. A standard GL density is obtained for θ=0, 

σ=1 and for θ=0, κ=1 we get a symmetric Laplace 

distribution. 

The characteristic function of GL�$, %, !, &� defined in [8] 

is 

����� = �<��
�1 + !��� − >?��4 ; 

−∞ < � < ∞, −∞ < ? < ∞, & > 0, ! > 0. 

The characteristic function of GL (0, σ,	&) introduced by 

Mathai (see [10]) is 

����� = �
����
�
�- ; 	& > 0, ! > 0. 

Modelling can contribute to understanding the physical 

system by revealing something about the physical process 

that builds persistence into the series. Models for time series 
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data have many forms and represent different stochastic 

processes. The commonly used models in time series are 

autoregressive (AR) models, moving average (MA) models 

and autoregressive moving average (ARMA) models. 

The AR model describes how an observation directly 

depends upon one or more previous measurements plus a 

white noise term. 

Autoregressive time series models of order p, denoted by 

AR (p) is defined as 

BC = ∑ EFBC
FG
FH� + IC. 

The MA model describes how an observation depends 

upon the current white noise term as well as one or more 

previous innovations. 

Finite Moving Average processes of order q, denoted by 

MA (q) is defined as 

BC = ∑ JFIC
FK
FH� . 

If a process consists of both AR and MA parameters, then 

it is called an ARMA process. 

Autoregressive moving average processes of order (p, q), 

denoted by ARMA (p, q) is defined as 

BC = ∑ EFBC
FG
FH� + IC +∑ JFIC
FK

FH� . 

where Zt, - ∞ < � < ∞  is assumed to be independent and 

identically distributed random variables with common 

distribution function F. 

Many time series models have been introduced and studied 

by various authors in recent years. Starting with the 

pioneering work in [3], non-Gaussian autoregressive models 

with different stationary marginal distribution are being 

developed by various researchers. Lawrance and Lewis (see 

[9]) introduced a first order moving average model with 

exponential marginal. Jacob and Lewis (see [4]) linked the 

two models into a first order autoregressive moving average 

model with exponential marginals. Andel (see [1]) and 

Dewald and Lewis (see [2]) developed and studied the 

autoregressive models for real valued variables using Laplace 

marginal distribution. Jayakumar et al. (see [5]) introduced 

autoregressive processes with α-Laplace (Linnik) distribution 

as marginal distribution. Mathew and Jayakumar (see [12]) 

developed the autoregressive processes associated with 

generalized Linnik distribution. Jayakumar and 

Kuttykrishnan and Jayakumar et al. (see [6], [7]) developed 

autoregressive models with asymmetric Laplace distribution 

as marginals and discussed various applications in modeling 

currency exchange rate, interest rate, stock price changes etc. 

Even though there are a lot of literatures on time series 

models with heavy tailed distributions, the random 

coefficient autoregressive models with heavy tailed 

distributions as marginals have not studied much. 

Nicholls and Quinn generalized the autoregressive model 

in [11] as 

BC = L�BC
� + L�BC
� + ⋯ + LCBC
G + NC 

by allowing L<′P to be random variables to define a random 

coefficient autoregressive model. 

The sequence QXST is said to follow the pth order random 

coefficient autoregressive model if 

BC = UVW< + X<,CYBC
< + NC, Z = 1, 2, 3, …
G

<H�
 

The following assumptions are made on this model: 

(i)QNCT is a sequence of independent and identically distributed 

(iid) random variables with mean 0 and variance !�. 

(ii) W = VW�, W�, … WGY is a vector of real constants. 

(iii) ^IC, = �X�,C , X�,C, … , XG,C�_ is a sequence of iid random 

vectors with mean zero and dispersion matrix Γ. 

(iv) QNCT	and	QXCT are statistically independent. 

Hence the first order random coefficient autoregressive 

model is given by 

BC = �W� + X�,C�BC
� + NC, Z = 1, 2, 3, … 

If W� = 0	cZd	X�,C = XC , then 

BC = XCBC
� + NC, Z = 1, 2, 3, …               (1) 

or 

BC = XC�BC
� + NC�, Z = 1, 2, 3 …             (2) 

The paper is organized as follows. In Section 2, we define 

a first order random coefficient autoregressive model with 

Laplace distribution as marginal and study its properties. In 

Section 3, we introduce a first order random coefficient 

moving average Laplace process and discuss its basic 

properties. A first order random coefficient autoregressive 

moving average model is also developed in Section 4. The 

paper ends with the concluding remarks in Section 5. 

2. First Order Random Coefficient 

Laplace Autoregressive Process 

The first order random coefficient model (1) defined in 

[11] has correlation coefficient LF = ef�XC�gF  and the joint 

characteristic function is 

��h,�h.*���, ��� = �ih.*���� j ��h�k �� + l���dm�l�. 

where XC is considered as a power function random variable 

with distribution function (df) 

nkh�l� = l�, 0 < l < 1                        (3) 

Also for the model (2) we have the same correlation 

coefficient, but the joint characteristic function is 

��h,�h.*���, ��� = j �ih.*���l�	��h�k �� + l���dm�l�. 

Theorem 2.1 

Let the process QBCT  be defined as the model (2) and 



 International Journal of Statistical Distributions and Applications 2016; 2(4): 49-53 51 

 

B� = N� where QXCT	and QNCT are two independent sequences 

of i.i.d random variables such that QXCT has the pdf 

okh�l� = 2l; 	0 A l A 1.                      (4) 

Then the process QBCT is stationary if and only if 

N� ~ q�!�. 

Proof 

Let ��h��� and �ih��� be the characteristic function of BC 

and NC respectively. Then 

��h��� � j ��h�*��l��
� �ih��l�orh�l�dl. 

For n=1, 

��*��� � j ��s��l��
� �i*��l�2ldl. 

Since B� � N�, 

��*��� � j t��s��l�u��
� 2ldl. 

Assume the process QBCT is stationary, 

����� � ve����l�g�
�

�
2ldl 

=
�
�
 j we���w�g��

� dw, by the substitution �l � w. 
Then, differentiating ������� � 2 j we���w�g��

� 	dw  with 

respect to t, we get, 

xyz���
exz���g
 +

�
�

�
xz��� � �

�. 

This reduces to the linear equation, 
{|
{� 8 �

� } � 8 �
�, by the 

substitution 
�

xz��� � }. 

Solving, we get ����� � �
��~�
 , � " 0. 

Conversely, let ��h��� � j ��h�*��l��
� �ih��l�orh�l�dl. 

Since B�~q�!�, for n=1, 

��*��� � v ��s��l�
�

�
�i*��l�2ldl 

=j � �
���
�
r
�� 2l�

� dl 

which reduces to 

��*��� � 1
!��� v 1

w�

���
�


�
dw 

=
�

���
�
 

Assuming BC
�~q�!�, we can prove that BC
{→ q�!�. 

Hence the process QBCT  is stationary with Laplace 

marginals, which completes the proof. 

Definition 2.1 

The first order random coefficient autoregressive 

symmetric Laplace process is defined as follows: 

Let B� � N� and for	Z � 1, 2, ….; BC � XC�BC
� 7 NC�, 
where QXCT  and QNCT  are two independent sequences of iid 

random variables with pdf 

okh�l� � 2l; 	0 A l A 1 

and N� is distributed as symmetric Laplace q�!�. 

Properties 

The simulated sample path using 100 observations 

generated from first order autoregressive Laplace process 

with σ=0.2 and 0.4 are presented in Figure 1 and Figure 2 

respectively. 

 

Figure 1. Sample Path of Random coefficient AR (1) model for σ=0.2. 

 

Figure 2. Sample Path of Random coefficient AR (1) model for σ=0.4. 

The joint distribution of �BC , BC���  for first order 

autoregressive symmetric Laplace is 

��h,�h.*���, ��� � j �ih.*�l�����h�k �� 7 l���2ldl. 

=j � �
���
�

r
�� � �

���
��*��
r�
�� 2l�
� dl 

which is not symmetric in ��	cZd	��. Hence the process is not 

time reversible. 
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3. First Order Random Coefficient 

Laplace Moving Average Process 

The first order random coefficient moving average model 

defined in [11] takes the form 

BC = �CNC
� + NC, Z � 1, 2, 3 ….                  (5) 

or 

BC � �C�NC
� 7 NC�, Z � 1, 2, 3 ….                  (6) 

Theorem 3.1 

Let the process QBCT be defined as the model (6) where 
Q�CT is a sequence of iid random variables with distribution 

function, 

n�h��� � ��, 0 A � A 1                         (7) 

and QNCT  is a sequence of iid Laplace random variables 

independent of Q�CT. Then the process QBCT defines a first 

order Laplace moving average process. 

Proof 

��h��� � j �ih�*�����
� �ih����o�h���d�. 

Since QNCT  follows Laplace distribution with characteristic 

function 
�

���
�
, 

��h��� � j � �
���
�
�
�� 2�d��

� . 

On the substitution w � 1 7 !�����, the integral reduces to 

��h�t� � 1
!��� v dw

w�
���
�


�
 

=
�

���
�
. 

Hence the theorem. 

Properties 

The simulated sample path using 100 observations 

generated from first order moving average Laplace process 

with σ=0.2 and 0.4 are presented in Figure 3 and Figure 4 

respectively. 

 

Figure 3. Sample Path of Random coefficient MA (1) model for σ=0.2. 

 

Figure 4. Sample Path of Random coefficient MA (1) model for σ=0.4. 

Similar to the joint distribution of autoregressive random 

coefficient model, the joint distribution of �BC, BC��� for first 

order moving average symmetric Laplace process is also not 

symmetric in ��	cZd	�� . Hence the process is not time 

reversible. 

Theorem 3.2 

Let the process QBCT be defined as the model (6) where 
Q�CTand QNCT are independent sequences such that Q�CT has 

the probability density function, 

o�h��� � 2�; 	0 A � A 1.                        (8) 

Then BC  has Laplace distribution if BC  and NC  are 

identically distributed random variables. 

Proof 

We have 

��h��� � j �ih�*�����
� �ih����2�d�. 

On the substitution �� � w, the integral reduces to 

��h�t� � 2
�� v wt�ih�w�u��

�
dw. 

Assuming BC  and NC  follows same distribution, we get 

������� � 2 j e���w�g��
� 	dw. 

On differentiation with respect to t, the above equation 

becomes 

xyz���
exz���g
 +

�
�

�
xz��� � �

�. 

This reduces to the linear equation 
{|
{� 8 �

� } � 8 �
�, by the 

substitution 
�

xz��� � }. 

Solving, we get ����� � �
��~�
 , � " 0. 

Hence the theorem. 

Remark 3.1 

If BC  and NC  are identically distributed random variables 

such that QBCT is defined as (5), then also BC	has Laplace 

distribution, where Q�CT and QNCT are independent sequences 

such that Q�CT has pdf (8). 

Theorem 3.3 

Let the process QBCT  be defined as (5) and Q�CT  is a 

sequence of iid random variables with pdf 
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o�h��� = 2&��4
�; 	0 < � < 1, & > 0 

and QNCT is a sequence of iid Generalized Laplace GL (0, σ,&) 

random variables independent of Q�CT . Then the process 
QBCT defines a first order Laplace moving average process 

provided B�
{→ N�. 

Proof 

We have 

��h��� = v �ih�*����
�

�
�ih���2&��4
�d� 

= v 2&
e1 + !���g4�� 0 1

1 + !�����3
4��

��4
�d�
�

�
 

= v &
e1 + !���g4�� 0 1

1 + !���}3
4��

}4
�d}
�

�
 

= v &
e1 + !���g4��

1
��4 w4
� 0 1

1 + !�w3
4��

dw
�


�
 

This reduces to 

����� = �
���
�
 , on the substitution 

�
���
� = }  and on 

simplification. 

Hence the theorem. 

4. First Order Random Coefficient 

Laplace Autoregressive Moving 

Average Process 

By combining the models (2) and (6) and using Theorems 

(2.1) and (3.1), we have the following theorem. 

Theorem 4.1 

Let the process QBCT be defined by BC = �C�NC + �C
��, 

�C = XC��C
� + IC�, 

where QICT and QNCT  are two independent sequences of iid 

random variables and Q�CT  and QXCT  are also two 

independent sequences of iid random variables with cdf 

n�h��� = ��, 0 < � ≤ 1 and nkh�l� = l�, 0 < l ≤ 1 with 

N�
{→ ��

{→ I�. 

Then the process QBCT is stationary if and only if 

N�
{→ q�!�. 

Proof 

Proof follows easily by same argument as in Theorems 

(2.1) and (3.1). 

5. Conclusion 

Laplace distribution and its generalizations have proved to 

be a successful alternative for Gaussian distribution with a 

wide range of applications in financial modeling, 

communication engineering, time series modeling, image 

source modeling, gene expression data modeling etc. Laplace 

laws have appeared in literature on modeling stock market 

returns, currency exchange returns and interest rate. This 

distribution is a commonly used model for heavy tailed data 

such as image and speech comparison data, microarrays etc. 

As Laplace distributions is considered as the first choice for 

modeling whenever data exhibit heavier tails than Gaussian 

tail, the random coefficient Laplace time series models 

discussed in this paper could be the good models for fitting 

of various time series data. 
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