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Abstract: In many sampling involving non negative integer data, the zeros are observed to be significantly higher than the 

expected assumed model. Such models are called zero-one inflated models. The zero inflated Poisson distribution was recently 

considered and studied due to its empirical needs and application. In this paper, an extension to the case of zero inflated case is 

considered, namely, the zero and one inflated Poisson distribution, along with some of its structural properties, and estimation 

of its parameters using the methods of moments and maximum likelihood estimators were obtained with three empirical 

examples as well. 
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1. Introduction 

The Poisson distribution is a well-known non negative 

integer valued discrete that has been studied by many 

researchers due to its member’s empirical applications. 

Often, a zero-inflated Poisson (ZIP) model occurs when the 

zero counts in a sampling Poisson data, has a higher number 

that expected if the data were Poisson distributed.  

Lambert [1] studied the zero-inflated Poisson (ZIP) 

regression model in analyzing defects in manufacturing 

equipment using simulations, and concluded that regression 

zero-inflated Poisson models are not only easy to interpret, 

but they can also lead to more refined data analyses. van den 

Broek [2] presented a score test for zero-inflation, comparing 

the ZIP model with a constant proportion of excess zeros to a 

standard Poisson regression model. Sharma [3] proposed an 

ZIP distribution to study the trends for out-migration, using 

the method of moments and the maximum likelihood 

method. For estimating the parameters, and testing the 

method using data from the Rural Development and 

Population Growth survey undertaken in Varanasi, India, in 

1978. Ridout et al [4] consider the problem of modelling 

count data with excess zeros and review some possible 

models including the ZIP, and considered some aspects of 

model fitting and inference, and gave an example from 

horticultural research for illustration. 

Hall and Berenhaut [5] proposed a general score test for 

the null hypothesis that variance components associated with 

these random effects are zero for a ZIP model with random 

intercept. Jansakul and Hinde [6] extended the score test of 

van den Broek [2] to the more general situation and evaluated 

its performance using a simulation study. Gupta et al [7] 

studied a zero adjusted generalized Poisson distribution and 

developed a score test, with and without covariates, to 

determine whether such an adjustment is necessary, and gave 

examples to illustrate the results. Rodrigues-Motta et al [8] 

used a ZIP model to account for correlated genetic effects, 

and to analyze the number of clinical mastitis cases in 

Norwegian Red cows. Naya et al [9] compared the 

performance of four Poisson and ZIP regression models 

under four simulation scenarios when studying the number of 

black spots in Corriedale sheep. 

Yang et al [10] proposed score tests for overdispersion 

based on the ZIP model for zero-inflated count data. Hall and 

Shen [11] proposed a robust estimation approach for ZIP 

regression. Saffari and Adnan [12] introduced a ZIP 

regression model on censored data and study the effects of 

right censoring in terms of parameters estimation and their 

standard errors via simulation and an example. Momeni [13] 

used the ZIP distribution model to fit a real data related to the 

number of accident insurance claims in Mazandaran 

Province. Kibria et al [14] proposed a ridge regression 

estimator for the ZIP model using a simulation study to 
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compare the performance of the estimators. Mouatassim and 

Ezzahid [15] used Poisson and ZIP regression when studying 

private health insurance data. Sharma and Landge [16] used a 

ZIP regression model to estimate the accident frequencies for 

the heavy vehicle traffic accident data. Gupta et al [17] 

identify the optimal modeling strategy for highly skewed, 

zero- inflated data often observed in the clinical data of 

children with an EP disorder, using ZIP model among other 

models. Beckett et al [18] estimate the parameters of a ZIP 

distribution to model some natural calamities’ data. Stewart 

[19] studied and compared the method of moment and 

maximum-likelihood estimator of various multi-point 

inflated Poisson distributions along with the standard Poisson 

distribution. Zhang et al [20] studied zero-and-one Inflated 

Poisson distribution, obtained maximum likelihood estimates 

of parameters using both the Fisher scoring and expectation-

maximization algorithms, and provided Bootstrap confidence 

intervals for parameters of interest and testing hypotheses 

under large sample sizes. Hassanzadeh and Kazemi [21] 

extends regression modeling of positive count data to deal 

with excessive proportion of one counts and proposed one-

inflated positive Poisson and negative binomial regression 

models and present some of their properties. 

Alshkaki [22] introduced an extension to the zero-inflated 

power series distributions, in which the Poisson distribution 

is one of them, in which not only the number of frequencies 

with zeros is inflated, but the number of frequencies with 

ones are also inflated as well. He called such models zero-

one inflated models, he studied its structure properties, as 

well as its relation to the standard and the zero inflated cases. 

In this paper, we give in Section 2, the definition of the 

Poisson distribution, then, in Section 3, we introduce the 

class of zero-one inflated Poisson distribution, and some of 

its structural properties, namely, its mean, variance, and 

generating functions, were given in Section 4. Then in 

Section 5, we consider moment estimators method of its 

parameters, followed by the maximum likelihood estimators 

method for its parameters also in Section 6. Finally, empirical 

examples consist of estimation of the parameters of the zero-

one inflated Poisson distribution as well as fitting its 

frequencies were presented in Section 7, using three different 

sets of data representing; accident insurance claims data, 

stillbirths of New Zealand white rabbits data, and heavy 

vehicle traffic accident data. Finally, some concluding 

remarks were given in Section 8. 

2. Poisson Distribution 

Let θϵΩ = �θ; 0 < θ < ω
 , where ω  is the radius of 

convergence of e�, then the discrete random variable (rv) X 

having probability mass function (pmf); 


�� = �� = 	 ���! ��� ,				� = 0, 1, 2,	                (2.1) 

is said to have a Poison distribution (PD) with parameter 

space Ω, and will denoted that by writing X ∼ PD�θ). 

3. Zero-One Inflated Poisson 

Distribution 

Let X ∼ PD�θ) as given in (2.1), let α ∈ �0,1� be an extra 

proportion added to the proportion of zero of the rv X, and let β ∈ �0,1� be an extra proportion added to the proportion of 

ones of the rv X, such that 0 < α + β < 1, then the rv Z 

defined by; 


�$ = %� = 	
&'
'(
''
) * + �1 − * − ,�	��� ,				% = 0		, + �1 − * − ,�-��� ,					% = 1		�1 − * − ,� �./! ��� , % = 2, 3, 4, …		0	34ℎ�6789�,	

									(3.1) 

is said to have a zero-one inflated Poisson distribution, and 

will denoted that by writing Z~ZOIPD�θ; α, β�. 
Note that, if β → 0, the (3.1) reduces to the form of the 

zero-inflated Poisson distribution (ZIPD). Similarly, the case 

with α → 0 and β → 0, reduces to the standard case of PD. 

4. Some Structural Properties of the 

ZOIPD 

Let the rv Z ∼ ZOIPD�θ; α, β�, then it is easy to find that; 

?�$� = 	β + �1 − α − β�θ		                   (4.1) 

	= 	, + �1 − * − ,�	?���	 
= 	,�1 − -� + ?�@�							 

where X ∼ PD�θ) as given by (2.1), and Y ∼ ZOIPD�θ; α, 0�, a zero-inflated PD. Similarly, 

BC6�$� = ,�1 − ,� + �1 − 2,��1 − * − ,�- + �* + ,��1 − * − ,�-D	                                                      (4.2) 

= ,�1 − ,� + �1 − 2,��1 − * − ,�BC6��� + �* + ,��1 − * − ,�EBC6���FD	 
= BC6�@� + ,�1 − ,� − �3 − 2* − 2,�,- + ,�1 + ,�-D 

The probability generating function	GH�s� and the moment generating function	MH�t�, are respectively, given by: 

LM�9� = ?�9M�	 
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	= * + ,9 + �1 − * − ,����N�O�	                                                                    (4.3) 

= * + ,9 + �1 − * − ,�	LP�9�	 
and 

QM�4� = ?��RM�	 
	= * + ,�R + �1 − * − ,�	���ST�O�	 
	= * + ,�R + �1 − * − ,�	QP�4� 

5. Moment Estimators of the Parameters 

Using the moment generating function, or obtaining them 

directly, the second and three distribution moments about the 

origin for the ZOIPD can be found to be, 

UDV = 	, + �1 − * − ,�	-�1 + -�	 
and, 

UWV = 	, + �1 − * − ,�	-�1 + 3- + -D�	 
with the first moment about the origin as given by (4.1), 

UOV = 	, + �1 − * − ,�-	 
Let z1, z2,   , zn be a random sample from $XY
Z	as given 

by (3.1), and let, 

[\V =	∑ %\̂_̂̀ Oa , b = 1, 2, 3. 
be their sample moments about the origin, then solving the 

following simultaneous:  

[OV = 	, + �1 − * − ,�	                           (5.1) 

[DV = 	, + �1 − * − ,�	-�1 + -�	 
[WV = , + �1 − * − ,�-�1 + 3- + -D�	 

for θ, α,	 and β  give us the following moments estimators 

(ME) for these parameters: 

*d = 	1 − [OV + �[WV − 4[DV + 3[OV � e fgh�fihfjh�WfghkDfihlD	      (5.2) 

,m = 	[OV − nfgh�fih ogfjh�WfghkDfih 	                             (5.3) 

-p = 	fjh�WfghkDfihfgh�fih                                      (5.4) 

A derivation of (5.2) to (5.4) is given in the following: 

from (4.3), it is easily find that, the k
th

 factorial moment of Z 

defined by; 

UEqF = ?E$�$ − 1��$ − 2�… �$ − b + 1�F 
for k= 2, 3, , is given by, 

UE\F =	 �1 − * − ,�-\, 

in particular, 

UEDF =	 �1 − * − ,�-D                        (5.5) 

UEWF =	 �1 − * − ,�-W                        (5.6) 

and let for b = 	2, 3, …  

[E\FV =	∑ rs�rs�O��rs�D�…�rs�\kO�tsui _ ,	             (5.7) 

be their sample factorial moments, then equating the 

distributional factorial moments UEDF	 and UEWF given by (5.5) 

and (5.6), respectively, with their sample factorial moments 

given by (5.7), we have, 

[EDFV =	 �1 − * − ,�-D                       (5.8) 

[EWFV =	 �1 − * − ,�-W, 

and hence, 

-p = 	fEjFh
fEgFh 	                               (5.9) 

From (5.8), we have that, 

fEgFh
	�g 	= 	1 − * − ,,	                          (5.10) 

therefore, it follows from (5.1) with the using of (5.10) that, 

, = 	[OV − fEgFh
� ,	                            (5.11) 

and hence with the using of (5.9), we have that, 

,m = 	[OV − fEgFh g
fEjFh 	                            (5.12) 

Similarly, (5.10) can be written with the using of (5.12) as, 

*d = 	1 − [OV + fEgFh g
fEjFh − fEgFh j

fEjFh g	                  (5.13) 

Now, subsisting [EDFV  and [EWFV  in terms of [OV , [DV , and [WV  

into (5.13), (5.12) and (5.9) we get the forms given by (5.2) 

to (5.4), respectively. 
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6. Maximum Likelihood Estimators of the Parameters 

Let z1, z2, …, zn be a random sample from $XY
Z	 as given by (3.1), and let for i=1, 2, … n,  

*^ =	 v 1	8w	%^ = 0,0	34ℎ�6789� 

and 

,^ =	 v 1	8w	%^ = 1,0	34ℎ�6789� 

then, for i=1, 2, … , n, (3.1) can be written in the following form; 


�$^ = %^� = 	 x* + �1 − * − ,�	���yzsx, + �1 − * − ,�-���y{s v�1 − * − ,� �.s/s! ���|O�zs�{s , 
hence, the likelihood function L = L(θ, α, β; zO, zD, … , z~� will be, 

L=	∏ x* + �1 − * − ,�	���yzsx, + �1 − * − ,�-���y{s 	v�1 − * − ,� �.s/s! ���|O�zs�{s_̂̀ O  

=	 x* + �1 − * − ,�	���y_�x, + �1 − * − ,�-���y_i �	��1 − * − ,� -/s%^! ����
�s_

^`O
 

where �^ = 1 − *^ −	,^ , a� = ∑ *^_̂̀ O 	Ca�	aO = ∑ ,^_̂̀ O . Note that a�	 and aO represents, respectively, the number of zeros 

and the number of ones in the sample. Therefore, 

�3� � =a��3�x* + �1 − * − ,�	���y + aO�3�x, + �1 − * − ,�-���y + �a − a� − aO��3��1 − * − ,� +��^_
^`O

%^	 log�-�
−��^_

^`O
log	�%^!� − �n − n� − nO�θ 

It follows that, 

��z �3�� = _��O�S���zk�O�z�{�S�� − _i�S��{k�O�z�{��S�� − �_�_��_i�O�z�{                                                (6.1)

And hence,  

�D�*D �3�� = − a��1 − ����DE* + �1 − * − ,����FD − aO�-����DE, + �1 − * − ,�-���FD − �a − a� − aO��1 − * − ,�D  

Therefore, 
�g�zg �3�� < 0, which indicates that L has a local maximum at *. Similarly,  

��{ �3�� = − _��S���zk�O�z�{�S�� + _i�O��S���{k�O�z�{��S�� − �_�_��_i�O�z�{ 	                                  (6.2) 

�D�,D �3�� = − a������DE* + �1 − * − ,����FD − aO�1 − -����DE, + �1 − * − ,�-���FD − �a − a� − aO��1 − * − ,�D  

And hence, 
�g�{g �3�� < 0, which indicates that L has a local maximum at ,. And finally,  
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��- �3�� = − a��1 − * − ,����* + �1 − * − ,���� + aO�1 − * − ,�n−-��� + ���o, + �1 − * − ,�-��� 	+ ∑ �^_̂̀ O %^	-  

−�a − a� − aO�                                                                             (6.3) 

And, 

�D�-D �3�� = −a��1 − * − ,� ��- � ���* + �1 − * − ,����� 	+ aO�1 − * − ,� ��- � −-��� + ���, + �1 − * − ,�-���� − ∑ �^_̂̀ O %^	-D  

	= −a��1 − * − ,� � ���* + �1 − * − ,����� � �1 − * − ,����* + �1 − * − ,���� − 1�
+ aO�1 − * − ,� �� -��� − 2���, + �1 − * − ,�-���� − �1 − * − ,� � −-��� + ���, + �1 − * − ,�-����

D� − ∑ �^_̂̀ O %^	-D  

Therefore, the local maximum of - has to be explicitly examined.  

Then letting 
��z �3�� = 0	,	we have from (6.1) that 

1 − * − , = 	 �_�_��_i�t���eO��−-l�ti�ie-�−-l	                                                               (6.4) 

where,  

�� = 	* + �1 − * − ,��−-	,                                                                       (6.5) 

and  

�O = , + �1 − * − ,�-���                                                                        (6.6) 

Setting 
��� �3�� = 0, then (6.3) reduces, with the using of (6.5) and (6.6), to; 

− _��� �1 − * − ,��−- + _i�i �1 − * − ,��1 − -���� 	+ ∑ �stsui /s	� − �a − a� − aO� 	= 0	                                    (6.7)

Now, if we replace, ��	and �O by their sample relative frequencies, i.e. by their sample estimates, the proportion of zeros and 

the proportion of ones in the sample, that is; ��� = a�/a and �O� = aO/a, respectively, then (6.4) and (6.7) reduce to; 

1 − * − , = 	 �_�_��_i�_eO��−-−-�−-l	                                                                       (6.8) 

and 

−a�1 − * − ,���� + a�1 − * − ,��1 − -���� 	+ ∑ �stsui /s	� − �a − a� − aO� 	= 0	                               (6.9) 

Hence, using (6.8), (6.9) reduces to; 

��-� = 0	                             (6.10) 

Where, 

��-� =  ��^_
^`O

%^	 − �a − a� − aO�-¡ e�- − 1 − -l − -D 

Hence, (6.10) can be solved by any numerical procedure, 

say, Newton Rapson, to obtain -p numerically, i.e. �n-p	o =0. 

Similarly, using (6.4), (6.5) and (6.8), *  and ,  can be 

estimated to be; 

*d = O_ ¢a� − �_�_��_i��-£�O�-£ ¤	                 (6.11) 

and, 

,m = O_ ¢aO − �_�_��_i�-£�-£�O�-£ ¤	                (6.12) 

Therefore, the maximum likelihood estimates (MLE) of 

the parameters - , *  and ,  are given by solving (6.10) 
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numerically to find -p , with *d  and ,m  given by (6.9) and 

(6.10), respectively. 

7. Empirical Examples 

In this Section, three different sets of data will be used to 

estimate empirically the parameters of the zero-one inflated 

geometric distribution to illustrate the estimation results that 

are arrived to at Sections 5 and 6. 

7.1. Accident Insurance Claims Data 

This data set consists of the number of accident 

insurance claims on the basis of 16760 policies (number of 

policyholders) in Mazandaran Province. 
Momeni [13] used the zero inflated Poisson (ZIP) 

distribution model to fit the number of accident insurance 

claims of 16760 policies (number of policyholders) in 

Mazandaran Province. Table (1) shows fitting a Momeni’s 

ZIPD using the ML method and our ZOIPD fitting using both 

ML and MLE methods. The p-values for fitting a ZOIPD, as 

shown in the Table, indicate that this model provide also a 

higher accuracy than the ZIPD.  

Table 1. The parameters estimates of the ZIP and the ZOIP for the number 

accident insurance claims in Mazandaran Province. 

No. of 

Accident 

Observed 

Frequencies  

Expected Frequencies 

ME MLE  

ZIP  ZOIP ZIP ZOIP 

0 13772 13871 13772 13772 13662 

1 2631 2616 2633 2620 2631 

2 318 255 314 336 316 

3 34 17 37 30 37 

4+ 5 1 4 2 4 

Total 16760 16760 16760 16760 16760 

Model 

Parameters 

θ 0.1959 0.360001 0.25738 0.581356 

α 0.031 0.532613 0.21436 0.718869 

β --- 0.053044 --- 0.0971889 

¥D 49.3573 0.5457178 6.0438 0.5059015 

df 2 1 2 1 

p-value 0.0001 0.4601 0.0487 0.4769 

7.2. Stillbirths of New Zealand White Rabbits Data 

This data set consists of frequencies of stillbirths in 402 

litters of New Zealand white rabbits, originally used by 

Morgan et al [22] when discussing score test statistic. 

Table (2) shows the parameters estimates of the ZIP using 

the ML and the MLE methods, and that of the ZOIP using the 

MLE, for the data set of frequencies of stillbirths in 402 

litters of New Zealand white rabbits, which indicates for the 

p-values of the goodness of fit the accuracy of the ZOIP. 

Table 2. The parameters estimates of the ZIP and the ZOIP for the number of 

Stillbirths of New Zealand White Rabbits Data. 

No. of 

Stillbirths 

Observed 

Frequencies  

Expected Frequencies 

ME  MLE  

ZIP ZOIP ZIP ZOIP 

0 314 328 312 314 314 

1 48 22 56 36 48 

2 20 23 11 28 16 

3 7 16 9 15 11 

4 5 8 6 6 6 

5 2 4 3 2 3 

6+ 6 1 5 1 4 

Total 402 402 402 402 402 

Model 

Parameters 

θ 2.06857 2.57747 1.57835 2.10417 

α 0.78955 0.773023 0.72419 0.768771 

β --- 0.119832 --- 0.082012 ¥D 63.90364 9.663758 35.71905 3.954545 

df 4 3 4 3 

p-value 0.0001 0.0217 0.0001 0.266419 

7.3. Heavy Vehicle Traffic Accident Data 

This data set consists of the accident frequencies for the 

heavy vehicle traffic accident data collected for the year 2010 

by Sharma and Landge [16] from the National Highway No.6 

commonly refer to as NH-6 or G.E. Road (Great Eastern 

Road) in India. 

Sharma and Landge [16] used a ZIP regression model to 

estimate the accident frequencies for the heavy vehicle traffic 

accident data, as shown in table (1) below.  

Using our ZOIP model gives accurate estimates for the 

given accident data frequencies using the ME and MLE 

methods for estimating its parameters, .as shown, in Table 

(3), from the goodness of fit p-values. 

Table 3. Estimates of the heavy vehicle traffic accident data frequencies 

using the ZINB Regression of Sharma and Landge [16] and the ZOIG. 

No. of 

Accidents 

Observed 

Frequencies  

Expected Frequencies 

ME MLE  

ZIP ZOIP ZIP ZOIP 

0 55 65 56 55 55 

1 26 7 24 16 26 

2 4 8 4 13 4 

3 3 7 4 8 4 

4 3 5 4 3 2 

5+ 1 4 4 1 5 

Total 96 96 96 96 96 

Model 

Parameters 

θ 2.51765 3.36449 1.69102 3.50686 

α 0.64332 0.580214 0.4764 0.567498 

β --- 0.222859 --- 0.251832 ¥D 58.4456 0.934524 31.60577 0.75 

df 3 2 3 2 

p-value 0.0001 0.6267 0.0001 0.6872 

8. Conclusions 

We consider estimation of the parameters of the zero-one 

inflated Poisson distribution by the method of moment 

estimators and maximum likelihood estimators. The method 

of maximum likelihood estimators is shown to have butter 
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estimates on three real data sets representing; the An accident 

insurance claims data, a stillbirths of rabbits data, and a 

heavy vehicle traffic accident data. The zero-one inflated 

Poisson distribution is shown also to have a better fitting for 

that frequencies of the real data sets than the zero inflated 

Poisson distribution. 
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