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Abstract: We have developed new surfactant agents based on hydrolyzed soybean proteins using papain, and we have studied 

their ability to form and stabilize emulsions. The interfacial behavior and the emulsifying properties were correlated to the 

structural changes that the proteins underwent. The hydrolysis reaction was stopped by dropping to pH 2 in one case, or rapidly 

dropping the temperature to -18ºC in the other. The structural and functional properties of the obtained products depended on the 

way the papain hydrolysis of the soy proteins was stopped. Hydrolysis did not have a beneficial effect on the emulsifying 

properties of those hydrolysates that were stopped by freezing. For all the degrees of hydrolysis we studied, the emulsifying 

properties of the isolates were significantly improved when the hydrolysis reaction was stopped by dropping to pH 2. 
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1. Introduction 

Soy proteins in numerous and diverse food products. They 

have a great potential to substitute meat and dairy products 

considering their high digestibility and their well-balanced 

amino-acid composition. Nevertheless, over 95% of it is used 

as animal feed [1]. One of the main uses in human foodstuffs 

is as a functional ingredient, owing to its ability to form and 

stabilize gels, emulsions and foams [1]. Despite its 

commercial importance, the basic knowledge on the 

emulsifying properties of soy proteins has been scarce 

compared to their gelifying properties [2]. 

A restrained proteolysis may have positive effects on the 

surface activity of these proteins and hence on their 

emulsifying properties [3]. Studies on the modification of soy 

proteins by papain hydrolysis and its consequences on 

structural changes and functional properties of the modified 

proteins have been made in the past [4],[5]. However, in 

recent years there has been great progress in the methods and 

techniques for analyzing the formation and stability of 

emulsions, allowing for new studies and approaches that help 

to elucidate how the functional surface properties are linked 

to the structural characteristics of proteins. Furthermore, 

more research is needed to improve the functional properties 

of proteins, especially soy proteins, at pH ranges above than 

4.0, so that the use of these proteins in food systems becomes 

more widespread[1]. 

In that regard, our goal was to study the emulsion-forming 

and emulsion-stabilizing properties of the obtained 

hydrolyzed products, and establish how the interfacial 

behavior and emulsifying properties of these new surfactant 

agents relate to the way the hydrolysis reaction is interrupted. 

2. Materialsy Methods 

2.1. Preparation of the Soy Protein Isolate 

The soy protein isolates (SPIs) were prepared by 

isoelectric precipitation (pH 4.5) of an aqueous solution 

(alkaline medium at pH 8.0) of defatted soybean meal, which 

was then re-dispersed in an alkaline medium (pH 8.0) and 

freeze-dried [6]. 

2.2. Preparation of the Hydrolysates 

The soy protein isolate (about 30 mg of solid per mL) was 

incubated with papain enzyme solution (0.2 mg of papain per 
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mL), at a 4:1 (v/v) ratio, in a thermostatic water bath with 

continuous stirring at 40ºC. SPIs with protein contents of 

90.8 ± 0.4 g/100g, 3.50 ± 0.02 g/100g moisture and 5.7 ± 

0.02 g/100g minerals (ash) were used. Papain (from Sigma) 

contained 28 units/mg (one enzyme unit hydrolyzes 1.0 µmol 

of α-N-benzoyl-L-arginine ethyl ester (BAEE) per minute at 

pH 6.2 and 25ºC). The solutions or dispersions of the 

substrates were prepared in a pH 8.0 buffer (0.01M sodium 

phosphate). Different times for the hydrolysis treatment were 

used to obtain different degrees of hydrolysis(0. 1.8 - 2.5 and 

6.0 %). The hydrolysis reaction was stopped by: 1) dropping 

the pH of the soy protein isolate hydrolyzates (SPIH) to pH 2 

with 6N hydrochloric acid (HpH), and 2) rapid temperature 

drop of the SPIH dispersion using acooling bath(ice-sodium 

chloride bath) at -18ºC (HC). Subsequently, the obtained 

SPIHs were freeze-dried. SPIHs with the same degree of 

hydrolysis and stopping method were obtained from SPIs 

belonging to the same batch. 

2.3. Determination of the Degree of Hydrolysis 

The degree of hydrolysis (DH) was determined by 

measuring the free amino groups by the 

trinitrobencensulphonic acid (TNBS) method [7] with 

modifications described by [8]. The determinations were 

done three times using an L-leucine standard curve and 

measuring the absorbance at 420 nm. 

2.4. Preparation of the Emulsions of the Study 

25:75 (v/v) oil-in-water (o/w) emulsions were prepared 

using the different obtained hydrolysates, with 1.0 and 2.0 

mg/mL protein concentration, dissolved in pH 7, 0.01M 

sodium phosphate buffer without NaCl. The emulsions were 

prepared at room temperature in an Ultra-turrax T25 

homogenizer using the S 25N- 10G dispersing element at 

20,000 rpm for one minute. 

2.5. Determination of the Mean Droplet Size in the 

Emulsions 

The droplet size analysis was made with emulsions 

prepared as previously described, with or without treatment 

with pH 8.0, 50 mM Tris/HCl solution containing a 1% SDS 

solution at a 1:1 ratio[9]. A Malvern Mastersizer Micro 

particle size analyzer was used to determine the D3.2 y D4.3 

mean droplet diameters in a diameter interval ranging from 

0.3 to 300 µm. The difference in the mean diameter values 

with or without the SDS solution was taken as a 

measurement of floccule or aggregate formation inside the 

emulsion (degree of flocculation) [9]: 

DoF =[(D-DSDS)/DSDS]x100                (1) 

Where DoF is the degree of flocculation, D is the mean 

diameter as determined in absence of SDS, and DSDS is the 

mean diameter as determined in presence of SDS. 

The determinations were performed twice. 

 

2.6. Protein Concentration at the Interface 

The oil droplets were separated (washed) from the non-

adsorbed proteins according to the method described by [10] 

and modifications by[11].The adsorbed and non-adsorbed 

protein concentrations were determined with the method used 

by [12].The protein concentration at the interface was 

calculated as: 

Г(mg/m2) = [Pa] (mg/mL emulsion)/ Sv (m2/mL emulsion) (2) 

Where Г is the protein concentration at the interface, [Pa] 

is the protein concentration adsorbed in the emulsion and Sv 

is the interface area. 

The determinations were performed twice. 

2.7. Analysis of the Ability to form and Stabilize Oil-in-

Water Emulsions 

All the emulsions were studied with an optical vertical 

scanner (Turbiscan). The creaming and destabilization 

kinetics of the emulsions were determined by measuring the 

backscattering value every minute for a total of 60 minutes, 

as well as a single measurement, 24 hours later. The 

creaming stability was studied based on the decrease in the 

meanbackscattering values in the lower part (10-20 mm, 

BSp10-20 zone) of the measurement tube versus time [13]. The 

destabilization kinetics was analyzed as suggested by [14] 

using the following equations: 

BS(t) = BSh/ (BShkht + 1)                   (3) 

BS(t) = BSh/ (BShkht + 1) + ( 22.BSs)/[2
2 + (ks.BSs)

2.t2] (4) 

Where BS(t) is the BS value at a time-point "t", kh is BS 

variation rate versus time constant for a second order kinetic 

model, ks is the BS variation rate versus time constant for a 

sigmoid-fit kinetic model, and BSh and BSs are the amplitude 

parameters for the aforementioned kinetic models, so thatBSh 

+ BSs = BSi. 

The overall destabilization of the emulsions was studied 

using the meanbackscattering values in the 50 - 53 mm area 

(BSp50-53) versus time and the calculation of D(%)[15] as 

follows: 

D (%) = [(BSpmax. - BSp24)/ BSpmax]x100      (5) 

Where: D(%): overall degree of destabilization, BSpmax.: 

mean of the maximumbackscattering value at a time-point in 

a given interval and BSp24.:mean backscatteringat 24 hours in 

a given interval. 
The determinations correspond to duplicates which were 

also assayed twice. 

2.8. Statistical Analysis 

The fixed-effects model of analysis of variance (ANOVA) 

was used for statistical treatment of data, with α = 0.05; 

followed by the comparison of mean values by the least 

significant differences (LSD) test, with α = 0.05, using 

Statgraphics plus 7.0 software. 
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3. Results and Discussion 

3.1. Formation of the Emulsion 

3.1.1. Particle Size Analysis 

The variation of the D3.2 and D4.3 values of the emulsions 

in presence of SDS and relative to the different variables 

under study is shown in Table 1 A marked difference between 

the D3.2 and D4.3 values of all assayed samples can be noted, 

which would indicate that the emulsions are polydisperse 

[16]. This can be seen in Figure1, where the amplitude of the 

particle size interval ranges from about 0.3 to 220 µm. All 

emulsions showed a modal distribution. Most of the oil 

volume corresponds to the peaks belonging to the higher 

droplet-size interval, whose diameter is generally above 10 

µm. However, Figures1 b and c show that the diameter of the 

great majority of particles is below 10 µm, which would 

mean that about 60 to 80% of the emulsified oil volume is 

distributed among very few droplets, representing less than 

0.05% of the total. Most of the newly-formed area percentage, 

about 70 to 85%, was shown to correspond to the particle 

size interval below 10 µm, in line with the particle number 

distribution. 

The degree of hydrolysis did not significantly affect D3.2 

values (Table1). Emulsions that were prepared by HpH 

showed a significantly higher D3.2 value than the 

corresponding HC emulsions. 

The degree of hydrolysis did not significantly affect the 

D4.3 values (Table1). For those emulsions that were prepared 

by HC, the values corresponding to DH: 0, 1.8, and 2.5% 

were significantly lower than that of DH 6%, as shown in 

Figure 1a, where the distribution of volume for HC-DH 6% 

shows a peak beyond100 µm, whereas the distribution of 

HC-DH 0% has already decreased by that particle size. On 

the other hand, in those emulsions prepared by HpH the 

effect of the degree of hydrolysison D4.3 was not detected. 

The emulsions prepared by HpH showed a significantly 

higher D4.3 value than their correspondingHC counterparts, 

except for DH 6% where the opposite was true (Figure 1a). 

Table 1. Mean D3.2 and D4.3 values of the studied emulsions, with and without 

SDS treatment and DoF (D3.2). 

SPIH 
With SDS Without SDS  

D3.2 D4.3 D3.2 D4.3 DoF (D3.2) 

HC-DH 0% 5.2 ± 0.3 23 ± 1 12.6 ± 0.8 44 ± 4 142 ± 8 

HC-DH 1.8% 5.2 ± 0.3 24 ± 1 12.1 ± 0.8 51 ± 5 133 ± 8 

HC-DH 2.5% 5.2 ± 0.3 24 ± 1 11.9 ± 0.8 54 ± 5 129 ± 7 

HC-DH 6.0% 4.9 ± 0.3 61 ± 5 10.2 ± 0.8 83 ± 7 108 ± 7 

HpH-DH 0% 11.3 ± 0.4 37 ± 1 11.1 ± 0.4 40 ± 2 NF 

HpH-DH 1.8% 12.5 ± 0.4 38 ± 1 12.0 ± 0.4 41 ± 2 NF 

HpH-DH 2.5% 10.1 ± 0.4 35 ± 1 12.6 ± 0.4 40 ± 2 25 ± 1 

HpH-DH 6.0% 9.9 ± 0.4 37 ± 1 12.6 ± 0.4 41 ± 2 27 ± 1 

NF: found no flocculation 

0

2

4

6

8

10

12

14

16

0,1 1,0 10,0 100,0 1000,0

D (µm)

%
f(

D
)

b)

0

2

4

6

8

10

12

14

16

0,1 1,0 10,0 100,0 1000,0

D (µm)

%
f(

D
)

c)

0

2

4

6

8

10

12

14

16

0,1 1,0 10,0 100,0 1000,0

D (µm)

V
 (

%
)

a)

0

2

4

6

8

10

12

14

16

0,1 1,0 10,0 100,0 1000,0

D (µm)

%
f(

D
)

b)

0

2

4

6

8

10

12

14

16

0,1 1,0 10,0 100,0 1000,0

D (µm)

%
f(

D
)

c)

0

2

4

6

8

10

12

14

16

0,1 1,0 10,0 100,0 1000,0

D (µm)

V
 (

%
)

a)

 

Figure 1. a) Droplet size distribution of the emulsions at pH 7.0 and [NaCl] 

= 0 M, with [protein] = 1 mg/mL HpH-DH = 0% (▬), HC-DH = 0% (▪▪▪) 

and HC-DH = 6% (…). The measurements were done in presence of SDS.b) 

Droplet size distributions of the emulsions at pH 7.0 with HC-DH = 0% 

containing SDS, c) Droplet size distributions of the emulsions at pH 7.0 with 

HpH-DH =0%, with SDS. Volume (▬), area (  ̶) and number (…). 

3.1.2. Interfacial Protein Concentration 

The HpH samples showed greater Г values than the HC 

ones, the degree of hydrolysis only affected the HpH samples 

where DH 6% was significantly lower than the rest (Table 2). 

This could be attributed to two causes. Firstly, the HpH 

emulsions showed a greater adsorbed protein concentration at 

the interface for DH 0 and 1.8% (Table 2). Secondly, and 

probably most importantly, the HC emulsions showed a Sv 

value that was twice as much as those from HpH emulsions. 
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Table 2. Interfacial protein concentration, interfacial area and adsorbed 

protein concentration in the studied emulsions. 

SPIH Stopping method and DH Г (mg /m2) Sv (m2/ml emulsion) 

HC-DH 0% 1.7 ± 0.1 0.29 ± 0.01 

HC-DH 1.8% 1.5 ± 0.1 0.29 ± 0.01 

HC-DH 2.5% 1.7 ± 0.1 0.29 ± 0.01 

HC-DH 6.0% 1.3 ± 0.1 0.31 ± 0.01 

HpH-DH 0% 4.2 ± 0.2 0.14 ± 0.01 

HpH-DH 1.8% 4.2 ± 0.2 0.12 ± 0.01 

HpH-DH 2.5% 4.2 ± 0.2 0.12 ± 0.01 

HpH-DH 6.0% 3.3 ± 0.2 0.12 ± 0.01 

3.1.3. Droplet Flocculation during Formation 

The addition of SDS, according to[9], produces the 

dissociation of any type of aggregate that may have formed 

in the emulsions by non-covalent interactions. Therefore, the 

mean measured diameters (D3.2 and D4.3) in absence of SDS 

would indicate the droplets' tendency to flocculate through 

bridge formation. The variation of D3.2 and D4.3 values of the 

emulsions without SDS versus the different study variables, 

and the degree of flocculation of the studied emulsions is 

shown in Table1. The emulsions showed a modal distribution 

of the particle size (Figure 2) and great polydispersion, as 

observed in presence of SDS. D4.3 is the most sensitive to 

droplet aggregation of all the measured mean diameters[17]. 

The emulsions prepared by HC ([protein] = 1 mg/mL) were 

the ones that showed the highest degree of flocculation of all 

the studied emulsion, particularly for DH 0, 1.8 y 2.5%, 

whereas those prepared with HpH under different assayed 

conditions did not show flocculation through bridge 

formation or flocculated only slightly (not more than 13%). 

0

2

4

6

8

10

12

14

16

0,1 1,0 10,0 100,0 1000,0

D(µm)

V
 (

%
)

 

Figure 2. Droplet size distribution (in volume) of the emulsions at pH 7.0 

and [NaCl] = <0 M, with [protein] = 1 mg/mL of a) HpH-DH = 0% (▬) b) 

HC-DH = 0% (▪▪▪) y c) HC-DH = 6% (…). The measurements were 

performed in absence of SDS. 

3.2. Stability of the Emulsion 
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Figure 3. Backscattering profile for oil-in-water emulsions a) SPIHC and b) 

SPIHpH. The arrows show the profile's change versus time. Time is 

represented on the scale on the right. 

Figures3A and B show the backscattering (BS) versus the 

height profiles of the sample tube corresponding to HC and 

HpH emulsions respectively, where [protein] = 1 mg/mL, pH 

7.0 and [NaCl] = 0 M. 

For both emulsions, the lower part of the sample tube, i.e. 

zone I (10 – 20 mm), shows a decrease in the RD values over 

time, reflecting the development of a creaming process, and 

in zone II the cream phase can be observed, which stayed 

after the oil droplets accumulated in the upper part of the 

tube. 

3.2.1. Creaming Stability of the Emulsion 

Figure 4 shows the variation curves of the meanBS values 

(BSp) at the zone between 10-20 mm (BSp10-20) versus time, 

corresponding to all the assayed conditions of the emulsions. 

It can be noted than some curves show a hyperbolic shape 

(e.g. Figure 4a) whereas other show a sigmoid shape (e.g. 

Figure 4b) 
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Figure 4. Variation of the meanbackscattering values in zone 10-20 mm (BSp10-20) versus time of the following emulsions a) HC emulsions [protein]: 1 mg/mL, 

b) HpH emulsions[protein]: 1 mg/mL, c) HC emulsions [protein]: 2 mg/mL and d) HpH emulsions[protein]: 2 mg/mL; DH = 0% (▬), b) DH = 1.8 (‾ ‾), c) DH 

= 2.5 (…) and d) DH = 6,0% (-·-). 

3.2.2. Creaming Stability Study 

According to [14] emulsions with a hyperbolic BS profile 

would have such deviations from the Stokes' Law that, 

despite affecting the creaming rate of the droplets, these 

would keep the expected trend where larger droplets cream 

faster than smaller ones. Contrastingly, for emulsions with a 

sigmoid BS profile, the extent and incidence of the deviations 

from the Stokes' Law would be such that the movement of 

the droplets during the first interval of the creaming process 

would be impeded, however, over time, the delaying effects 

would decrease the extent and incidence, so that the creaming 

rate would assume a similar behavior to the hyperbolic 

profiles. The kh value indicates the type of behavior 

regarding stability andks is an index of the delay of the 

creaming rate. The BShand BSs values determinethe extent to 

which each term contributes to the overall destabilization 

process. In that respect, the BSh/ BSsratio is even more 

suitable [14]. 

Tables 3a and b show the k-values and %BS respectively, 

for the studied emulsions under all the assayed conditions. 

HpH emulsions showed sigmoid-shaped BS vs t curves 

under every assayed condition, whereas HC emulsions 

showed hyperbolic curves under every assayed condition, 

except when the protein concentration was 2 mg/mL with DH 

0, 1.8 and 2.5%, which had a sigmoid-shaped curve. 

Emulsions with P =1 mg/mL showed no significant 

differences of Kh values, ks values and %BSs with different 

values of DH, whereas those with P = 2 mg/mL only showed 

a significant difference in kh, where the value corresponding 

to DH 6% was lower than the rest. This indicates that there 

was no influence of DH either on the rate or delay effect of 

the creaming process. When the protein concentration 

increased, the kh and ks values were significantly lower 

except for DH 6%, where no significant difference in the kh 

value was found, whereas the %BS values increased 

significantly. This indicates less tendency to cream and 

greater delay effect as concentration increases for HpH. 

The HC emulsions [protein] = 1 mg/mL showed a 

hyperbolic kinetic behavior for all the studied DHs, with no 

significant differences in kh values. The increase in protein 

concentration cause a shift in the kinetic behavior (from 

hyperbolic to sigmoid) for DH 0, 1.8 and 2.5% and the kh 

values of those DHs did not show significant differences 

from each other and were considerably lower than the 

corresponding to DH 6%. In addition, the increase in 

concentration caused less of a tendency to creaming, since 

the ks values significantly decreased accordingly. 

The way the hydrolysis was stopped significantly affected 

the creaming rate and the delay effect. The kh values 

corresponding to HpH emulsions were significantly lower 

than those of HC emulsions in every studied condition. The 

ks values of HpH were significantly lower than those of HC, 

while the %BSs were three time greater than those of HC. 

The factors that could affect delay process of the creaming 

rate (as predicted by Stokes' Law) and manifest as a sigmoid 
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BS vs time profile are numerous:electrostatically charged 

droplets in the emulsion[18],[19], high effective density of 

the disperse phase [20], high apparent viscosities at low shear 

flow of the dispersing phase [21], [19], concentrated 

emulsions [22],[23], size and structure of the floccules within 

the emulsion [24],[25], [19], [26],[27] and polydisperse 

emulsions [28],[29],[30]. 

The surface electric charge, density and viscosity of the 

disperse phase were constant throughout the study, and 

therefore their delaying effect on the creaming rate must also 

have remained constant. The HC emulsions were those with 

the highest degree of flocculation and were also the only ones 

that showed a hyperbolic behavior. Then, even if the HC 

could have been forming floccules in an open-net structure, 

this would not have been able decrease the creaming process 

enough to generate a sigmoid behavior kinetics. 

According to [27], creaming can be completely inhibited 

when a certain Φc value is surpassed, and this value depends 

on the polydispersion of the emulsion. Then, in the studied 

emulsions, the particle concentration could have been such 

that the effect of droplet concentration and polydispersion 

would not only have caused a decrease in the creaming rate, 

but it would have also delayed the movement of the larger 

droplets. The particle concentration and the droplet size 

interval decreased with the evolution of the creaming process, 

so that the degree of delay could become smaller while the 

creaming rate increased. The higher the particle 

concentration and degree of polydispersion, the greater the 

delay in the creaming rate was and hence the lower the ks 

value was, which describes the sigmoid behavior of the RD(t) 

vs t curves. The principle behind the Turbiscan equipment is 

the multiple dispersion of light and the fact that the BS 

values increase as the particle size decreases and as the 

particle volume fraction increases[31]. In general, the 

emulsions which had a sigmoid-like kinetic behavior showed 

significantly higher BSp(10-20)i values than those emulsions 

with a hyperbolic behavior (Table 3). This agrees with the 

principle that the delay in the creaming rate depended on the 

droplet concentration and their size. Furthermore, the 

emulsions with a hyperbolic kinetic behavior had a tendency 

to cream from the start as aggregated floccules, something 

which probably went on during the creaming process and 

contributed to increase the creaming rate, thus counteracting 

other processes that would favor its delay. 

Table 3. K-values and %BS of the studied emulsions. 

a. k-values 

 [prot.] = 1 mg/ml [prot.] = 2 mg/ml 

SPIH Stopping method and DH kh ks kh ks 

HC-DH 0% (1.3 ± 0.08)x10-3  (4.9 ± 0.05) x10-4 (1.7 ± 0.05)x10-2 

HC-DH 1.8% (1.1 ± 0.05)x10-3  (4.4 ± 0.05) x10-4 (1.6 ± 0.05)x10-2 

HC-DH 2.5% (1.2 ± 0.04)x10-3  (4.4 ± 0.05) x10-4 (3.1 ± 0.05)x10-2 

HC-DH 6.0% (1.6 ± 0.05)x10-3  (1.9 ± 0.05) x10-3  

HpH-DH 0% (4.8 ± 0.05)x10-4 (5.4 ± 0.05)x10-3 (3.6 ± 0.08)x10-5 (2.3 ± 0,08)x10-3 

HpH-DH 1.8% (5.0 ± 0.05)x10-4 (5.4 ± 0.05)x10-3 (8.0 ± 0.05)x10-5 (3.1 ± 0.05)x10-3 

HpH-DH 2.5% (5.3 ± 0.04)x10-4 (7.3 ± 0.04)x10-3 (2.2 ± 0.04)x10-5 (2.3 ± 0.04)x10-3 

HpH-DH 6.0% (5.4 ± 0.05)x10-4 (7.6 ± 0.05)x10-3 (3.9 ± 0.05)x10-4 (4.8 ± 0.05)x10-3 

b. Ratios of BShand BSs and BSi. 

 [prot.] = 1 mg/ml [prot.] = 2 mg/ml 

SPIH Stopping method and DH %BSh %BSs BSi %BSh %BSs BSi 
HC-DH 0% 1.00 *  44 ± 1 0.74 ± 0.04 0.26 ± 0.04 53 ± 1 

HC-DH 1.8% 1.00 *  47 ± 1 0.78 ± 0.04 0.22 ± 0.04 53 ± 1 

HC-DH 2.5% 1.00 *  45 ± 2 0.83 ± 0.04 0.17 ± 0.04 52 ± 1 

HC-DH 6.0% 1.00 *  29 ± 2 1.00 *  36 ± 1 

HpH-DH 0% 0.44 ± 0.01 0.56 ± 0.01 54 ± 1 0.32 ± 0.02 0.68 ± 0.02 60 ± 1 

HpH-DH 1.8% 0.46 ± 0.01 0.54 ± 0.01 55 ± 2 0.39 ± 0.02 0.61 ± 0.02 60 ± 1 

HpH-DH 2.5% 0.49 ± 0.01 0.51 ± 0.01 53 ± 4 0.26 ± 0.02 0.74 ± 0.02 58 ± 1 

HpH-DH 6.0% 0.48 ± 0.01 0.52 ± 0.01 52 ± 5 0.33 ± 0.02 0.67 ± 0.02 55 ± 5 

* In the case of HC (1 mg/mL), the curve is not sigmoid and is described by equation 5, consequently it has only one term and a single amplitude parameter, 

therefore its ratio is 1 and is reported in the %BSh column. 

3.2.3. Stability of the Emulsion to Flocculation and 

Coalescence 

In Figures 3A and B, zone II shows that the cream phase 

remained after the oil droplets gathered-up on the top of the 

tube. In order to compare the cream phases of the different 

assayed emulsions, the BS vs. l(tube height ) profiles shown 

in Figures 3A and B were divided into three zones: A, B and 

C, corresponding to the lower, middle and higher parts of the 

cream phase respectively. The profile of several emulsions, 

represented in the different studied conditions (Figures 5a -f), 

show a peak in zone A, which, according to[15] can be 

ascribed to the build-up of small droplets with low creaming 

rate. In addition, another prominent peak appears in zone C 

as a result of the presence of foam in the emulsions. In the 

middle zone (zone B) of the cream phase, the drop in the BS 

profile may be regarded as the decrease of the number of 

droplets, mainly generated by coalescence or coalescence 

together with a flocculation process [15]. 

When the emulsions are prepared with proteins as their 
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only emulsifying agent, in low concentrations and under 

static conditions, coalescence is a slow destabilization 

mechanism compared to creaming and flocculation [32]. 

Storing the emulsions under static conditions, at room 

temperature for 24 hours is considered to be enough to detect 

coalescence [15]. In the emulsions corresponding to Figures 

5a, b and e, zone B (50 – 53 mm) shows a marked decrease 

in the BS profile after 24 hours relative to the profile after the 

first hour of destabilization, whereas the emulsions 

corresponding to the conditions of Figures 5c, e and f, do not 

show this decrease. These results may indicate that the first 

group of emulsions could have experienced a considerable 

droplet size increase during the first 24 hours of storage. 
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Figure 5. Backscattering profiles of emulsions prepared at 0 minutes, 60 minutes and 24 hours after the time of elaboration a) HC (DH = 0%, [protein] = 1 

mg/mL), b) HC (DH = 6%, [protein] = 1 mg/mL), c) HpH (DH = 0%, [protein] = 1 mg/mL), d) HC (DH = 0%, [protein] = 2 mg/mL), e) HC (DH = 6%, 

[protein] = 2 mg/mL), f) HpH (DH = 0%, [protein] = 2 mg/mL. The arrow indicates the change of the profile over time. The indicated zone corresponds to the 

50 – 53 mm interval. 

3.2.4. Destabilization Kinetics of the Cream Phase 

In order to analyze the destabilization kinetics of the cream 

phase, the BSp in zone B (50-53 mm) taken from the BS 

profiles versus time (0 - 60 minutes) were recorded for all the 

assayed emulsions (Figures 6a-d). The time required for BSp 

to reach the maximum value (BSpmax.) is indicative of the 

balance between the build-up and decrease rates of the 

number of droplets. The lower values of BSpmax., such as 

HC [protein] = 1 mg/mL, indicate that during that time the 

decrease in the number of droplets, due to coalescence and/or 

flocculation was greater than the build-up of droplets due to 

the creaming process. In the case of HpH emulsions, under 

most of the assayed conditions the maximum BSp value was 

obtained at 60 minutes, which indicates a slow rate of 

formation of the stable cream phase. The two described 

situations are in line with the creaming destabilization 

behavior shown by both groups of emulsions. 

The D(%) values (Equation 5) were obtained from the BS 

profiles. This parameter allowed the quantification of the 

overall destabilization of the cream phase since its formation 

until the end of its storage (24 hours). Since it is a BSp 

decrease index, associated with a lower particle number, it 

can be associated with coalescence and/or flocculation. 

The D% (BSp50-53) values are shown in Table 4 for all 

the assayed conditions. The prepared emulsions, under the 
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different assayed conditions with HC, showed a considerable 

degree of destabilization, while those prepared by HpH were 

stable to flocculation and coalescence processes. The 

emulsions prepared byHC ([protein] = 1 mg/mL) had a 

prevalence of particle inflow into the cream zone, whether 

flocculated or not, causing an increase of BSp50-53 , peaking 

after 8 to 20 minutes. In the case of DH = 0, 1.8 y 2.5%, that 

value decreased as the degree of hydrolysis increased, 

whereas the degree of destabilization increased (Figures 5a, b 

y e). For DH 6% BSp50-53 it decreased from the beginning and 

it also displayed the highest D% value. 

According to [33], the stability of oil-in-water emulsions is 

mainly affected by the viscoelastic properties of the 

surfactant film, and the steric repulsion between the adsorbed 

surfactant layers, which in turn delays flocculation in the 

initial stages that leads to coalescence. As stated by [27] the 

partially hydrolyzed do not prevent coalescence as efficiently 

since they tend to form less viscoelastic and thinner 

interfacial layers, which break more easily. This could 

account for the increase of the degree of destabilization as 

DH rises, to such extent that DH = 6% emulsions showed a 

decrease in BSp50-53 from the beginning. On the other hand, 

the probability of forming a breach in a given place of the 

membrane is higher as the area increases. Consequently, the 

greater the contact area between two droplets, the greater the 

coalescence rate. The coalescence rate therefore increases as 

the droplet size of an emulsion increases, or when the 

droplets are pushed against each other. This process takes 

place in very concentrated emulsions and cream layers [17], 

[19]. In the case of DH 6%, larger droplets formed from the 

start (Table 1) which subsequently favored coalescence. 

The HpH proteins had more flexibility to get placed at the 

interface, since they were previously dissociated and 

denatured by the low pH, particularly the AB glycinin 

subunits. Additionally, having a greater interfacial protein 

concentration favored the steric repulsions and therefore 

made it less likely to flocculate. The greater interfacial 

protein concentration also provided more resistance to 

coalescence to the film. For DH 6%, despite the high loss of 

β-conglycinin, which accounts for most of the stability of soy 

protein-derived emulsions [2], the aforementioned interfacial 

behavior was not affected. Therefore, most of the stability 

could be attributed mainly to the existence of glycinin as AB 

subunits. 

The emulsions can become stable to coalescence when the 

thickness of the continuous interstitial phase is enough to 

prevent contact between the droplet films [27]. For this 

reason, a greater interstitial aqueous phase in the cream phase 

could reduce coalescence to a minimum [15]. In the 

measurements tubes, the actual sample height of the 

emulsion was about 53 mm (7 mm belong to the lower tube 

cap), from which about 40 mm correspond to the initial 

aqueous phase (75%) and about 13 mm to the initial oil phase 

(25%). Thus the limit between both phases should 

theoretically be at 47 mm. In the BSp50-53vs. time plots of the 

emulsions prepared by HpH (Figures 5c and f), the BS 

profile of the cream phase corresponding to 24 hours begins 

at 40 mm, which indicates that the cream phase is highly 

hydrated, which could have contributed to the flocculation 

and coalescence stability. On the contrary, the profiles at 24 

hours of the HC emulsions begin around 47 mm, which 

indicates a poor hydration of the cream phase corresponding 

to 24 hours. The HC emulsions with a protein concentration 

of 2 mg/mL, despite showing more destabilization as the 

degree of hydrolysis increased, had a significantly lower 

destabilization than those with a protein concentration pf 1 

mg/mL. This lower tendency to flocculation/coalescence 

compared to [HAS-C] = 1 mg/mL can be ascribed to the fact 

that, quite likely, interfacial protein concentration was higher 

in this case and therefore the film was more resistant to 

coalescence due to prolonged contact. 

The most notable difference in the formation of the studied 

emulsions was the lower D3.2 values of the HC emulsions. 

The higher degree of flocculation of the droplets in HC 

emulsions could mainly be a consequence of hydrophobic 

interactions, since soy proteins cannot undergo marked 

conformational changes at the interface [34] , leading to 

some hydrophobic areas oriented towards the aqueous phase, 

enabling the interaction with other film proteins in 

neighboring droplets. Nevertheless, the droplets 

corresponding to the HC DH 6% emulsions showed a lower 

degree of flocculation. During the formation of the emulsion, 

before the coalescence caused by collisions, flocculation is 

likely to occur and, depending on the resistance of the protein 

film, coalescence may or may not occur. Emulsions with 

DH6% containing SDS showed a significantly higher D4.3 

value (about three times higher) than the rest of the HC 

samples. This could be explained by their lower film 

resistance (due to a higher degree of hydrolysis) that rapidly 

turned flocculation into coalescence. One possible 

explanation for the differences is that the HC samples were 

adsorbed more rapidly and efficiently. However, the proteins 

of HpH samples were dissociated (lower molecular size), 

unfolded, and showed a higher surface Ho[35], therefore they 

should have been adsorbed more rapidly and efficiently (or at 

least similarly) than the HC ones, but definitely not more 

slowly. The droplets formed with HpH showed a higher 

interfacial protein concentration and, consequently, 

considering that, they should have been more resistant to 

collision-mediated coalescence that may have occurred 

during homogenization. All evidence would suggest that 

HpH should have shown a better behavior during the 

formation of the emulsions. However, based on observations 

to date, the lower D3.2 of the HC emulsions could be a result 

of the formation of a membrane that is more resistant to 

coalescence, and this behavior could be linked to a higher 

interaction of proteins with the oil phase and with each other, 

conferring it with more cohesiveness. 

On the other hand, in the cream phase the droplets of HC 

emulsions showed a remarkable degree of destabilization and 

a considerable degree of coalescence, while the HpH 

emulsions showed great stability and no coalescence was 

noted during the duration of the study. Although coalescence 

was a result of collisions and prolonged contact (in the cream 
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phase), it is conceivable that a membrane capable of resisting 

the coalescence phenomenon in one scenario should be able 

to resist it in the other. From this observation it follows that 

the differences between the D3.2 of the HC and HpH 

emulsions should not be ascribed to the droplets' resistance to 

coalesce, given the collisions they experience during 

homogenization. One plausible explanation of the observed 

phenomenon is that whether a droplet is prone to break up 

during homogenization also depends on the emulsifying 

capacity to improve rheological and viscoelastic properties of 

the interfacial film, since it would make it less likely for the 

droplets to break up and give place to larger droplets than 

expected for a given equilibrium interfacial tension 

[36],[37],[38]. This is probably the case for droplets in HpH 

samples, which also agrees with their behavior in the cream 

phase. In sum, there actually is agreement between the 

behavior of the droplets in the different emulsions with the 

formation, stability and properties that the proteins conferred 

to the interfacial films. 

Table 4. Degree of destabilization (D(%)) in the 50-53 mm zone. 

Stopping method of SPIH and DH [prot.] = 1 mg/ml [prot.] = 2 mg/ml 

HC-DH 0% 13 ± 4 1 ± 1 

HC-DH 1.8% 15 ± 3 9 ± 2 

HC-DH 2.5% 21 ± 3 17 ± 3 

HC-DH 6.0% 59 ± 9 47 ± 9 

HpH-DH 0% S S 

HpH-DH 1.8% S S 

HpH-DH 2.5% S S 

HpH-DH 6.0% S S 

S: stable 
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Figure 6. Variation of the meanbackscattering values in zone 50-53 mm (BSp50-53) versus time for a) HC [protein]: 1mg/mL, b) HpH [protein]: 1mg/mL, c) HC 

[protein]: 2 mg/mL, d) HC [protein]: 2 mg/mL (DH = 0% (▬), DH = 1.8 (‾ ‾), DH = 2.5 (…) and DH = 6.0% (-.-). 

4. Conclusions 

The obtained results show that a very slight hydrolysis 

(DH 1.8 and 2.5%) does not have a beneficial effect on the 

emulsifying properties of those hydrolysates where the 

enzyme activity was stopped by freezing. Only the HC 

samples with DH 6% showed changes in their properties, 

which were actually detrimental. The detrimental effect of 

DH 6% on the emulsifying ability was reflected on the 

greater obtained droplet size (D4.3) and on the stability at 

greater D% values. The emulsions that were prepared with 

HC DH 6% showed a greater tendency to coalesce due to the 

collisions that took place during formation, and through 

contact with the cream phase. In every case, the detrimental 

effect was ascribed to the loss of molecular size, which did 

not allow the formation of a film with suitable viscoelastic 

and cohesive properties. In particular, these negative effects 

may be attributed to the hydrolysis of β-conglycinin 

compared to the hydrolysis of glycinin. In the case of 

emulsions then, β-conclycinin is the one that displays the 

best emulsifying properties. 

The SPIHs where the enzyme activity was stopped by 

lowering the pH showed better emulsifying properties that 

those that were untreated. The emulsions derived from them 

were the most stable against creaming, flocculation and 

coalescence. In every case, the positive effect was ascribed to 

the dissociation and denaturalization of soy proteins by the 

pH treatment, which favored the formation of a film at the 

interface with good cohesive and viscoelastic properties. 

Moreover, the fact that these emulsions had higher D3.2 and 

D4.3 values was also correlated to the characteristics of the 

formed film. As previously mentioned a DH 6% had 
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detrimental effects on the properties, but this effect was not 

observed in the case of HpHs. Despite β-conglycinin 

dissociating due to the low pH treatment, in that case of DH 

6% it underwent extensive hydrolysis which was responsible 

for the negative effect on the emulsifying properties. 

Consequently, those enhanced film properties which lead to 

superior functional properties can be attributed mainly to the 

dissociation of glycinin into its AB subunits and their 

denaturalization. 

The method used to stop the papain hydrolysis reaction of 

the soy proteins in the isolates was a key aspect in the 

structural and emulsifying properties of the obtained products. 

The hydrolysis did not have a beneficial effect on the 

emulsifying properties of the hydrolysates that were stopped 

by freezing. A 6% degree of hydrolysis negatively affected 

the emulsifying properties of the HCs. 

Stopping the hydrolysis reaction by lowering to pH 2 made 

a significant improvement of the emulsifying properties of 

the isolates, for all the studied degrees of hydrolysis. 
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